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A B S T R A C T   

Touristic cities will suffer from COVID-19 emergency because of its economic impact on their communities. The 
first emergency phases involved a wide closure of such areas to support “social distancing” measures (i.e. travels 
limitation; lockdown of (over)crowd-prone activities). In the “second phase”, individual’s risk-mitigation stra
tegies (facial masks) could be properly linked to “social distancing” to ensure re-opening touristic cities to vis
itors. Simulation tools could support the effectiveness evaluation of risk-mitigation measures to look for an 
economic and social optimum for activities restarting. This work modifies an existing Agent-Based Model to 
estimate the virus spreading in touristic areas, including tourists and residents’ behaviours, movement and virus 
effects on them according to a probabilistic approach. Consolidated proximity-based and exposure-time-based 
contagion spreading rules are included according to international health organizations and previous calibra
tion through experimental data. Effects of tourists’ capacity (as “social distancing”-based measure) and other 
strategies (i.e. facial mask implementation) are evaluated depending on virus-related conditions (i.e. initial 
infector percentages). An idealized scenario representing a significant case study has been analysed to demon
strate the tool capabilities and compare the effectiveness of those solutions. Results show that “social distancing” 
seems to be more effective at the highest infectors’ rates, although represents an extreme measure with important 
economic effects. This measure loses its full effectiveness (on the community) as the infectors’ rate decreases and 
individuals’ protection measures become predominant (facial masks). The model could be integrated to consider 
other recurring issues on tourist-related fruition and schedule of urban spaces and facilities (e.g. cultural/leisure 
buildings).   

1. Introduction 

The smart adaptation of cities against different risks is one of the key 
challenges for their sustainability and the resilience of the hosted com
munities (Chen et al., 2020; Ribeiro and Pena Jardim Gonçalves, 2019). 
Urban areas involved by tourists’ flows represent a particular applica
tion context for such resilience issues, because of the complexity be
tween economic, social (including relationships between tourists’ and 
residents’ needs) and organizational tasks, especially in those scenarios 
in which seasonal tourism is a training element for the community 
(Feleki et al., 2018; Qie and Rong, 2016; Stanganelli et al., 2020). Due to 
such aspects, touristic areas are generally more susceptible to disaster 
effects than the other urban contexts (Aznar-Crespo et al., 2020; Rosselló 
et al., 2020). 

One of the fundamental short-terms challenges for such touristic 
urban areas is surely represented by the COVID-19 emergency (Gössling 

et al., 2020; Iacus et al., 2020; Jamal and Budke, 2020; Nicola et al., 
2020). In fact, they represent a significant scenario for the contagion 
spreading, essentially because the possibility of interactions among the 
individuals (in a direct or indirect way) is boosted by possible significant 
conditions in (Chakraborty and Maity, 2020; Yang et al., 2020): 1) in
teractions between visitors and residents (mainly, in public areas, ac
commodation, other tourist facilities and leisure buildings) with the 
possibility to “import” positive cases into the touristic areas (towards 
local outbreaks) or “export” them; 2) crowd levels, which cannot be 
always managed by the stakeholders (e.g. crowd in outdoor public 
spaces), thus amplifying the transmission probabilities. The same risks 
can be connected to international, national and local tourists’ flows. 

Such areas suffered (and are still suffering) the immediate counteract 
pandemics measures concerning “lockdown” solutions (i.e. restricted 
mobility and travels, “social distancing”), adopted by most of the 
Countries, thus proposing a blockage of touristic flows in the “first 
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phase” of the emergency (Anderson et al., 2020; Bruinen de Bruin et al., 
2020; Gössling et al., 2020; Hellewell et al., 2020; Iacus et al., 2020; 
Jamal and Budke, 2020; Prem et al., 2020; Yang et al., 2020). Fig. 1 
shows how such strategies have been generally and gradually reduced 
the number of active cases1. 

The return to “business as usual” should consider how differences 
among different Countries still exist (as well as among areas in the same 
Country) because of the initial conditions of the contagion. To the date 
this paper is written (early May 2020), considering Italy, which was one 
of the most COVID-19 affected Countries in the “first” emergency 
phase2, the overall percentage of active cases over the population for the 
whole National territory is equal to about 0.16%, while the Lombardia 
Region (where many initial outbreaks happened (De Natale et al., 
2020)) is still experiencing values over 0.30% (average values from the 
28th of April to the 12th of May 2020). Local conditions can raise the 
percentage up to values over 1% (e.g. compare to the data from Republic 
of San Marino, which is placed inside the mainland Italy and near to 
areas with a significant contagion spreading in the first outbreaks)1. 
Thus, mitigation measures should be balanced with respect to the 
number of active cases as well as to the benefits for the overall society 
(Bin et al., 2020; Ferguson et al., 2020). They could ensure that local 
areas characterized by higher active percentage cases and consistent 
asymptomatic ratio within the population could not lead to severe sec
ond peaks in the contagion (Anderson et al., 2020; Feng et al., 2020; 
Mizumoto et al., 2020; Prem et al., 2020; Roda et al., 2020). 

Since consolidated rules for contagion spreading are based on a 
coupled proximity-based and exposure time-based mode of transmission 
(Bourouiba, 2020; Ferguson et al., 2020; Hamid et al., 2020; Yang et al., 
2020)3, quick-to-apply non-pharmaceutical interventions are mainly 
aimed at (Barbieri and Darnis, 2020; Bruinen de Bruin et al., 2020; 
Carlos Rubio-Romero et al., 2020; Feng et al., 2020; Howard et al., 2020; 
Pradhan et al., 2020; Prem et al., 2020; Servick, 2020; Yang et al., 2020): 
1) increasing social distancing solutions, utilizing restricted access 
especially in closed environments and limitations to travels (for both 
residents and visitors); 2) use of respiratory protective devices (facial 
masks) to mitigate the effects of not respected distances between the 
individuals. Besides, the control and tracking of COVID-19 cases could 
be implemented to “isolate” them or limiting possible contact with 
susceptible people (Kumar et al., 2020; Madurai Elavarasan and 
Pugazhendhi, 2020), by improving the effectiveness of the quick-to- 
apply measures. Nevertheless, such kind of strategies could imply a 
higher level of complexity both for: 1) the whole urban (or even terri
torial) scale (e.g. monitoring the cases over time and space by means of 
individual tracking solutions and health checks also for asymptomatic 
individuals); and 2) the building scale (i.e. access control strategies by 
localized and rapid health checks, e.g. fever detection at the building 
entrance, which need widespread trained staff and specific equipment). 

As for other kinds of resilience-related issues in the urban areas 
(Chen et al., 2020; Miller, 2015; Ribeiro and Pena Jardim Gonçalves, 
2019), decision-makers will can select acceptable solutions according to 
a holistic approach which should consider: 1) final users (including 
tourists), to restore “normal” fruition conditions as well as possible, and 
their reciprocal interactions within the Built Environment of our cities 
(e.g. movement, activities); 2) specific stakeholders to bring together 
economic aspects (e.g. maximization of tourist capacity in safe condi
tions) and operational tasks (towards quick-to-apply and “cheaper” so
lutions); 3) the interactions among them, by using their representation 

in the considered scenarios. 
In this view, it is necessary to provide support tools for the decision- 

makers, to evaluate the effective impact of each measure and their 
combination, with regard to the complex interaction system regulating 
the pandemic dynamics in the considered scenario (D’Orazio et al., 
2021; Ronchi and Lovreglio, 2020). 

Simulation tools can increase the awareness of decision-makers in 
understanding the impact of mitigation solutions on the virus spreading 
depending on possible scenario conditions (Bin et al., 2020; Ronchi and 
Lovreglio, 2020; Zhang et al., 2018). The contribute of simulation 
models in developing and testing strategies for risk reduction has been 
widely investigated in many different cases concerning individuals’ 
safety at the different scales of the Built Environment (both involving 
single buildings and urban scale), and especially in all the cases in which 
individuals’ behaviours (including motion issue) can affect the safety 
levels for each individual and the whole community (i.e. emergency 
evacuation modelling) (Bernardini et al., 2017; Chen et al., 2020; 
D’Orazio et al., 2014; Lovreglio et al., 2020). 

In a pandemic context, decision-makers can be supported by 
macroscopic Susceptible-Infectious-Recovered/Removed (SIR) and 
Susceptible-Exposed-Infectious-Recovered/Removed (SEIR) models 
(Banos et al., 2015; Hethcote, 1989), which can include general rules to 
take into account the dynamics due to mobility issues of individuals 
within the whole population (Boccara and Cheong, 1992). SIR/SEIR- 
based models have been developed also for the COVID-19 emergency, 
e.g. (Feng et al., 2020; Lopez and Rodo, 2020; Prem et al., 2020; Roda 
et al., 2020). These epidemiological models can supply decision-makers 
with prediction data at large scales (territorial/national), including an 
assessment of the effects of different levels of non-pharmaceutical in
terventions. Nevertheless, one of their main limits is related to the scarce 
level of representation of specific patterns in individuals’ mobility be
haviours and interactions within the Built Environment, especially while 
investigating smaller areas (e.g. parts of a city; single building or group 
of buildings; complex facilities and environment, including trans
portations) (Boccara and Cheong, 1992; Goscé et al., 2015; Ronchi and 
Lovreglio, 2020; Zhang et al., 2018). Efforts in creating microscopic 
models for the COVID-19 spreading within the users in the Built Envi
ronment have been performed, Behavioural dynamics in spaces use have 
been considered (D’Orazio et al., 2021; Fang et al., 2020; Ronchi and 
Lovreglio, 2020), thus leading towards better awareness-based support 
tools for decision-makers in urban areas or single buildings. In general 
terms, to date this paper is written, they adopted the consolidated 
proximity-based and exposure-time-based rules for the transmission 
probability, to estimate the impact of all direct and indirect contagion 
effects between individuals placed at a close distance (Fang et al., 2020), 
but different transmission modes have been included by some ap
proaches (Ronchi and Lovreglio, 2020). In particular, this research 
group developed and tested a proximity-based and exposure-time-based 
simulator according to an Agent-Based Modelling (ABM) approach, to 
estimate the contagion spreading in public buildings (D’Orazio et al., 
2021). It includes the possibility to consider both the movement of 
people and the implementation of different risk-mitigation strategies (i. 
e. facial masks, social distancing, and access control strategies), ac
cording to a probabilistic approach. The model has been calibrated ac
cording to experimental data to provide reliable outcomes for the 
considered conditions. Meanwhile, the ABM approach ensures the pos
sibility to modify the behaviours of the simulated individuals to easily 
adapt the simulator to other contexts in which the individuals’ motion is 
relevant for the contagion spreading, such as the touristic cities (Banos 
et al., 2015). 

This study adopts this simulation approach to estimate the virus 
spreading in tourist urban areas, depending on different surrounding 
input scenarios such as: density conditions (including the tourist- 
residents ratio); tourists’ characterization (e.g. holiday permanence, 
activities and movements in the urban areas); pandemic conditions (i.e. 
the initial percentage of active cases); and the implementation of risk- 

2 for Italian statistics, see http://opendatadpc.maps.arcgis.com/apps/opsdash 
board/index.html#/b0c68bce2cce478eaac82fe38d4138b1 (last access: 12/05/ 
2020).  

3 e.g.: http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioFaqNu 
ovoCoronavirus.jsp?lingua=italiano&id=228 ; https://www.ecdc.europa.eu 
/en/case-definition-and-european-surveillance-human-infection-novel-corona 
virus-2019-ncov (last access: 8/4/2020). 
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mitigation strategies (i.e. social distancing, facial mask use by the 
simulated population). To this end, modifications to the original model 
have been provided to ensure the application to touristic urban areas, 
while sensitivity analysis (Sobol′, 2001) is adopted to estimate the 
impact of each input variable on the final results. According to a con
servative approach in the quantification of infected people during the 
time, the epidemiological model has been extended to the whole simu
lation environment, thus not considering the possibility that outdoor 
conditions could mitigate the contagion probability. The model has been 
applied to a significant case study (a part of a touristic coastal city in 
Italy) to demonstrate its capabilities in evaluating the impact of different 
mitigation strategies on the infected people’s number. 

2. Phases, model description and methods 

This work is divided into the following phases:  

1) selection of modelling approach by modifying an existing calibrated 
simulation tool (D’Orazio et al., 2021) (see Section 2.1); 

2) selection of a significant case study to perform the simulation ac
cording to a sensitivity-based approach which allows refining the 
adopted variables within the model (see Section 2.2);  

3) analysis of the results for the case study application, to evaluate the 
effects of the main considered variables in the view of the sensitivity- 
based model refining (i.e.: tourists’ capacity, facial masks imple
mentation by the population, initial infector percentages) (see Sec
tion 2.3). 

2.1. Modelling approach 

The ABM model adopted in this work is based on the one proposed by 
(D’Orazio et al., 2021) and jointly represents the contagion spreading 
and the movement of simulated individuals in the considered touristic 
urban area. The model adopts a probabilistic approach for simulating 
both these aspects and has been implemented in a simulation software 
through the NetLogo platform (Wilensky, 1999). An R script (R version 
3.6.34) is implemented to perform an adequate number of simulation 
according to previous research approaches on epidemiologic researches 

(Banos et al., 2015). 
Concerning the epidemic rules, the proximity-based contagion 

spreading approach is implemented according to previous works on 
consolidated COVID-19 epidemic rules1 (Banos et al., 2015; Fang et al., 
2020; Yang et al., 2020). In the model, the probability that a susceptible 
individual i can be infected by an infector j, when they are placed at a 
distance equal or lower than 2 m within the simulated environment at 
the current time, depends on the linear combination between:  

1. the current incubation time of j. The contagion probability will be 
maximized when the maximum incubation time is reached (ac
cording to a conservative approach, 5.1 days, which refers to the 
median incubation time, and the lower bound of the confidence in
terval, given by previous work (Lauer et al., 2020)); 

2. the exposure time, which is the time spent in contact by two in
dividuals (maximized for a contact of 15 min);  

3. the mask filter protection respectively adopted by i and j (from 0, 
which implies “No mask” conditions, to 1, which corresponds to 
maximum protection level, e.g. FFP3 according to EN 149:2009). 

These epidemic rules can represent all the direct and indirect con
tacts that can happen between the simulated agents. At the start of the 
simulation, a certain initial infector % is defined by the user. In the next 
steps, the contagion probability is calculated according to the afore
mentioned criterion. As in the original model, once a susceptible indi
vidual is infected, he/she will become an infector after a “delay” period, 
which is considered to be equal to 1 day (Lauer et al., 2020). The 
infected agents who are not-asymptomatic can exit the simulation (can 
“die”) when the fever onset time (from the contagion) is reached. This 
time is considered as a variable between one day and the considered 
incubation time (5.1 days) (Lauer et al., 2020). 

The touristic urban area (called “world”) that hosts the agents is 
modelled as “a unique layer whose total area depends on the gross one of 
the space to be simulated”, according to the original model. The world 
gross area can be hence calculated as the sum between the accommo
dation areas and the other areas where people can spend time during the 
holidays (e.g. beaches, parks, city centre avenues, shopping centres, 
restaurants and so on). The world is divided into patches according to a 
1:1 scaled representation of the urban areas (1 patch = 1 m). 

The original model has been modified to take into account the pos
sibility to represent two main agents’ typologies: tourist and residents. At 
the start of the simulation, the tourists and the residents are generated 

Fig. 1. Trend of the COVID-19 active cases (per
centages on the population) per Country and over 
the time, according to international databases11, 
starting from the 4 h of February to 12th of May 
2020. The figure highlights the Countries in which 
the percentage of the active cases decreases (green 
dotted curves), is stable (yellow dashed curve) or 
still increases (red continuous curves). The final 
blue area underlines the trend in the last 14 days 
before the simulation are performed to trace the 
main considered conditions of the contagion 
spreading. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   

4 https://cran.r-project.org/bin/windows/base/; last access: 17/4/2020. 
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within specific areas of the world (which are expressed in terms of per
centage of the overall world, by respectively defining the ktourist and 
kresident percentage values5). An initial-distance of generation has been 
introduced to consider “social distancing” behaviours between the in
dividuals from the beginning of the simulation. However, when the 
agents’ density does not allow the observance of the imposed initial- 
distance, the considered initial-distance is equal to the maximum 
achievable one. By this way, the agents are uniformly generated as well 
as possible within the world. 

During the simulation, the tourists remain within the world for the 
holiday period (mean-permanence variable), and will be generated again 
when the holiday period will be completed, to simulate the departures/ 
arrivals of visitors. On the contrary, there are no new births and travel 
into or out of the simulated population for the residents. In this sense, 
residents can only “die”, that means exiting from the simulation (people 
who spontaneously leave/not enter the urban space due to their health 
conditions), while infected tourists can be “re-generated” because of the 
above. According to the average duration of holidays in Italy from recent 
national statistics6, the overall simulated time is set to 3 days (288 steps 
according to the adopted time discretization, see later). This can allow a 
rapid tourist “renovation”, thus leading towards more critical contagion 
conditions within the overall population. 

Movements rules for tourists and residents depend on the specific time 
of the day in which they are performed, by considering a time dis
cretization of 15 min (1 simulation step), according to the exposure 
time. Depending on the moment of the day, each agent can be involved 
in:  

• morning/afternoon/evening activities: randomly moving in the city 
areas by the movement-at-breaks value, to consider an equal proba
bility of interacting with any other person within the world;  

• lunch/dinner: moving near the initial generation position by trying 
to maintain the initial-distance;  

• night sleep: remaining at the initial generation position. 

The whole day time is represented by considering about 8 h for night- 
time for sleeping. Every 96 steps (corresponding to 1 day), the activities 
restart again. 

2.2. Case study definition and sensitivity analysis criteria 

The considered case study involves a typical coastal touristic city 
characterized by a high density of tourists during the summer holiday. In 
this sense, Italian cities of the Adriatic Coast (the so-called “Riviera 
Romagnola”, placed in the Emilia Romagna region) represent a signifi
cant application scenario. In a typical city of this context, most of the 
tourist accommodations are generally represented by hotels placed in 
the city centre areas, close to the beaches, with an overall building 
density which can reach over 6000 persons per square kilometre and a 
ratio between tourists and residents that can be about over 10 to 17. 
According to the criteria for dimensioning rooms and collective spaces 
(e.g. spaces used as restaurants, halls and so on) in hotels for the Italian 

national standards8, a typical hotel density can range from 0.1 to 0.2 pp/ 
m2, by considering an average number of about 160 tourists hosted in 
each hotel. According to the criteria for beach resorts organization in the 
application context9, an overall density of 0.2 can be considered for the 
spaces used by the tourist along the beaches. 

Table 1 resumes the other variables adopted in this study, while 
Table 2 traces the values of the constant parameters. 

In view of the above, the considered case study involves about 10 
hotels by considering a part of the touristic city centre scenario 
described above, by hosting a maximum number of individuals N equal 
to 1600 persons over an overall area of about 20000 m2 (represented by 
a square world with a side of 145 patches). In each simulation, a mini
mum tourist capacity of 20% is defined for the minimum N value. 

The maximum value for the initial infector % is arbitrarily chosen to 
recreate a possible critical scenario for a “second phase” in the COVID- 
19 emergency basing on national2 and international1 data on the 
contagion spreading to the date this paper is written. In particular, this 
work adopts a conservative approach by assuming about 10 times the 
maximum number of active cases from 28th of April to 11th of May 

Table 1 
Variables characterization for the simulations (first simulation set in the sensi
tivity analysis).  

Parameter (unit of measure) Min Max PDFs 

N (pp) 320 1600 Uniform 
Initial infectors % (%) 0 10 Uniform 
Mask wearing % (-) 0 1 Uniform 
Mask filter (-) 0 1 Uniform 
Movement at breaks (m, equal to patches) 1 100 Uniform 
Initial-distance (m, equal to patches) 1 3 Uniform 
Mean-permanence (days) 1 14 Uniform 
Tourist-fraction (%) 0 100 Uniform 
kresident (-) 0 1 Uniform 
ktourist (-) 0 1 Uniform  

Table 2 
Constant parameters characterization for all the simulations. References to 
values from the original model setup are wider discussed in (D’Orazio et al., 
2021).  

Parameter Value Source 

pimm 0% no evidence that immune people can exist 
asymptomatic 

ratio 
20% as for the original model and the calibration tests, 

chosen as the upper bound for the confidence interval 
of estimated asymptomatic proportion (among all 
infected cases) in previous experimental conditions ( 
Mizumoto et al., 2020) 

delay 96 equal to 1 day (96 steps of 15 min within 24 h of 
simulation) to be shorter than the time to fever onset 
by the 2.5% of infected persons (Lauer et al., 2020). 
The value is scaled from the original model calibration 
setup. 

Iinc 512 according to a conservative approach, corresponding 
to the median incubation time, which is about 5.1 days 
as in previous consolidated data (Lauer et al., 2020). 
The value is scaled from the original model calibration 
setup. 

Ifev 256 the average value corresponds to the minimum time to 
fever onset by the 2.5% of infected persons (Lauer 
et al., 2020). A standard deviation is associated with 
range the individual’s value from 0 to 512 steps. The 
value is scaled from the original model calibration 
setup.  

1 e.g. for international statistics, see https://shiny.rstudio.com/gallery/c 
ovid19-tracker.html (in Italian - last access: 12/05/2020).  

5 E.g. kresident=ktourist=0.5 means that the residents and tourists will be 
generated in the two separated halves of the world; kresident=ktourist=0.75 
means that the 25% of the world will see a generation overlapping between 
residents and tourists.  

6 https://www.istat.it/it/files//2019/11/Movimento-turistico-in-Italia-201 
8.pdf (last access: 10/05/2020).  

7 e.g. compare to the data from Cattolica (RN, Italy): for general data https 
://ugeo.urbistat.com/AdminStat/it/it/demografia/dati-sintesi/cattolica 
/99002/4 ; for tourist information https://bit.ly/3dDE4Vy (in Italian - last 
access: 10/05/2020). 

8 https://www.gazzettaufficiale.it/eli/id/2009/02/11/09A01326/sg (in 
Italian - last access: 10/05/2020)  

9 https://imprese.regione.emilia-romagna.it/turismo/temi/demanio-maritti 
mo-turistico-ricreativo-e-portuale/ordinanza-balneare-1–2018 (in Italian - last 
access: 10/05/2020). 
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2020, to include possible significant differences between undetected and 
detected CODIV-19 cases. In other words, these conditions can be 
referred to an ideal immediate re-opening phase after a lockdown 
period. The initial-distance is set up to take into account the possibility of 
implementation of “social distancing” strategies, by allowing a general 
maximum distance between individuals over the proximity distance 
limit for the contagion probability calculation, equal to 2 m. The 
maximum mean-permanence value refers to the maximum incubation 
time according to consolidated international organization sources3. 
ktourist and kresident are considered variables between 0 and 1 to 
simulate different levels of interactions between the two agents’ typol
ogies also in respect to the accommodation type (i.e. different levels of 
contacts among the accommodation staff and the hosts), and the tourist- 
fraction is considered as variable between 0 and 100% so as to consider 
differences in the “die” behaviours considered in the model. Finally, 
constant parameters in Table 2 are chosen according to the model 
calibration process (D’Orazio et al., 2021) according to consolidated 
sources of the COVID-19 contagion, to have a consistent scaling of the 
contagion phenomenon in view of a 24-hours-extended simulation of the 
considered scenario. 

The considered scenario is involved in sensitivity analysis thanking 
the R script which implements the NLRX package of “R statistics” pro
gramming language (Salecker et al., 2019). Variance-based decompo
sition methodology by Sobol (Sobol′, 2001) is used to this end according 
to the adoption of the sobol2007 function of “R statistics” (Saltelli et al., 
2010, 2007). For any considered stochastic input in the simulation, two 
indexes are calculated (Saltelli et al., 2010, 2007):  

1. the total index (Sobol Total index - STi) represents the effects to the 
output variance (including those related to interactions with other 
inputs). The higher the STi, the most influential the considered input 
on the result;  

2. the first-order index (Sobol First-order index- SFi) measures the main 
contribution of the considered input to the variance of the output. 

We performed two sets of 27,000 runs. The first set considers all the 
variables defined in Table 1, which also describes the selected Proba
bility Density Functions (PDFs). Then, the variables with a STi < 0.05 
are reasonably considered as not influential on the model output vari
ance (Saltelli et al., 2007). Thus, in the second simulation set, they were 
considered as constant parameters (equal to the mean of the uniform 
distribution). Such simulations are analyzed to define the impact of 
different parameters and risk-mitigation strategies in the considered 
scenario, according to the criteria exposed in Section 2.3. 

2.3. Criteria for results analysis 

The results concerning the second simulations set for the sensitivity 
analysis are then used to compare the effects of the main independent 
variables affecting the contagion spreading. 

According to previous simulation studies on COVID-19 spreading in 
the Built Environment (D’Orazio et al., 2021), the final infected people 
percentage dI (%) iallows tracing the contagion spreading at the end of 
the simulation and evaluating the variables conditions affecting the final 
result. dI depends on the ratio between the final number of susceptible 
people (not infected) Sf (pp) and the initial number of susceptible people 
(not initially infected) Si (pp), as shown by Equation 1: 

dI =
[

1 −
Sf

Sinit

]

% (2) 

dI allows comparing different conditions in terms of initial infector % 
as well as of N (including the possibility of a reduction during the time 
because of “die” behaviours). Higher dI, higher the contagion spreading 
among the simulated population. According to the adopted probabilistic 
approach, different dI will be produced for the same combinations of the 

variables. dI distributions (by using distribution percentiles and boxplot 
representation, and by excluding the outliers) are assessed in respect to 
the input variables combinations. Furthermore, dI acceptability limits 
for the solution effectiveness are provided according to dI = 5% and dI =
25%, according to a percentile-based analysis of the output values. The 
application of these limits allows filtering the specific input combina
tions that ensure the possibility to have the related dI values respected, 
thus pointing out the impact of the considered variables. 

From this point of view, dI outputs are discussed according to the 
solutions in contagion spreading reduction (D’Orazio et al., 2021; Yang 
et al., 2020; Zhai, 2020) as well as the contagion spreading conditions (e. 
g. the number of active cases in reference to experimental data consid
ered to date this paper is written1 and 2). 

Facial masks effects are assessed with respect to the combination 
between the mask filter and mask wearing %. To have a first synthetic and 
quick evaluation on such strategy, the dI distribution is assessed by 
coupling mask filter and mask wearing % (mask wearing %*mask filter), 
according to homogeneous classes with steps of 10%. Furthermore, 3 
mask filter classes with similar dimension in terms of uniform input 
distribution (see Table 1) have been considered to assess the impact of 
different kind of implemented masks:  

• respiratory protective devices, representing FFP1, FFP2 and FFP3 
masks according to the EN 149:2009 (Carlos Rubio-Romero et al., 
2020), are considered in the mask filter range from 0.80 to 1.00;  

• surgical masks are considered within the mask filter range 0.58 to 
0.83, which is placed inside the limits for classifying surgical mask 
efficiency according to the NIOSH NaCl method proposed by 
(Rengasamy et al., 2017);  

• non-standard protection solutions (e.g. home-made and non-certified 
protections) (Carlos Rubio-Romero et al., 2020) can reasonably 
represent the first quartile in mask filters values, thus ranging from 
0.00 to 0.25 as for the application of the reference model. 

N conditions are organized with respect to the urban population 
density, and so the tourist capacity (i.e. for tourist-fraction equal to 
100%). For each simulation, the normalized occupants’ density Docc (-) 
for the overall simulated urban environment (the whole world) is 
calculated as the ratio between the current N value and the maximum 
one. According to the N distribution limits in Table 1, Docc varies from 
0.2 (for N = 320 people) to 1 (maximum occupancy of the urban areas 
for N = 1600 people). 

Finally, different classes of initial infector % are considered to take 
into account different input conditions about the situation of the 
contagion within the population2 to date this paper is written. Data on 
active COVID-19 cases for the international and national scenario from 
the 28th of April to the 12th of May 2020 have been considered (time 
period which corresponds to the maximum incubation time before the 
simulations) to create the following limit conditions:  

• average active cases conditions in Italy: initial infector %=0.15%;  
• average active cases conditions in the worst Italian region: initial 

infector %=0.30% (referred to the Lombardia region);  
• maximum active cases conditions: initial infector %=1.40%, for all 

the monitored Countries. This data corresponds to the situation of 
San Marino Republic on 7th of May 2020 (it is worth to notice that 
San Marino is an interesting maximum reference data in respect to 
the closeness with the considered application context). 

Additional limits for 3% and 5% are also proposed to point out the 
possibility of critical contagion spreading conditions, also according to 
the previous simulation models application. The initial infector % values 
are then organized and discussed by referring to classes according to 
such limits. 

Since the initial infector % highly affect the possibility to reach 
widespread contagion conditions within the Built Environment during 
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the simulation time (D’Orazio et al., 2021; Hellewell et al., 2020; Prem 
et al., 2020; Bin et al., 2020), the difference in infectors percentage dINF 
(-) is additionally evaluated to investigate if particular additional con
ditions could suggest that the contagion conditions will not make worse 
at the end of the simulation (dINF > 0), according to equation 2: 

dINF = initialinfector% − dI(%) (2) 

In fact, lower the initial number of infectors (e.g. because of severe 
active cases control strategies), higher the possibility to maintain dI 
under the acceptability threshold (especially for low occupants’ den
sities conditions), and lower the absolute dINF value. 

Finally, results are organized in the view of defining simple rules to 
estimate the impact of measures combination. According to previous 
simulation works suggestions (D’Orazio et al., 2021), mask filter-Docc 
pairs are correlated by filtering the values which allow maintaining dI ≤
5%, by additionally investigating the impact mask wearing % and initial 
infector % variations. In particular, the assessment is performed to point 
out how the initial contagion conditions could alter the efficiency of the 
predicted measures. 

3. Results and discussion 

3.1. Sensitivity analysis and robustness check 

Fig. 2 displays the total order sensitivity indices (STi) and the first- 
order sensitivity indices (SFi) for the first simulation set. The first- 
order index represents the main effect contribution of each input fac
tor to the variance of the output. The total order index accounts for the 
total contribution to the output variation due to factor Xi, i.e. its first- 
order effect plus all higher-order effects due to interactions. 

The Total order sensitivity indices (STi) suggests how the main 
source of results’ uncertainty is N. The secondary source of results’ 
uncertainty is represented by Initial infectors % while the importance of 
individual protection measures is confirmed by the STi value assigned to 
mask filter and mask wearing %, thus confirming the previous model 
application (D’Orazio et al., 2021). The characterization of tourists’ 
conditions is another significant source of uncertainty, as demonstrated 
by the STi value of the tourist-fraction and by the ktourist-related STi. This 
result points out how the combination of general “social distancing” 
effects (i.e. expressed by N-related uncertainty) can be amplified by the 
specific tourist’ occupancy and densities, since ktourist describes the 
effective part of the scenario in which the tourists are generated. Finally, 

the effects of initial-distance mean-permanence, kresident and movement at 
breaks appear negligible (STi < 0.05). 

Fig. 3 shows the STi and the SFi results for the second simulation set, 
that considers initial-distance, mean-permanence, kresident and movement 
at breaks as constant parameters (STi < 0.05). Considering a simplified 
set of input variables, the trend of Fig. 2 does not substantially change. 

Finally, in both the simulation sets, the sum of SFi is<1, thus con
firming that limited interactions between input factors exist (Saltelli 
et al., 2007). 

3.2. Simulation scenario results 

3.2.1. Analysis of the whole simulation sample 
Regardless of simulated population and of the initial infector %, the 

use of facial masks by the simulated agents can sensibly reduce the virus 
spreading, especially in case of the higher mask filter values and of 
widespread adoption of this risk-mitigation measure (higher mask 
wearing %). Previous works suggested a similar impact (D’Orazio et al., 
2021; Zhai, 2020). Fig. 4 shows the distribution of dI values for the 
different mask wearing %*mask filter classes, by tracing the dI accept
ability thresholds of 5% and 25%. The acceptability thresholds are 
guaranteed in the 75% of the simulations by involving mask wearing % 
*mask filter ≥ 0.50 (e.g. adoption of surgical masks by the whole pop
ulation) for dI = 25% and ≥ 0.80 (e.g. adoption of FFP1 by the whole 
population) for dI = 5%. Such a result is remarked in Fig. 5, which 
considers the mask filter classes and traces mask wearing % in percentage 
terms. 

Fig. 6 suggests that the limitation of the hosted population capacity 
Docc for the considered urban area limitedly guarantees acceptable so
lutions in terms of dI values, regardless of the adopted additional mea
sures, by confirming results for closed environment application of the 
model (D’Orazio et al., 2021). In particular, the limitation to 30% of the 
maximum population (Docc = 0.3) could support the limitation of dI ≤
25% for the 75% of simulated cases. The combination between such 
“social distancing”-related measures and the use of facial masks can 
boost the positive effects, as shown by Fig. 7. It is worthy of notice that:  

• for Docc ≤ 0.25, no additional facial masks-related strategies are 
essentially needed in the 75% of cases if considering dI = 25%, while 
surgical masks seem to be enough if considering dI = 5% (Fig. 7-A). 
Nevertheless, such a solution can strongly affect economic aspects in 

Fig. 2. First simulation set: first-order sensitivity indices (STi - left) and total order sensitivity indices (SFi - right) for the considered parameters.  
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the urban areas, since the limitation to the number of tourists is 
extremely severe;  

• the implementation of surgical masks by the whole population can 
lead to acceptable solutions in 75% of cases if considering dI = 25% 
also for the higher Docc values (up to the maximum capacity - Fig. 7- 
D);  

• the application of FFPk masks by the population is necessary if 
considering the acceptability threshold at dI = 5% for Docc > 0.25 
(Fig. 7-B, Fig. 7-C, Fig. 7-D);  

• the variation of dI distribution (e.g. distance between the maximum 
and minimum values) is reduced for lower Docc values.. This result 
depends on the fact that the possibility to maintain “social 
distancing” strategies is higher; as well as the possibility to sto
chastically have additional contacts with infectors, due to the wide 
urban area. 

Fig. 8 traces the probability of maintaining dI under the acceptability 
thresholds in respect of the initial infector %, regardless of the imple
mented risk-mitigation strategies. In general terms, lower common 
values in the initial infector % (0.14 and 0.30) generally have a signifi
cant probability level, especially for dI = 5%. Meanwhile, Fig. 9 traces 
the probability distribution of the dINF values depending on different 
thresholds in the initial infector % (compare to Section 2.3). The prob
ability that the contagion could not worsen at the end of the simulation 
time is higher if considering the lower common values in the initial 
infector % (0.14 and 0.30), as displayed by Fig. 9-B (the probability 
values are significantly higher for dINF ≥ 0 in respect to negative 
values), regardless of the implementation of risk-mitigation strategies. 
This simulation outcome can be essentially related to the lower proba
bility to have close contacts with an infector within the urban envi
ronment during the simulation time. 

3.2.2. Analysis considering the maximum population capacity 
This section focuses on the maximum capacity conditions for the 

touristic area (0.75 < Docc ≤ 1.00). Fig. 10 shows the distribution of dI 
values depending on the specific mask filter classes and depending on the 
implementation level in terms of mask wearing %, regardless of the initial 
infector %. The contagion spreading could be limited by implementing 
FFPk masks by the whole population (Fig. 10-A), thus leading to dI <
5%. The application of surgical masks for a wide number of the popu
lation seems to bring mitigation effects only if considering dI = 25% 
(Fig. 10-B). Less than 25% of the cases involving non-standard protec
tion solutions leads to dI < 25%, essentially because of the possibility 
that wide urban spaces can still guarantee the adoption of limited “social 
distancing” behaviours. On the contrary, previous simulations relating 
to single buildings/closed environment underlines that no cases under 
this threshold could exist, essentially because of the higher effective 
density inside the building rooms (D’Orazio et al., 2021). These results 

Fig. 3. Second simulation set: first-order sensitivity indices (STi - left) and total order sensitivity indices (SFi - right) for the considered parameters.  

Fig. 4. Boxplot dI values distribution at the last simulation step for the whole 
sample, concerning the effects related to mask (mask wearing %*mask filter). dI 
acceptable thresholds are defined at dI = 5% (dashed green line) and 25% 
(continuous red line). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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substantiate the general considerations of Fig. 5-A. 
Fig. 11 traces the relation between the initial infector % (different 

panels), the adopted mask filter class and dI distribution, regardless of 
the mask wearing %. The assumed main conditions in the initial infector % 
(Fig. 11-A, Fig. 11-B and Fig. 11-C) can generally lead to the possibility 
to control the contagion spreading by using surgical masks. Neverthe
less, the acceptability threshold of dI = 25% is generally satisfied in the 
75% of the cases up to an initial infector % equal to 5% (Fig. 11-D and 

Fig. 11-E). Meanwhile, FFPk masks generally have a similar impact for 
all the assumed main conditions in the initial infector % to date this paper 
is written. Values of initial infector % over the limit of 5% generally 
implies critical conditions for the contagion spreading (Fig. 11-F). This 
result confirms the importance of possible “infection-by-chance” for the 
lowest initial infector %, as additionally remarked by the probability 
estimation for the dINF values shown by Fig. 12. 

In view of the above, in case of surgical of FFPk masks imple
mentations, the median of dI distributions for initial infectors % ≤0.14% 
is under the 5% acceptability threshold of dI, while the median values up 
to initial infectors % ≤3% are under the 25% (see Fig. 11). Nevertheless, 
since this analysis does not consider the impact of mask wearing %, 
further insights are needed. Thus, data are analysed to provide a quick 
and simple approach to support decision-makers in the evaluation of the 
effectiveness of facial mask implementation levels by the mask wearing % 
of the population, considering the initial infectors %. Data on the mask 
wearing % are simply aggregated by considering the hosted population 
quartiles to have a look at a glance. Results allow better stressing the 
general effects of the (coarsely approximated) minimum mask wearing % 
on dI, in a rapid application perspective to the case study. 

Fig. 13 and Fig. 14 respectively trace dI values for surgical masks and 
FFPk masks, depending on the initial infector % (increasing limits in each 
panel from A to F) as a function of the mask wearing %. Such results 
confirm the general trends of Fig. 11. In particular, assumed minimum 
initial infectors % values could be managed by implementing surgical 
masks or FFPk masks for at least the 75% of the population to limit dI at 
5% (Fig. 13-A and Fig. 14-A). No significant difference between these 
two conditions for initial infectors %≤0.14% seems to confirm the 
aforementioned “infection-by-chance” scenario, which gives minor 
importance to the use of different mask filter. If the initial infectors % 
increases, the minimum mask wearing % has to increase too, to guarantee 
a sustainable dI. For initial infectors %≤0.30%, surgical masks could 
guarantee at most dI up to 25% for mask wearing %≥50% (Fig. 13-B), 
while FFPk could gain dI = 5% for mask wearing %≥75% (Fig. 14-B). The 
use of surgical masks for mask wearing %≥75% could guarantee dI =
25% for initial infectors % up to 1.40% (compare Fig. 13-C to Fig. 13-D 
and Fig. 13-E), while the same mask wearing %≥75% could lead to the 

Fig. 5. Boxplot dI values distribution at the last simulation step for the whole sample, concerning the effects related to mask wearing % (expressed in %) by 
considering Section 2.3 classification: a) FFPk masks; b) surgical mask; c) non-standard protection (0 to 0.25). dI acceptable thresholds are defined at dI = 5% 
(dashed green line) and 25% (continuous red line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 6. Boxplot dI values distribution at the last simulation step for the whole 
sample, with respect to the effect of Docc values discretized by 0.1. dI accept
able thresholds are defined at dI = 5% (dashed green line) and 25% (continuous 
red line). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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same result up to 5% if implementing FFPk mask (Fig. 14-C, Fig. 14-D 
and Fig. 14-E). Although both surgical and FFPk masks can reduce dI by 
increasing the mask wearing % up to 75–100%, scenarios related to initial 

infectors % up to 5% seem to be critical for both these protection solu
tions (Fig. 13-F and Fig. 14-F). 

As a consequence, the implementation of acceptable solutions (from 

Fig. 7. Boxplot dI values distribution at the last 
simulation step for the whole sample, with respect 
to the effects of different density classes: a) Docc ≤
0.25; b) 0.25 < Docc ≤ 0.5; c) 0.5 < Docc ≤ 0.75; d) 
0.75 < Docc ≤ 1.00 . Values are traced according to 
the overall mask effect. dI acceptable thresholds are 
defined at dI = 5% (dashed green line) and 25% 
(continuous red line). (For interpretation of the 
references to colour in this figure legend, the reader 
is referred to the web version of this article.)   

Fig. 8. Probability estimation of initial infector % values that can lead to dI values under the two acceptability thresholds: dI ≤ 5% (dashed green line) and dI ≤ 25% 
(continuous red line). Significant limits for initial infector % are highlighted according to Section 2.3. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

M. D’Orazio et al.                                                                                                                                                                                                                              



Safety Science 142 (2021) 105399

10

the users’ perspective) about facial mask use (e.g. surgical masks) could 
have significant impacts to limit the contagion in touristic areas during 
the “second phase” of the COVID-19 emergency, basing on the statistics 
on active cases considered by this work. The rule of such protective 
solution is also in line with previous works suggestions (Howard et al., 
2020; Zhai, 2020). Meanwhile, results suggest that the tourists’ capacity 
could be increased towards upper-limit conditions, by ensuring proper 
economic effects on the communities of these urban areas. 

3.3. Discussion about the return to “business as usual” in touristic cities 
and the model application 

Results show how the selection of risk-mitigation strategies in the 
context of the return to “business as usual” in touristic cities should take 
into account the assumed conditions of the virus spreading within the 
population, so as to make them more effective and acceptable. On one 

side, combined scenarios in which facial masks are used by the popu
lation and a limitation of the occupants’ capacity (towards “social 
distancing”-related strategies) seem to have the highest impact on the 
possibility to limit the virus spreading, thus confirming previous re
searches (D’Orazio et al., 2021; Howard et al., 2020; Zhai, 2020; Feng 
et al., 2020; Ferguson et al., 2020). Nevertheless, their impact is not the 
same for all the initial infector % conditions, as additional remarked by 
Figs. 15 and 16. 

Fig. 15 and Fig. 16 respectively trace the simulation mask filter-Docc 
pairs which can lead to dI conditions under the lower acceptability 
threshold (5%), divided by the initial infector % classes defined in 
Section 2.3, and by additionally tracking the mask wearing % values. The 
proposed overview on the initial infector % classes of Fig. 15 and Fig. 16 
could be also viewed as a set of imaginable scenarios due to the possi
bility to contain or not the infection risk at the starting of the “second 
phase”. Furthermore, since these representations are based on mask 

Fig. 9. Probability estimation of dINF according to the significant initial infector % values (see Section 2.3), by distinguishing: a) critical conditions for the “second 
phase”; b) common infectors’ percentages according to the data from the early May 2020. 

Fig. 10. Boxplot dI values distribution at the last 
simulation step for Docc between 0.75 and 1.00, 
with respect to the effects related to mask wearing 
% (expressed in %) and by considering the Section 
2.3 classification: a) FFPk masks; b) surgical mask; 
c) non-standard protection (0 to 0.25). dI acceptable 
thresholds are defined at dI = 5% (dashed green 
line) and 25% (continuous red line). (For interpre
tation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   
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filter-Docc pairs and do not directly include the mask wearing % as main 
prediction input for dI-related limit conditions, the trends of Fig. 15 and 
Fig. 16 could be also adopted when the users wear facial masks with 
different mask filter values. In this case, the reference mask filter can be 

conservatively considered equal to the lower implemented one. 
Fig. 15 refers to the main conditions in terms of initial infector % 

limits (up to 1.40%) to date this paper is written, while Fig. 16 traces the 
results for critical conditions (over 1.40%), similarly to a "second phase" 

Fig. 11. Boxplot dI values distribution at the last 
simulation step for Docc between 0.75 and 1.00, 
with respect to the mask filter classes defined in 
Section 2.3 for different initial infector % limits: a) 
up to 0.14%; b) up to 0.30%; c) up to 1.40%; d) up 
to 3.00%; e) up to 5.00%; f) over 5.00%. Mask filter 
classes are identified by: “no” for non-standard 
protection (0 to 0.25); “S” for surgical masks; “F” 
for FFPk masks. dI acceptable thresholds are defined 
at dI = 5% (dashed green line) and 25% (continuous 
red line). (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 12. Probability estimation of dINF according to the significant initial infector % values according to Section 2.3, by distinguishing the common infectors’ 
percentages according to the data from early May 2020. 
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scenario as defined in Section 2.3. Fig. 15 generally points out a poor 
level of correlations between the mask filter-Docc pairs in case of initial 
infector % values lower than the assumed national maximum one 
(1.40%, compare to Section 2.3). These scattered pairs seem to suggest 
that such conditions are essentially affected by “infection-by-chance” 
while moving in the urban scenario. The limitation of the tourists’ ca
pacity could not guarantee by itself the acceptability threshold, while 
the significant economic impact will appear because of the reduction in 
the number of users within the built environment and its facilities 
(Gössling et al., 2020). 

Additional comparisons between these results and Section 3.2.2 
outcomes for the maximum capability conditions follow. According to 
Fig. 12 data on dINF statistics provide additional suggestions, the cu
mulative probability that the contagion will not increase in such an 
“infection-by-chance” scenario is equal to about 0.5 for initial infector 
%≤0.14% (average national data for Italy at the early May 2020). This 
percentage seems not to be affected by the Docc conditions (compare to 
Fig. 9-B), thus confirming the scattered mask filter-Docc pairs in Fig. 15 
(e.g. Fig. 15-A for initial infector %≤0.14%). 

Nevertheless, the implementation of facial masks solution could 
guarantee the access to the urban areas while having a higher impact on 
the dI values (also compare to Fig. 11-A for initial infector %≤0.14%) 
(D’Orazio et al., 2021; Howard et al., 2020; Fang et al., 2020). As a 
consequence, the conditions in the number of initial infector % to date 
this work is performed seem to underline the importance of such a 

non-pharmaceutical intervention in view of the return to “business as 
usual” in touristic cities. Surgical masks could be an adequate protection 
measure also at the maximum Docc values, according to Section 3.2.2 
results, while considering higher comfort levels on the users in respect to 
FFPk masks. Other strategies aimed at limiting indirect contagion 
spreading (e.g. indoor spaces/surface disinfection; use of disposable 
gloves) should be performed to ensure a higher protection level for the 
visitors and the workers (Hamid et al., 2020; Pradhan et al., 2020)10. 

On the contrary, Fig. 16 shows how critical conditions in the initial 
infector % implies a more significant impact of the combination between 
mask filter and Docc measures, thus confirming previous simulation 
outcomes for the closed environment (D’Orazio et al., 2021). For initial 
infector %>1.40%, the possibility to have close contacts with an infector 
is significantly higher in respect to inferior limit conditions, as for 
high-density indoor scenarios. Fig. 16-A and Fig. 16-B qualitatively 
underline how the occupants’ capacity for the urban areas in case of 
poor facial masks-based solutions should be reduced to the 20 to 40% of 
the maximum one. Meanwhile, the implementation of surgical could be 
not enough for initial infector % >5%. 

These results are confirmed by considering the interpolations of 
maximum increasing mask filter-Docc pairs in Fig. 16 for each considered 

Fig. 13. Boxplot dI values distribution at the last simulation step for Docc between 0.75 and 1.00, with respect to the implementation of surgical masks and to the 
mask wearing % classes (expressed in %), for different initial infector % limits: a) up to 0.14%; b) up to 0.30%; c) up to 1.40%; d) up to 3.00%; e) up to 5.00%; f) 
over 5.00%. 

10 https://www.ecdc.europa.eu/en/publications-data/disinfection-environ
ments-covid-19 (last access: 15/05/2020). 
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initial infector % range. The interpolations are provided according to a 
power-based regression approach (axb + c), as shown by Table 3. Ac
cording to Fig. 16, the higher the initial infector %, the more restrictive 
the limit for minimum mask filter-Docc combination. It is worth noticing 
that such regressions are limited to the considered ideal case study and 
are not generalizable to other contexts as an operative tool for decision- 

makers. Nevertheless, they offer an estimation of the upper boundary 
limit in mask filter-Docc combination that should not be overcome (no 
admitted solution seems to exist over the curve). This methodology 
could be applied to other case studies to obtain the obtained curves on a 
“case-by-case” approach, and to finally compare the general trends to
wards common and simplified rules for decision-makers. 

Fig. 14. Boxplot dI values distribution at the last simulation step for Docc between 0.75 and 1.00, with respect to the implementation of FFPk masks and to the mask 
wearing % classes (expressed in %), for different initial infector % limits: a) up to 0.14%; b) up to 0.30%; c) up to 1.40%; d) up to 3.00%; e) up to 5.00%; f) 
over 5.00%. 

Fig. 15. Mask filter-Docc correlation for all the pairs related to dI ≤ 5% depending on the initial infector percentages classes: a) up to 0.14%; b) from 0.14% to 
0.30%; c) from 0.30% to 1.40%. The pairs’ colour is related to the mask wearing % (colour bar on the top), while the dot size depends on the initial infector % value 
(circles inside the legend on the bottom). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Given the above, decision-makers should be aware of the following 
main key factors for the sustainability of non-pharmaceutical in
terventions against COVID-19 spreading in the “second phase” of the 
emergency:  

1. assessing the effective local conditions in terms of infection 
spreading among the population (i.e. monitoring campaign on active 
cases), to avoid as far as possible the adoption of limitation to 
tourists’ capacity which: a) could not have the desired effect on the 
contagion for main lower percentages of active cases; b) will can 
depress the tourist-related economic and social issues at the urban 
scale;  

2. promoting the implementation of facial masks for both residents and 
tourists, by starting from the adoption of comfortable solutions (such 
as surgical masks);  

3. organizing activities over urban spaces and holiday time towards the 
creation of “widespread” fruition models of the tourists’ attractions, 
to reduce local effects of overcrowding conditions (also by imple
menting, e.g., reservation-based access to areas and activities). Such 
choices should be discussed with tourist services stakeholders for 
tracing general scheduling based on acceptable economic limits. 

In this sense, this work underlines how simulation tools could be a 
significant support to increase decision markers awareness towards ones 
of the most significant variables affecting the man-man and man- 
environment interaction in a pandemic. Future activities on the model 
could involve further calibration task according to future available 
experimental data in significant urban contexts. This actions will addi
tionally point out how the differences about modes of transmission and 
built environment layout/use (e.g. indoor/outdoor; specific activities 
carried out by the tourist; specific building systems; scheduling of the 
activities to trace the dependencies from differences in the exposure 
timing) could affect the overall results (Prussin et al., 2020; Ronchi and 
Lovreglio, 2020; Zhang et al., 2018). 

4. Conclusions 

After the lockdown phase for the COVID-19 emergency, the return to 
“business as usual” in touristic urban areas is seriously affected by the 
possibility to control contagion spreading due to the visitors’ flows. The 
limitation of travels towards touristic area will not be acceptable in a 
“second phase” of the emergency, essentially because of the necessity to 
avoid an economic and social crisis for the sector and the involved 
communities. On the contrary, support tools for decision-makers should 
be developed to define the effective impact of different sustainable and 
combined non-pharmaceutical interventions in view of the tourist ac
tivities restarting. This kind of assessment should involve at least the 
scale of homogeneous urban areas, to take into account the general 
behaviours of the users in the built environment. 

This paper modifies an existing agent-based model approach to es
timate the Coronavirus spreading in a touristic urban context, by 
including the simulation of people’s movements in the urban areas and 
the effects of non-pharmaceutical strategies (i.e. facial masks use by 
agents; occupants’ capacity control as the main driver to promote “so
cial-distancing”). The model could be both used to evaluate, over time, 
how many infectors can appear within the urban area and how many 
visitors can return home being infected. In this study, the attention is 
focused on the first point, to mainly assess the effectiveness and sus
tainability of strategies on the selected area. 

The simulator is applied to a significant case study (an idealized part 
of a touristic coastal city in Italy) to point out the general impact of input 
conditions on the infections over time. Results show the model capa
bilities in predicting the contagion spreading depending on input vari
ables (including the initial percentage of active COVID-19 cases), thus 
being a tool to improve the decision-makers’ awareness about the 
impact of contagion-mitigation strategies. In particular, results under
line how the adoption of social distancing strategies could not have a 
leading effect on the contagion spreading when the percentage of initial 
active cases is close to 0, while becomes an effective strategy in case of 
critical infectors percentages. At lowest occupants’ capacity values, and 
considering the percentage conditions in terms of active cases (e.g. 0.3% 
of the population or lower) to date this work is performed, the possibility 
to be infected in the urban area seems to be more connected to stochastic 
effects of man-man interaction rather than to a systematic spreading of 
the contagion. On the opposite, facial masks have a prominent effect on 
the contagion limitation, especially at lower percentages of active cases. 
The correlation between the facial mask characterization (i.e. filtering) 
and the “social distancing”-related strategies (i.e. using tourists’ ca
pacity limitation) underlines a clear frontier in the possible combination 
of these solutions, according to the results for the considered case study. 
For active cases percentage conditions over 1.40%, the higher the per
centage of the active cases in the urban area, the more restrictive the 
minimum acceptable combination between these two non- 
pharmaceutical solutions. 

Fig. 16. Mask filter-Docc correlation for all 
the pairs related to dI ≤ 5% depending on the 
initial infector percentages classes: a) from 
1.40% to 3.00%; b) from 3.00% to 5.00%; c) 
over 5.00% to maximum value (10.00%). 
Regression curves for each correlation are 
shown by the red lines (form: axb + c; 
regression data in Table 3). The pairs’ colour 
is related to the mask wearing % (colour bar 
on the top) while the dot size depends on the 
initial infector % value (circles inside the 
legend on the bottom). (For interpretation of 
the references to colour in this figure legend, 
the reader is referred to the web version of 
this article.)   

Table 3 
Equation (form: axb + c) for Mask filter-Docc correlation curves in limit con
ditions as drawn by Fig. 16. In the equations, x is mask filter, while y is Docc. The 
table also shows the limit of the mask filter values domain in which the equation 
could be applied, as well as the R2.  

initial infector 
% 

from 1.40% to 
3.00% 

from 3.00% to 
5.00% 

over 5.00% to maximum 
value (10.00%) 

Equation: y ¼
axb þ c 

y = 1.29x2.09 

+ 0.35 
y = 0.87x2.36 

+ 0.24 
y = 0.93x2.76 + 0.17 

x domain limits 0.00 to 1.00 0.00 to 1.00 0.27 to 1.00 
R2 0.93 0.94 0.86  
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From this point of view, decision-makers should then evaluate which 
maximum tourists’ capacity could be applied, by including facial masks- 
based solutions, to allow the restarting of tourism-related economic 
activities from a sustainability perspective. According to the results for 
the case study application, wearing surgical masks could be enough to 
face main assumed active cases conditions (at early May 2020; active 
cases of about 0.14 to 0.30% of the overall population) in touristic urban 
spaces. The application to further case studies could validate such sug
gestions. Furthermore, correlations on the minimum acceptable com
bination between facial masks-based and “social distancing”-related 
strategies could be assessed to define “case-by-case” decision rules, thus 
moving towards common criteria for touristic urban areas. 

Finally, the agent-based modelling approach will allow introducing 
modifications to integrate epidemiological data (i.e. additional modes of 
virus transmission), built environment configurations (e.g. indoor/out
door; including layout characterization), visitors’ schedule and activities 
in the urban spaces (e.g. including the fruition of buildings with specific 
tourist-related intended uses, e.g. cultural buildings and so on). 
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