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a b s t r a c t 

In this work, a mathematical model consisting of a compartmentalized coupled nonlinear system of frac- 

tional order differential equations describing the transmission dynamics of COVID-19 is studied. The frac- 

tional derivative is taken in the Atangana-Baleanu-Caputo sense. The basic dynamic properties of the 

fractional model such as invariant region, existence of equilibrium points as well as basic reproduction 

number are briefly discussed. Qualitative results on the existence and uniqueness of solutions via a fixed 

point argument as well as stability of the model solutions in the sense of Ulam-Hyers are furnished. Fur- 

thermore, the model is fitted to the COVID-19 data circulated by Nigeria Centre for Disease Control and 

the two-step Adams-Bashforth method incorporating the noninteger order parameter is used to obtain 

an iterative scheme from which numerical results for the model can be generated. Numerical simulations 

for the proposed model using Adams-Bashforth iterative scheme are presented to describe the behaviors 

at distinct values of the fractional index parameter for of each of the system state variables. It was shown 

numerically that the value of fractional index parameter has a significant effect on the transmission be- 

havior of the disease however, the infected population (the exposed, the asymptomatic infectious, the 

symptomatic infectious) shrinks with time when the basic reproduction number is less than one irre- 

spective of the value of fractional index parameter. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

According to the International Committee on Taxonomy 

f Viruses (ICTV), coronaviruses (CoVs) are enveloped, single- 

tranded, positive-sense and nonsegmented Ribonucleic acid (RNA) 

iruses which belong to the subfamily Orthocoronavirinae of the 

oronaviridae family and order Nidovirales [1] . All CoVs that have 

ffected humans are generally of animal origin, a variety of which 

ave been isolated and identified in birds and mammals hosts [1–

] . CoVs are distinctively classified into four main genera groups, 

amely, α−CoVs, β−CoVs, γ −CoVs and δ−CoVs [1,3] . The α− and 

−CoVs have mammalian hosts and are known to cause respi- 

atory related symptoms in humans and gastroenteritis in other 
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ammals [2,4] , while γ − and δ−CoVs are commonly found in 

vian hosts [3] . 

Before December 2019, HCoV-NL63 ( α−CoV), HCoV-229E 

 α−CoV), HCoV-OC43 ( β−CoV), HCoV-HKU1 ( β−CoV), SARS- 

oV ( β−CoV) and MERS-CoV ( β−CoV) where the only known 

athogenic strains of human coronaviruses (HCoVs). Among these, 

nfections due to HCoV-NL63, HCoV-229E, HCoV-OC43, HCoV- 

KU1 are relatively common within the human population with 

arying degrees of mild flu-like symptoms typically characterized 

y rhinorrhea, sneezing, sore throat, nasal congestion, cough and 

ever [1] . However, SARS-CoV and MERS-CoV are highly pathogenic 

nd have caused major pandemics in the last two decades [1,2] . 

owards the end of 2019, a novel viral strain of HCoVs known 

s Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV- 

), which causes the disease named COVID-19, emerged from the 

hinese city of Wuhan, Hubei Province [1,5–7] . Just like SARS-CoV 

nd MERS-CoV, genomic sequencing shows that SARS-CoV-2 be- 

ongs to the β−CoVs genera group. Although its primary origin is 

https://doi.org/10.1016/j.chaos.2021.111427
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111427&domain=pdf
mailto:newstar4sure@gmail.com
https://doi.org/10.1016/j.chaos.2021.111427
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till shrouded in mystery, available information suggest that it is 

lso of zoonotic origin with wild bats believed to be the primary 

ost [8] . SARS-CoV-2 targets the respiratory tract causing common 

ymptoms such as fever, fatigue, nasal congestion, cough, pneu- 

onia, tiredness and loss of appetite. Within a month of its out- 

reak, this highly virulent disease rapidly spread to many coun- 

ries throughout the world. Aside from China where the initial 

ransmission route was claimed to be from animal host to human, 

he transmission route thereafter as well as to other countries 

ere essentially human-to-human, that is, either through direct 

ontact with already contaminated surfaces/individuals or via in- 

alation of minute respiratory droplets of sneezes or coughs from 

lready infected individuals [9,1,7] . The risk of COVID-19 related 

eath is high especially among the aged and imuno-compromised- 

OVID-19 patients as complications such as severe acute respi- 

atory distress syndrome, multi-organ failure, septic shock, blood 

lots, heart failure, arrhythmias, myocarditis, seizure, encephalitis, 

troke may occur [10–12] . Before the production, approval and sub- 

equent mass availability of the current vaccines to combat and 

anage the spread of the virus, governments of various countries 

ad implemented a variety of non-pharmaceutical control mea- 

ures such as public campaign on the mandatory use of face masks 

s well as alcohol based sanitizers, imposition of total or partial 

ock down, observance of social distancing, ban on crowded so- 

ial events/imposition of a maximum number of persons in reli- 

ious gatherings, closure both public and private institutions, clo- 

ure of borders, ban/restrictions on local and international flights, 

ontact tracing of suspected infected cases and isolation of de- 

ected (asymptomatic and symptomatic) cases for prompt medical 

ttention [13] . However, there were no total compliance to most 

f these measures in most of the affected countries, so that the 

isease which started in China gained a devastating global spread. 

edical facilities became overwhelmed and doctors, nurses, health 

are givers and other front line staff became infected in some 

ases. 

In existing literature there are variant notions of fractional 

erivatives. However, many authors have used specific fractional 

ifferential operators that best suit their interests. It is worth men- 

ioning that mathematical models with fractional derivatives ap- 

ear as natural generalizations of existing integer order models. 

efore 2015, all the previously used fractional differential oper- 

tors incorporate singular kernels which have some setbacks in 

he modeling of physical phenomena. In recent times, new types 

f fractional differential operators with non-singular kernels have 

ttracted the interest of many authors. To overcome some set- 

acks associated with singularity of kernels, Caputo and Febrizio 

14] introduced the so-called Caputo-Febrizio-Caputo (CFC) frac- 

ional derivative which extends the well known Caputo frac- 

ional derivative [15] to a more general framework by incor- 

orating non-singular kernel. However, the CFC derivative also 

ave some associated problems due to the locality nature of 

ts kernel. To overcome the problems associated with both sin- 

ularity and locality of kernels, Atangana and Baleanu [16] in- 

roduced the so-called Atangana-Baleanu-Caputo (ABC) fractional 

erivative which incorporates the Mittag Leffler function as a 

on-local and non-singular kernel. With respect to the Mittag- 

effler function as kernel, the Atangana-Baleanu definition of the 

ractional derivative provides an excellent description for mem- 

ry and hereditary effects present in a wide range of physical 

roblems. 

The idea of incorporating fractional order derivatives in the 

athematical modeling of infectious diseases is not anything new 

see, for instance [17–21] and the references therein). Within 

he past nineteen months, there have been extensive studies on 

OVID-19 from different mathematical perspectives. A variety of 

athematical models have be constructed to better understand the 
2 
ransmission dynamics and optimal control of the virus. In a num- 

er of these works, the constructed models incorporate integer 

rder derivatives [22–25] . However, due to the fact that integer- 

rder derivatives fail to adequately capture hereditary and memory 

ffects inherent in most real life situations, some of these mod- 

ls have been extended by other authors to incorporate fractional 

non-integer) order derivatives. Some of the earliest mathematical 

tudies on the transmission dynamics of fractional COVID-19 mod- 

ls were done by Chen et al. [26] and Khan and Atangana [27] .

ince then, studies on fractional COVID-19 models have attracted 

he interest of many authors with interesting results. For instance, 

n [28] the authors considered a fractional COVID-19 model in- 

orporating the susceptible, exposed, symptomatic, asymptomatic 

nd removed compartments. Their investigation suggests that the 

emory effects contained in the fractional operators apparently do 

ot seem to play a significant role on the stability behavior of the 

ractional model. Verma and Kumar [29] studied a COVID-19 model 

ith variable fractional derivative in the Caputo-Fabrizio-Caputo 

ense. They employed the fixed point theory to establish new ex- 

stence and uniqueness results. They also obtained interesting re- 

ults related to the generalized Hyers-Ulam stability and general- 

zed Hyers-Ulam-Rassias stability of the model. Other recent works 

n the dynamics of fractional COVID-19 models include [9,30–34] . 

In this paper, we contribute to existing body of works by con- 

tructing and studying a compartmentalized fractional mathemat- 

cal model describing the transmission dynamics of COVID-19 us- 

ng real data from Nigeria. The fractional differential operator for 

he constructed model is taken in the Atangana-Baleanu-Caputo 

ense due to its non-locality and non-singularity properties. The 

odel considered incorporates the susceptible, exposed, asymp- 

omatic, infectious, isolated and recovered compartments. We re- 

all that the first case of COVID-19 in Nigeria was reported on the 

7th of February 2020 with the patient being an Italian citizen 

ho arrived Lagos [35] from Milan through the Murtala Muham- 

ad Airport, while the second case of the disease was reported in 

wekoro, Ogun State, the patient being a Nigerian citizen who had 

ad contact with the Italian citizen. Hence we do not take indi- 

ect transmission from animal-to-human into consideration as this 

s the situation for most of countries outside China. Among other 

hings, the impact of the order of differentiation on the dynamics 

f the disease is investigated using a fractional two-step Adams- 

ashforth scheme developed in [36] . 

We highlight the content of the remaining sections of this pa- 

er as follows: In Section 2 , we recall some important notions 

nd results which we will find useful in subsequent sections. 

n Section 3 , a mathematical model incorporating the Atangana- 

aleanu derivative is constructed to describe the transmission dy- 

amics of COVID-19 in Nigeria. In view of the fact that the model 

escribes human population, some dynamical properties such as 

nvariant region as well as basic reproduction number are also dis- 

ussed. In Section 4 , we employ a fixed point argument to establish 

onditions under which the constructed fractional order model ad- 

its a unique solution. The stability of the model in the sense of 

lam-Hyers is investigated in Section 5 . To obtain numerical solu- 

ions for the proposed model, a two-step Adems-Bashforth scheme 

ncorporating the memory index of the fractional model is devel- 

ped in Section 6 . In Section 7 , we do some parameter estimation

nd model fitting using available data from the NCDC in Nigeria. 

urthermore, using these estimated parameter values as well as 

he iterative already developed in Section 6 , we proceed further to 

btain numerical simulations describing influence of distinct val- 

es of the fractional index on the dynamics of the susceptible, ex- 

osed, asymptomatic, symptomatic, isolated, and recovered indi- 

iduals. Concluding remarks relevant to the present investigation 

re summarized in Section 8 . 
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. Some background materials 

In this section, we collect some basic notions and results 

oncerning the Atangana-Baleanu fractional derivatives and inte- 

rals. In the sequel, we denote by H 

1 (a, b) := { ψ ∈ L 2 (a, b) : ψ 

′ ∈
 

2 (a, b) , a < b} the Sobolev space of order 1 in (a, b) ∈ R , �(·) the

sual gamma function and E ϑ,β (·) , defined as 

 ϑ,β ( z ) := 

∞ ∑ 

k =0 

z k 

�( ϑk + β) 
, ϑ, β > 0 , z ∈ C , (2.1) 

he two-parameter Mittag-Leffler function [15] . If β = 1 , then 

3.8) reduces to the one-parameter Mittag-Leffler function 

 ϑ, 1 (z) ≡ E ϑ (z) . In particular, E 1 , 1 (z) ≡ E 1 (z) = exp (z) . 

efinition 2.1. [16] The Atangana-Baleanu-Caputo ( ABC ) and 

tangana-Baleanu-Riemann-Liouville ( ABR ) fractional derivatives 

f order ϑ ∈ (0 , 1] for a function 	 ∈ H 

1 (a, b) are defined as 

BC 

 

D 

ϑ 
t 	(t) = 

ABC (ϑ) 

1 − ϑ 

∫ t 

a 

E ϑ 

(
− ϑ 

1 − ϑ 

( t − s ) ϑ 
)

	′ ( s ) ds, t > 0 ,

(2.2) 

nd 

BR 

 

D 

ϑ 
t 	(t) 

= 

ABC (ϑ) 

1 − ϑ 

d 

dt 

∫ t 

a 

E ϑ 

(
− ϑ 

1 − ϑ 

(t − s ) ϑ 
)

	(s ) ds, t > 0 , (2.3) 

espectively, where ABC (ϑ) is the normalization function satisfy- 

ng the property: ABC (0) = ABC (1) = 1 . 

efinition 2.2. [16] The fractional integral associated with the 

BC derivative is defined as 

B 

 

I ϑ t [	(t)] = 

1 − ϑ 

ABC (ϑ) 
	(t) 

+ 

ϑ 

ABC (ϑ)�(ϑ) 

∫ t 

a 

(t − s ) ϑ−1 	(s ) ds, t > 0 . 

(2.4) 

emma 2.3. Let ϑ ∈ (0 , 1] and H ∈ C([0 , T ] , R + ) . Then the fractional

nitial value problem in ABC derivative: 

ABC 

a D 

ϑ 
t 	(t) = H(t) , t ∈ [0 , T ] , 

	(0) = 	0 , 

as a unique solution given as 

(t) = 	0 + 

1 − ϑ 

ABC (ϑ) 
H(t) + 

ϑ 

ABC (ϑ )�(ϑ ) 

∫ t 

a 

(t − s ) ϑ−1 H(s ) ds.

(2.5) 

efinition 2.4. [16] The Laplace transform associated with the 

BC fractional differential operator is defined as 

{ ABC 0 D 

ϑ 
t [	(t)] } (s )= 

ABC (ϑ) 

ϑ + s ϑ (1 − ϑ) 

[ 
s ϑ L{ 	( t) } ( s ) −s ϑ−1 	( 0) 

]
(2.6) 

efinition 2.5. [37] Let W be a Banach space. Then the operator 

 : W → W is a contraction if 

 F 
1 − F 
2 ‖ ≤ κ‖ 
1 − 
2 ‖ , for all 
1 , 
2 ∈ W , 0 < κ < 1 . 

heorem 2.6. [37] Let W be a Banach space and B a nonempty 

losed subset of W . If the map F : B → B is a contraction, then there

xists a unique fixed point of F . 

heorem 2.7. (Krasnoselskiis fixed point theorem [38] ) Let B be a 

on-empty, closed, convex and bounded subset of a Banach space W 

nd assume that F and G are two operators on W satisfying 
3 
i) F 
 + G 
 ∈ B for all 
 ∈ B; 

ii) F is a contraction mapping; 

iii) G is continuous and compact. 

Then, there exists at least one solution 
 ∈ B such that F 
 + 

 
 = 
. 

heorem 2.8. (Arzelá-Ascoli Theorem [39] ) Let B be a compact set 

n R 

n + (n ≥ 1) . Then a set X ⊂ C(B) is relatively compact in C(B)

f and only if the functions in X are uniformly bounded and equi- 

ontinuous on B. 

. Construction of the proposed fractional model 

Motivated by the works [26–28] , we employ a compartmental 

pproach to formulate a modified model describing the transmis- 

ion dynamics of COVID-19. However, our model bears close re- 

emblance with the the SEIAR-type model considered in [28] but 

iffers from the ones in [26,27] in that we do not take into ac- 

ount the contributions of the animal hosts population (possibly 

ats) and environmental reservoir (seafood market) transmission 

etwork whose dynamics accounts for the possible transmission 

rom the source of infection to human. This is because, the ini- 

ial transmission routes in other countries outside China is essen- 

ially considered to be via humam-to-human interactions. Instead, 

e incorporate an additional compartment accounting for the dy- 

amics of the isolated population under medical care. More pre- 

isely, our proposed model sub-divides the total human popula- 

ion N(t) into six mutually-exclusive compartments, namely, sus- 

eptible S(t) , exposed E(t) , asymptomatic A (t) , symptomatic I(t) , 

solated H(t) and recovered R (t) compartments, such that 

(t) = S(t) + E(t) + A (t) + I(t) + H(t) + R (t) . (3.1)

e assume that natural mortality occur in all compartments at 

ate μ while disease induced mortality occur only in the I and 

compartments at rate d 1 and d 2 , respectively. We discuss the 

omponents of each compartment as follows: 

• The susceptible compartment S(t) consists of all individuals 

who are at risk of contracting the COVID-19 disease. We take 

into consideration direct transmission of the virus via human- 

to-human contact only. Recruitment of new individuals into this 

compartment is at a constant rate �. Moreover, all newly re- 

cruited individuals are assumed to be susceptible. Although, 

some restrictive policies such as public awareness campaign, 

social distancing, wearing of face mask, use of alcohol based 

hand sanitizers and Personal Protective Equipment (PPE) as well 

as inter- and intra-state lock down were imposed after some 

weeks, compliance to these preventive regulations were not to- 

tal. Let ρ (0 ≤ ρ ≤ 1) denote the efficacy of of the preventive 

measures imposed by government. Then any susceptible indi- 

vidual who contract the disease through effective contact with 

viral sources (that is, A (t) and I(t) ) moves into the exposed 

compartment at the rate (1 − ρ) λ(t) where 

λ(t) := β
(I + τA ) 

N 

(3.2) 

denotes the force of infection. Here, β denotes the effective 

contact rate for COVID-19 transmission from a viral source to 

a susceptible individual and τ ∈ [0 , 1] the modification parame- 

ter accounting for the relative infectiousness of individuals with 

COVID-19 infection in the A compartment in comparison to 

those with COVID-19 infection in the I compartment. 
• The exposed compartment E(t) consists of those who have be- 

come exposed to COVID-19. Apart from not showing any clinical 

symptom at this stage, exposed individuals are not also imme- 

diately infectious as the pathogen may take some time to repli- 

cate and establish itself within the new host. Between the time 
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of exposure and development of any related symptom, COVID- 

19 is known to have an incubation period of 2 to 14 days. We 

denote by θ1 and θ2 the incubation periods for exposed individ- 

uals to become asymptomatic and symptomatic, respectively. 
• The asymptomatic infectious compartment A (t) consists 

of infected individuals who show no clinical symptoms. An 

asymptomatic individual is capable of infecting susceptible in- 

dividuals. After the incubation period θ1 , a proportion σ of the 

exposed individuals transit to asymptomatic class at rate θ1 σ . 

However, the number of asymptomatic individuals decreases ei- 

ther due to transition to isolation centers at rate φ1 , recovery at 

rate ϕ 1 by overcoming the disease. 
• The symptomatic infected compartment I(t) consists of in- 

fected individuals with visible (or clinical) symptoms. These in- 

dividual are capable of infecting susceptible individuals. After 

the incubation period θ2 , the remaining (1 − σ ) proportion of 

the exposed individuals enters the symptomatic compartment 

at rate θ2 (1 − σ ) . However, the number of symptomatic indi- 

viduals decreases due to transition into isolation of infectious 

individuals at isolation centers/hospitals at rate φ2 , recovery of 

infectious individuals at rate ϕ 2 . 
• The isolated compartment H(t) consists of COVID-19 positive 

individuals who are isolated at home or treatment centers for 

medical attention. We assume that there is that there is no viral 

transmission by isolated individuals to susceptible individuals 

(such as doctors, nurses, care givers or visitors). Individuals in 

this compartment increases as more asymptomatic and symp- 

tomatic cases become isolated at rate φ1 and φ2 , respectively, 

and decreases due to recovery at rate ϕ 3 . 
• The recovered compartment R (t) consists of those individual 

who have recovered from COVID-19 infection. The recovered 

population increases as more asymptomatic, symptomatic and 

hospitalized individuals individuals recover from the infection 

at rate ϕ 1 , ϕ 2 and ϕ 3 , respectively. Reduction of number of re-

covered population is only due to natural death at rate μ. We 

assume that no infection related death occur after recovery and 

recovered individuals do not become susceptible again. In order 

words, re-infection is not taken into account due to immunity 

induced by COVID-19 antibodies. 

Putting together the above considerations, we arrive at the fol- 

owing compartmental system of deterministic nonlinear ordinary 

ifferential equations: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D t S(t) = � − (1 − ρ) λ(t) S − μS, 

D t E(t) = (1 − ρ) λ(t) S − (θ1 σ + θ2 (1 − σ ) + μ) E, 

D t A (t) = θ1 σE − (φ1 + ϕ 1 + μ) A , 

D t I(t) = θ2 (1 − σ ) E − (φ2 + ϕ 2 + d 1 + μ) I, 

D t H(t) = φ1 A + φ2 I − (ϕ 3 + d 2 + μ) H, 

D t R (t) = ϕ 1 A + ϕ 2 I + ϕ 3 H − μR . 

(3.3) 

ere, the notation D t represents the integer order time derivative. 

he description of the model parameters and their values are pro- 

ided in Table 1 for further elucidation. 

By replacing the classical integer derivative in each equation of 

3.3) with the fractional ABC derivative we arrive at the following 

eneralized model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABC 

0 D 

ϑ 
t S(t) = � − (1 − ρ) λ(t) S − μS, 

ABC 

0 D 

ϑ 
t E(t) = (1 − ρ) λ(t) S − (θ1 σ + θ2 (1 − σ ) + μ) E, 

ABC 

0 D 

ϑ 
t A (t) = θ1 σE − (φ1 + ϕ 1 + μ) A , 

ABC 

0 D 

ϑ 
t I(t) = θ2 (1 − σ ) E − (φ2 + ϕ 2 + d 1 + μ) I, 

ABC 

0 D 

ϑ 
t H(t) = φ1 A + φ2 I − (ϕ 3 + d 2 + μ) H, 

ABC D 

ϑ 
t R (t) = ϕ 1 A + ϕ 2 I + ϕ 3 H − μR , 

(3.4) 
0 

4 
here ABC 
0 

D 

ϑ 
t ( 0 < ϑ ≤ 1 ) denotes the ABC fractional differential 

perator. The model (3.4) is considered with the initial conditions: 

 ( 0 ) = S 0 ≥ 0 , E ( 0 ) = E 0 ≥ 0 , A ( 0 ) = A 0 ≥ 0 

 ( 0 ) = I 0 ≥ 0 , H ( 0 ) = H 0 ≥ 0 , R ( 0 ) = R 0 ≥ 0 . 
(3.5) 

.1. Positive invariant region 

Since the model (3.4) describes human population, it is neces- 

ary to determine the region within which the model is epidemi- 

logically meaningful. In this direction, we adapt the approach in 

31,18] to prove the following important result. 

emma 3.1. The closed set 

= 

{
(S, E, A , I, H, R ) ∈ R 

6 
+ : N = S + E + A + I + H + R ≤ �

μ

}
(3.6) 

s positively invariant for the fractional model (3.4) . 

roof. Following similar lines of argument as in [31,18] , we sum 

p all equations of the fractional model (3.4) to obtain 

BC 

 

D 

ϑ 
t N(t) = � − μN(t) − d(A (t) + I(t) + H(t)) ≤ � − μN(t) . 

n application of the Laplace transform yields 

(t) ≤
[

ABC (ϑ) 

ABC (ϑ) + (1 − ϑ) μ
N(0) 

+ 

(1 − ϑ)�

ABC (ϑ) + (1 − ϑ) μ

]
E ϑ, 1 (−νt ϑ ) 

+ 

ϑ�

ABC (ϑ) + (1 − ϑ) μ
E ϑ ,ϑ +1 (−νt ϑ ) 

(3.7) 

here ν = 

ϑμ
ABC (ϑ)+(1 −ϑ) μ

, N(0) = S 0 + E 0 + A 0 + I 0 + H 0 + R 0 de-

otes the total initial population and E ϑ,β (z) is the two-parameter 

ittag-Leffler function [15] defined by 

 ϑ,β (z) := 

∞ ∑ 

k =0 

z k 

�(ϑk + β) 
(z, β ∈ C , Re (ϑ) > 0) . (3.8) 

y invoking the following property for the two-parameter Mittag- 

effler function [15] 

 ϑ,β (z) = zE ϑ ,ϑ + β(z) + 

1 

�(β) 
, 

he inequality in (3.7) simplifies to 

(t) ≤ �

μ
+ 

ABC (ϑ) 

ABC (ϑ) + (1 − ϑ) μ

[
N( 0) − �

μ

]
E ϑ ( −νt ϑ ) . 

learly, N(t) ≤ �
μ as t → ∞ due to the asymptotic behaviour of 

he Mittag-Leffler function [15] . Thus, all solutions of the fractional 

odel (3.4) with the non-negative initial conditions in � will re- 

ain in �. Consequently, the closed set � is a positively invariant 

ith regard to the fractional model (3.4) . �

.2. Model equilibrium points 

The equilibrium points of the fractional model (3.4) are basi- 

ally steady state solutions of the model. Clearly, by setting the left 

and side of each equations in (3.4) to zero and solving the result- 

ng algebraic system of equations, we obtain the following equilib- 

ium points: 
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VID-19 infection within the population (i.e., when E = A = I = H = 0 ), 

(3.9) 

 , the DEE E e is obtained as 

(3.10) 

θ1 ( k 4 ϕ 1 + φ1 ϕ 3 ) 

k 2 

)
. 

(3.11) 

+ ϕ 2 + d 1 + μ, k 4 = ϕ 3 + d 2 + μ, and 

(3.12) 

(3.11) into (3.12) and noting that N e = S e + E e + A e + I e + H e + R e , an 

3

] we find the basic reproduction number as follows: Firstly, we obtain 

t

F

a

V

w  and transmission terms, respectively, in the E , A and I compartments. 

T the spectral radius of F V 

−1 (i.e., R 0 = ρ( F V 

−1 ) ) is given as 

R (3.13) 

T emiological quantity which reflects the average number of secondary 

C dividual within a completely susceptible population. Note that we can 

a

R

w

R

i  single asymptomatic COVID-19 individual within a completely suscep- 

t

R

i  single symptomatic infected individual within a completely susceptible 

p

i) Disease free equilibrium (DFE) point: In the absence of any CO

the the DFE, denoted by E 

0 , is calculated as 

E 

0 = 

(
S 0 , E 0 , A 

0 , I 0 , H 

0 , R 

0 
)

= 

(
�

μ
, 0 , 0 , 0 , 0 , 0 

)
. 

ii) Disease endemic equilibrium (DEE) point: When E, A , I, H � = 0

E e = ( S e , E e , A e , I e , H e , R e ) 

where ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

S e = 

�

λe ( 1 − ρ) + μ
, E e = 

�λe ( 1 − ρ) 

( λe ( 1 − ρ) + μ) k 1 
, 

A e = 

�λe θ1 σ ( 1 − ρ) 

( λe ( 1 − ρ) + μ) k 1 k 2 
, I e = 

�λe θ2 ( 1 − σ ) ( 1 − ρ) 

( λe ( 1 − ρ) + μ) k 1 k 3 
, 

H e = 

�λe ( 1 − ρ) 

( λe ( 1 − ρ) + μ) k 4 

(
φ1 θ1 σ

k 1 k 2 
+ 

φ2 θ2 ( 1 − σ ) 

k 1 k 3 

)

R e = 

�λe ( 1 − ρ) 

( λe ( 1 − ρ) + μ) μ k 1 k 4 

(
θ2 ( 1 − σ ) ( k 4 ϕ 2 + φ2 ϕ 3 ) 

k 3 
+ 

σ

In (3.11) , k 1 = θ1 (1 − σ ) + θ2 σ + μ, k 2 = φ1 + ϕ 1 + μ, k 3 = φ2 

λe := β
(I e + τA e 

N e 

)
. 

Moreover, by substituting the expressions for A e and I e from 

explicit expression for λe can be obtained. 

.3. Basic reproduction number 

By using the method of next generation matrix described in [40

he following Jacobian matrices at the DFE E 0 : 

 = J(F ) 

∣∣∣
E 0 

= 

[ 

0 ( 1 − ρ) β τ ( 1 − ρ) β
0 0 0 

0 0 0 

] 

nd 

 = J(V ) 

∣∣∣
E 0 

= 

[ 

k 1 0 0 

−θ1 σ k 2 0 

−θ2 ( 1 − σ ) 0 k 3 

] 

here F and V are matrices consisting of the new infection terms

hen the expression for R 0 determined next generation matrix as 

 0 = 

β(1 − ρ) 

k 1 

(
τσθ1 

k 2 
+ 

(1 − σ ) θ2 

k 3 

)
. 

he basic reproduction number (3.13) is a non-dimensionless epid

OVID-19 cases generated by a single typical COVID-19 infective in

lso express the basic reproduction number (3.13) as 

 0 = R asy + R sym 

here 

 asy = 

(1 − ρ) στβθ1 

k 1 k 2 

s the average number of secondary COVID-19 cases generated by a

ible population and 

 sym 

= 

(1 − ρ)(1 − σ ) βθ1 

k 1 k 3 
. 

s the average number of secondary COVID-19 cases generated by a

opulation. 
5 
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4

 of time-fractional system of equations of the type (3.4) , we employ a 

fi tence and uniqueness of solutions to the model is assured. To this end, 

w ation in (3.4) : ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 E, 

(4.1) 

a{
(4.2) 

w

U

 E, A , I, H, R ) 

 E, A , I, H, R ) 

 E, A , I, H, R ) 

 E, A , I, H, R ) 

 E, A , I, H, R ) 

 E, A , I, H, R ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (4.3) 

T en by the following nonlinear Volterra-type integral representation 

U (s, U(s )) ds. (4.4) 

T  solution to the fractional COVID-19 model (3.4) - (3.5) (rewritten as the 

f ence and uniqueness of solutions to the equivalent non-linear integral 

E  , R 

6 + ) with respect to the supremum norm 

‖

w

s ) | 
] 

a g the operator � : W −→ W as 

� (4.5) 

w

F (4.6) 

a

G (4.7) 

t int problem: 

U (4.8) 

F d linear growth bound are satisfied by the nonlinear function G : J ×
R

 U 

∗∗ ∈ W , 
. Existence and uniqueness analysis 

Since there exists no technique for constructing exact solutions

xed-point approach to investigate conditions under which the exis

e use the following notations for the right hand side of each equ
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G 1 (t, S, E, A , I, H, R ) = � − (1 − ρ) λ(t) S − μS, 

G 2 (t, E, E, A , I, H, R ) = (1 − ρ) λ(t) S − (θ1 σ + θ2 (1 − σ ) + μ)

G 3 (t, A , E, A , I, H, R ) = θ1 σE − (φ1 + ϕ 1 + μ) A , 

G 4 (t, I, E, A , I, H, R ) = θ2 (1 − σ ) E − (φ2 + ϕ 2 + d 1 + μ) I, 

G 5 (t, H, E, A , I, H, R ) = φ1 A + φ2 I − (ϕ 3 + d 2 + μ) H, 

G 6 (t, R , E, A , I, H, R ) = ϕ 1 A + ϕ 2 I + ϕ 3 H − μR , 

nd reformulate the model as 

ABC 

0 D 

ϑ 
t U(t) = G(t , U(t )) , t ∈ J := [0 , T ] , 0 < ϑ ≤ 1 

U(0) = U 0 ≥ 0 , 

here 

(t) := 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

S(t) 

E(t) 

A (t) 

I(t) 

H(t) 

R (t) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, U(0) := 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

S(0) 

E(0) 

A (0) 

I(0) 

H(0) 

R (0) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, G(t , U(t )) := 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

G 1 (t, S,

G 2 (t, E,

G 3 (t, A ,

G 4 (t, I,

G 5 (t, H,

G 6 (t, R ,

hanks to Lemma 2.3 , the solution of the fractional IVP (4.2) is giv

(t) = U(0) + 

1 − ϑ 

ABC (ϑ) 
G(t , U(t )) + 

ϑ 

ABC (ϑ )�(ϑ ) 

∫ t 

0 

(t − s ) ϑ−1 G

herefore, the problem of investigating the existence of a unique of

ractional IVP (4.2) ) is equivalent to that of investigating the exist

q. (4.4) . For this purpose, we introduce the Banach space W = C(J

U(t) ‖ := sup 

t∈J 
{|U(t) | : U ∈ W } 

here 

up 

t∈J 
|U(t) | = sup 

t∈J 

[ 
|S(t) | + |E(t) | + |A (t) | + |I(t) | + |H(t) | + |R (t

nd S(t) , E(t) , A (t) , I(t) , H(t) , R (t) ∈ C(J , R + ) . Clearly, by definin

[ U(t)] := F [ U(t)] + G [ U(t)] , 

here 

 [ U(t)] = U(0) + 

1 − ϑ 

ABC (ϑ) 
G(t , U(t )) , 

nd 

 [ U(t)] = 

ϑ 

ABC (ϑ)�(ϑ) 

∫ t 

0 

(t − s ) ϑ−1 G(s, U(s )) ds, 

he fractional integral Eq. (4.4) can be reformulated as the fixed po

(t) = �[ U(t)] . 

urthermore, we assume that the following Lipschitz condition an

 

6 + −→ R 

6 + appearing in (4.4) : 

• (C1) There exists a constant L G > 0 such that 

‖G(t, U 

∗(t)) − G(t, U 

∗∗(t)) ‖ ≤ L G ‖U 

∗(t) − U 

∗∗(t) ‖ , t ∈ J , U 

∗,

• (C2) There exist constants C G > 0 and M G > 0 such that 
‖G(t, U(t)) ‖ ≤ C G ‖U(t) ‖ + M G , t ∈ J , U ∈ W . 

6 
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T 4.2) . Then under assumptions (C1) and (C2) , the equivalent integral Eq. 

( odel (3.4) admits at least one solution. 

P  bounded subset of W with γ ≥ 	1 
1 −	2 

where 

	
ϑ 

 (ϑ) 
+ 

T ϑ 

ABC (ϑ )�(ϑ ) 

]
C G . 

W . 

 t ∈ J and U ∈ B γ . Indeed, by the assumption ( C2 ) we have 

‖
 ) 

∫ t 

0 

(t − s ) ϑ−1 |G(s, U(s )) | ds 

}

 ) 

∫ t 

0 

(t − s ) ϑ−1 
[ 

C G sup 

t∈J 
|U(t) | + M G 

] 
ds ∫ t 

0 

(t − s ) ϑ−1 
[ 

C G ‖U(t) ‖ + M G 

] 
ds 

) 
+ 

T ϑ 

ABC (ϑ )�(ϑ ) 

]
C G γ . 

T

‖ (4.9) 

H

 contraction provided that 1 −ϑ 
ABC (ϑ) 

L G < 1 . To this end, let U ∗, U ∗∗ ∈ B γ

a

‖ ) 
)∣∣∣

C contraction mapping. 

pact (that is, continuous, uniformly bounded and equi-continuous). To 

p ch that U n −→ U as n −→ ∞ in B γ . Then for t ∈ J we have 

‖ ) − G(s, U(s )) 
] 

ds 

∣∣∣
 )) − G(s, U(s )) 

∣∣∣ds 

 

H o continuous. To establish uniform boundedness of G on B γ and let 

U

‖

heorem 4.1. Consider the fractional COVID-19 (3.4) in the form (

4.4) admits at least one solution. As a consequence, the considered m

roof. Let B γ := { U ∈ W : ‖U‖ W 

≤ γ , γ > 0 } be a closed, convex

1 = U(0) + 

[
1 − ϑ 

ABC (ϑ) 
+ 

T ϑ 

ABC (ϑ )�(ϑ ) 

]
M G and 	2 = 

[
1 −

ABC

e establish the result of the theorem in the following three steps

Step I: First we show that �[ U(t)] = F [ U(t)] + G [ U(t)] ∈ B γ for

 �[ U(t)] ‖ ≤ sup t∈J 

{
U (0) + 

1 − ϑ 

ABC (ϑ) 
|G(t , U(t )) | + 

ϑ 

ABC (ϑ )�(ϑ

≤ U(0) + 

1 − ϑ 

ABC (ϑ) 

[ 
C G sup 

t∈J 
|U(t) | + M G 

] 
+ 

ϑ 

ABC (ϑ )�(ϑ

= U(0) + 

1 − ϑ 

ABC (ϑ) 

[ 
C G ‖U(t) ‖ + M G 

] 
+ 

ϑ 

ABC (ϑ )�(ϑ ) 

= U(0) + 

[
1 − ϑ 

ABC (ϑ) 
+ 

T ϑ 

ABC (ϑ )�(ϑ ) 

]
M G + 

[
1 − ϑ 

ABC (ϑ

hus we have 

 �[ U(t)] ‖ ≤ 	1 + γ	2 ≤ γ . 

ence, the operator � maps B γ into itself. 

Step II: Next, we establish that the operator F : B γ → B γ is a

nd t ∈ J . Then by assumption (C1) we have 

 F [ U 

∗(t)] − F [ U 

∗∗(t)] ‖ = sup t∈J 

∣∣∣ 1 −ϑ 
ABC (ϑ) 

(
G(t, U 

∗(t)) − G(t, U 

∗∗(t)

≤ 1 − ϑ 

ABC (ϑ) 
L G sup 

t∈J 
|U 

∗(t) − U 

∗∗(t) | 

= 

1 − ϑ 

ABC (ϑ) 
L G ‖U 

∗(t) − U 

∗∗(t) ‖ . 

learly, under the condition that 1 −ϑ 
ABC (ϑ) 

L G < 1 , the operator F is a 

Step III: Lastly, we show that the operator is G is relatively com

rove that G given by (4.7) is continuous, let {U n } be a sequence su

 G [ U n (t)] − G [ U(t)] ‖ = sup t∈J 

∣∣∣ ϑ 
ABC (ϑ)�(ϑ) 

∫ t 
0 (t − s ) ϑ−1 

[ 
G(s, U n (s )

≤ ϑ 

ABC (ϑ)�(ϑ) 

∫ t 

0 

(t − s ) ϑ−1 sup 

t∈J 

∣∣∣G(s, U n (s

≤ T ϑ 

ABC (ϑ)�(ϑ) 
‖G(s, U n (s )) − G(s, U(s )) ‖ .

ence, since G is continuous and U n −→ U , the operator G is als

 ∈ B γ . Then for t ∈ J we have 

 G [ U(t)] ‖ = sup t∈J 
∣∣ ϑ 
ABC (ϑ)�(ϑ) 

∫ t 
0 (t − s ) ϑ−1 G(s, U(s )) ds 

∣∣
≤ ϑ 

ABC (ϑ)�(ϑ) 

∫ t 

0 

(t − s ) ϑ−1 sup 

t∈J 
|G(s, U(s )) | ds 

≤ ϑ 

ABC (ϑ)�(ϑ) 

∫ t 

0 

(t − s ) ϑ−1 
[ 

C G sup 

t∈J 
|U(s ) | + M G 

] 
ds 

= 

ϑ 

ABC (ϑ)�(ϑ) 

∫ t 

0 

(t − s ) ϑ−1 
[ 

C G ‖U(s ) ‖ + M G 

] 
ds 

≤ T ϑ 

ABC (ϑ)�(ϑ) 
[ C G γ + M G ] . 
7 
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H equicontinuity of G , tet U ∈ B γ and t 1 , t 2 ∈ J with t 1 < t 2 . Then 

ϑ) 

∫ t 1 

0 

(t 1 − τ ) ϑ−1 G(s, U(s )) ds 

∣∣∣∣
 

ϑ−1 G(s, U(s )) ds 

s ) | + M G 

)
ds 

T ce the operator G is equi-continuous on B γ . A direct application of the 

A pact. Therefore, in view of Theorem 2.7 , the integral Eq. (4.4) admits 

a l (3.4) has at least one solution. �

T en under the assumption that (C1) holds with [
(4.10) 

t lution on J . 

P  W and t ∈ J . Then 

‖

, U 

∗∗(s )) 
)

ds 

∣∣∣∣
U 

∗∗(t) ‖ 

W herefore the integral Eq. (4.4) admits a unique solution. Consequently, 

t

5

Ulam-Hyers type for the proposed fractional model (3.4) . 

D rm (4.2) is said to be Ulam-Hyers stable if there exist a number C G > 0 

w  W satisfying the inequality 

‖ (5.1) 

t  U (0) = U ∗(0) such that 

‖ (5.2) 

w

U

t, S ∗, E ∗, A 

∗, I ∗, H 

∗, R 

∗) 

t, S ∗, E ∗, A 

∗, I ∗, H 

∗, R 

∗) 

t, S ∗, E ∗, A 

∗, I ∗, H 

∗, R 

∗) 

t, S ∗, E ∗, A 

∗, I ∗, H 

∗, R 

∗) 

t, S ∗, E ∗, A 

∗, I ∗, H 

∗, R 

∗) 

t, S ∗, E ∗, A 

∗, I ∗, H 

∗, R 

∗) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 
ence, the operator G is uniformly bounded on B γ . Lastly, for the 

‖ G [ U(t 2 )] − G [ U(t 1 )] ‖ 

= sup 

t∈J 

∣∣∣∣ ϑ 

ABC (ϑ)�(ϑ) 

∫ t 2 

0 

(t 2 − τ ) ϑ−1 G(s, U(s )) ds − ϑ 

ABC (ϑ)�(

= sup 

t∈J 

∣∣∣∣ ϑ 

ABC (ϑ)�(ϑ) 

∫ t 1 

0 

(t 2 − τ ) ϑ−1 G(s, U(s )) ds + 

∫ t 2 

t 1 

(t 2 − τ )

− ϑ 

ABC (ϑ)�(ϑ) 

∫ t 1 

0 

(t 1 − τ ) ϑ−1 G(s, U(s )) ds 

∣∣∣∣
≤ ϑ 

ABC (ϑ)�(ϑ) 

∫ t 2 

t 1 

(t 2 − τ ) ϑ−1 

(
C G sup 

t∈J 
|U(s ) | + M G 

)
ds 

+ 

ϑ 

ABC (ϑ)�(ϑ) 

∫ t 1 

0 

(
(t 2 − τ ) ϑ−1 − (t 1 − τ ) ϑ−1 

)(
C G sup 

t∈J 
|U(

≤
(

(t ϑ 1 − t ϑ 2 ) + 2(t 2 − t 1 ) 
ϑ 

ABC (ϑ)�(ϑ) 

)
( C G γ + M G ) . 

his implies that if t 1 −→ t 2 then ‖ G [ U(t 2 )] − G [ U(t 1 )] ‖ −→ 0 . Hen

rzelà-Ascoli Theorem ensures that the operator G is relatively com

t least one solution. Consequently, the considered fractional mode

heorem 4.2. Consider the Covid-19 model (3.4) in the form (4.2) . Th

1 − ϑ 

ABC (ϑ) 
+ 

T ϑ 

ABC (ϑ)�(ϑ) 

]
L G < 1 , 

he fractional initial value problem (4.2) ⇐⇒ (3.4) admits a unique so

roof. Considering (4.8) , let U ∗ and U ∗∗ be two solutions of (4.2) in

 �[ U 

∗(t)] −�[ U 

∗∗(t)] ‖ 

≤
∣∣∣∣ 1 − ϑ 

ABC (ϑ) 
sup 

t∈J 

(
G(t, U 

∗(t)) − G(t, U 

∗∗(t)) 
)∣∣∣∣

+ 

∣∣∣∣ ϑ 

ABC (ϑ)�(ϑ) 
sup 

t∈J 

∫ t 

0 

(t − s ) ϑ−1 
(
G(t, U 

∗(s )) − G(t

≤ 1 − ϑ 

ABC (ϑ) 
‖U 

∗(t) − U 

∗∗(t) ‖ + 

T ϑ 

ABC (ϑ )�(ϑ ) 
‖U 

∗(t) −

= 

[
1 − ϑ 

ABC (ϑ) 
+ 

T ϑ 

ABC (ϑ)�(ϑ) 

]
L G ‖U 

∗(t) − U 

∗∗(t) ‖ . 

ith respect to (4.10) , the operator � is a contraction mapping. T

he fractional model (3.4) admits a unique solution. �

. Stability (Ulam-Hyers stability) 

In this section, we establish some results related to stability of 

efinition 5.1. The fractional order model (3.4) considered in the fo

ith the following property: for each ε > 0 and every solution U ∗ ∈

 

ABC 

0 D 

ϑ 
t U 

∗(t) − G(t , U 

∗(t )) ‖ ≤ ε, t ∈ J , 

here exists a unique solution U ∈ W of (4.2) with initial condition

U 

∗(t) − U(t) ‖ ≤ C G ε, for all t ∈ J , 

here 

 

∗(t) := 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

S ∗(t) 

E ∗(t) 

A 

∗(t) 

I ∗(t) 

H 

∗(t) 

R 

∗(t) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, U 

∗(0) := 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

S ∗(0) 

E ∗(0) 

A 

∗(0) 

I ∗(0) 

H 

∗(0) 

R 

∗(0) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, G(t , U 

∗(t )) := 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

G 1 (
G 2 (
G 3 (
G 4 (
G 5 (
G 6 (
8 



N.I. Okposo, M.O. Adewole, E.N. Okposo et al. Chaos, Solitons and Fractals 152 (2021) 111427 

a

ε

W nal order problem (3.4) . 

D to be generalized Ulam-Hyers stable if there exists a continuous function 

� 5.1) , there exists a unique solution U ∈ W of (4.2) such that 

‖ (5.3) 

R onsider a small perturbation �(t) ∈ C(J ) such that �(0) = 0 and the 

f

w

L{
(5.4) 

s

| (5.5) 

w  

T ϑ 

ABC (ϑ)�(ϑ) 

] 
. 

P  (5.5) is given by 

U
(5.6) 

A

U (s, U 

∗(s )) ds. (5.7) 

I

|  

(5.8) 

T

| (5.9) 

T he fractional IVP is Ulam-Hyers and also generalized Ulam-Hyers stable in 

W

(

C d generalized Ulam-Hyers stable in W . 

P nique solution of the problem (4.2) with the initial condition U(0) = 

U

U , U(s )) ds. (5.10) 
nd 

 = max 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ε 1 

ε 2 

ε 3 

ε 4 

ε 5 

ε 6 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, C G := max 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

C G 1 
C G 2 
C G 3 
C G 4 
C G 5 
C G 6 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

e refer to such C G an Ulam-Hyers stability constant for the fractio

efinition 5.2. The aforementioned fractional problem (4.2) is said 

G : J → R + with �G (0) = 0 such that for each U ∗ ∈ W satisfying (

U 

∗(t) − U(t) ‖ ≤ �G (ε) , for all t ∈ J . 

emark 5.3. Concerning the stability analysis of the model, we c

ollowing properties are satisfied: 

(i) | �(t) | ≤ ε for t ∈ J and ε > 0 ; 

(ii) ABC 0 D 

ϑ 
t U ∗(t) = G(t , U ∗(t )) + �(t) , for all t ∈ J , 

here �(t) = (�1 (t) , �2 (t) , �3 (t) , �4 (t) , �5 (t) , �6 (t)) � . 

emma 5.4. The solution U ∗
�

(t) of the perturbed problem 

ABC 

0 D 

ϑ 
t U 

∗(t) = G(t , U 

∗(t )) + �(t) , for all t ∈ J , 

U 

∗(0) = U 

∗
0 , 

atisfies the inequality 

U 

∗
�(t) − U 

∗(t) | ≤ 	ε, 

here U ∗
�

is a solution of (5.5) , U ∗ satisfies (5.1) and 	 := 

[ 
1 −ϑ 

ABC (ϑ) 
+

roof. Thanks to Lemma 2.3 , the solution of the fractional problem

 

∗
�(t) = U 

∗
0 + 

1 − ϑ 

ABC (ϑ) 

[ 
G(t, U 

∗(t)) + �(t) 
] 

+ 

ϑ 

ABC (ϑ)�(ϑ) 

∫ t 

0 

(t − s ) ϑ−1 
[ 
G(s, U 

∗(s )) + �(t) 
] 

ds. 

lso, we have 

 

∗(t) = U 

∗
0 + 

1 − ϑ 

ABC (ϑ) 
G(t , U 

∗(t )) + 

ϑ 

ABC (ϑ )�(ϑ ) 

∫ t 

0 

(t − s ) ϑ−1 G

t follows from Remark 5.3 that 

U 

∗
�(t) − U 

∗(t) | ≤ 1 −ϑ 
ABC (ϑ) 

| �(t) | + 

ϑ 
ABC (ϑ)�(ϑ) 

∫ t 
0 (t − s ) ϑ−1 | �(t) | ds

≤
[

1 − ϑ 

ABC (ϑ) 
+ 

T ϑ 

ABC (ϑ)�(ϑ) 

]
ε. 

his implies 

U 

∗
�(t) − U 

∗(t) | ≤ 	ε. 

�

heorem 5.5. Under the assumptions of Lemma 5.4 , the solution of t

 if 

1 − 	L G ) > 0 . 

onsequently, the model fractional model (3.4) ) is both Ulam-Hyers an

roof. Suppose U ∗ ∈ W satisfies the inequality (5.1) and U ∗ be a u

 

∗(0) ⇐⇒ U 0 = U ∗
0 

. Then it follows from Lemma 2.3 that 

(t) = U 

∗
0 + 

1 − ϑ 

ABC (ϑ) 
G(t, U(t)) + 

ϑ 

ABC (ϑ)�(ϑ) 

∫ t 

(t − s ) ϑ−1 G(s

0 

9 
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B

‖

G(t, U(t)) | ds 

U(t) ‖ . 

(5.11) 

T

‖ (5.12) 

F

‖ (5.13) 

H . Moreover, by setting U G (ε) = C G ε with U G (0) = 0 such that 

‖ (5.14) 

t fore, the proposed model (3.4) is both Ulam-Hyers stable and general- 

i

6  

troduced by Atangana and Owolabi [36] , we present the corresponding 

n ystem of Eq. (3.4) in ABC derivative. The reader is referred to the work 

[ sis of the scheme. To demonstrate the behaviour of the system state 

v o provide numerical simulations based on the aforementioned scheme. 

B damental theorem of integration in the S−equation of (3.4) with ABC 

d pe integral equation 

S G 1 (s, S(s )) ds. (6.1) 

A

S − t ) ϑ−1 G 1 (t , S(t )) dt 

a

S 1 − t ) ϑ−1 G 1 (t , S(t )) dt . 

r

S ϑ 

BC (ϑ )�(ϑ ) 
(I ϑ, 1 − I ϑ, 2 ) (6.2) 

w

(6.3) 

O ed by the two-point Lagrange interpolation polynomial of the form 

G

(6.4) 

s

I − t ϑ+1 
k +1 

ϑ + 1 

]

I

(6.5) 

r  

S  (6.6) 
y (5.11) , assumption (C1) and Lemma 5.4 , we have 

U 

∗(t) − U(t) ‖ ≤ sup 

t∈J 
|U 

∗(t) − U 

∗
�(t) | + sup 

t∈J 
|U 

∗
�(t) − U(t) | 

≤ 2	ε + 

1 − ϑ 

ABC (ϑ) 
sup 

t∈J 
|G(t, U 

∗(t)) − G(t, U(t)) | 

+ 

ϑ 

ABC (ϑ)�(ϑ) 
sup 

t∈J 

∫ t 

0 

(t − s ) ϑ−1 |G(t, U 

∗(t)) −

≤ 2	ε + 

[
1 − ϑ 

ABC (ϑ) 
+ 

T ϑ 

ABC (ϑ)�(ϑ) 

]
L G ‖U 

∗(t) −

his implies 

U 

∗(t) − U(t) ‖ ≤ 2	
1 −	L G 

ε. 

or C G := 

2	
1 −	L G 

with 1 − 	L G > 0 , the inequality in (5.12) implies 

U 

∗(t) − U(t) ‖ ≤ C G ε. 

ence, the solution of the fractional IVP (4.2) is Ulam-Hyers stable

U 

∗(t) − U(t) ‖ ≤ �G (ε) , 

he fractional IVP (4.2) is also generalized Ulam-Hyers stable. There

zed Ulam-Hyers stable. �

. Two-step Adams-Bashforth scheme for the considered model

Motivated by the fractional two-step Adams-Bashforth scheme in

umerical scheme for the approximate solutions to the fractional s

36] for detailed treatment of the convergence and stability analy

ariables with respect to varying fractional order parameter, we als

ased on the scheme developed in [36] , an application of the fun

erivative yields the following corresponding fractional Volterrra-ty

(t) − S(0) = 

1 − ϑ 

ABC (ϑ) 
G 1 (t , S(t )) + 

ϑ 

ABC (ϑ )�(ϑ ) 

∫ t 

0 

(t − s ) ϑ−1 

t t = t k and t = t k +1 , k = 0 , 1 , 2 , · · · , we have 

(t k ) − S(0) = 

1 − ϑ 

ABC (ϑ) 
G 1 (t k −1 , S(t k −1 )) + 

ϑ 

ABC (ϑ )�(ϑ ) 

∫ t k 

0 

(t k 

nd 

(t k +1 ) − S(0) = 

1 − ϑ 

ABC (ϑ) 
G 1 (t k , S(t k )) + 

ϑ 

ABC (ϑ )�(ϑ ) 

∫ t k +1 

0 

(t k +

espectively. Moreover, 

(t k +1 ) − S(t k ) = 

1 − ϑ 

ABC (ϑ) 

[ 
G 1 (t k , S(t k )) − G 1 (t k −1 , S(t k −1 )) 

] 
+ 

A

here 

I ϑ, 1 := 

∫ t k +1 

0 
(t k +1 − t) ϑ−1 G 1 (t, S(t)) dt, 

I ϑ, 2 := 

∫ t k 
0 (t k − t) ϑ−1 G 1 (t, S(t)) dt. 

ver the interval [ t k , t k +1 ] , the function G 1 (t, S) can be approximat

 1 (t, S(t)) � 

t − t k −1 

t k − t k −1 

G 1 (t k , S(t k )) + 

t − t k 
t k −1 − t k 

G 1 (t k −1 , S(t k −1 )) 

= 

t − t k −1 

h 

G 1 (t k , S(t k )) −
t − t k 

h 

G 1 (t k −1 , S(t k −1 )) , 

o that 

 ϑ, 1 = 

G 1 (t k , S(t k )) 

h 

[
2 ht ϑ 

k +1 

ϑ 

− t ϑ+1 
k +1 

ϑ + 1 

]
− G 1 (t k −1 , S(t k −1 )) 

h 

[
ht ϑ 

k +1 

ϑ 

 ϑ, 2 = 

G 1 (t k , S(t k )) 

h 

[
ht ϑ 

k 

ϑ 

− t ϑ+1 
k 

ϑ + 1 

]
− G 1 (t k −1 , S(t k −1 )) 

h 

t ϑ+1 
k 

ϑ + 1 

, 

espectively. By inserting the integrals in (6.5) into (6.2) we obtain

(t k +1 ) = S(t k ) + G 1 (t k , S(t k ))	1 (ϑ) − G 1 (t k −1 , S(t k −1 ))	2 (ϑ)
10 
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a onal derivative in the ABC sense where 

	

+ 

t ϑ+1 
k 

ϑ + 1 

)]
if i = 1 , 

 

)]
if i = 2 . 

(6.7) 

S ariables of the fractional model (3.4) as ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

 

) , 

 

) , 

) . 

(6.8) 

7

7

D-19 data provided by Nigeria Centre for Disease Control (NCDC) from 

0 le at [35] for our model fitting. For the purpose of data fitting, we add 

t ed death cases ( D(t) ) and confirmed cases ( C(t) ) whose dynamics are 

d{
(7.1) 

T confirmed cases” while death compartment is fitted to the cumulative 

” ntined, 59738 individuals were cumulative confirmed cases and 1113 

c 2] estimated that about 88,0 0 0 individuals were undetected exposed 

( 0 0 individuals were undetected asymptomatic, (A ) as of 07/10/2020. As 

N  set E(0) = 880 0 0 , A (0) = 830 0 0 , I(0) = 80 0 0 0 , H(0) = 7222 , R (0) = 

1 g ”lsqcurvefit” package by MATLAB. ”lsqcurvefit” package by MATLAB 

s at is, given input data tdata (which could be matrices or vectors) and 

t s), we find coefficients x that best fit the equation 

m

w e same size as ydata [41] . 
s the approximate solution for the S−equation of (4.3) with fracti

i (ϑ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

[
1 − ϑ 

ABC (ϑ) 
+ 

ϑ 

h ABC (ϑ )�(ϑ ) 

(
2 ht ϑ 

k +1 

ϑ 

− t ϑ+1 
k +1 

ϑ + 1 

− ht ϑ 
k 

ϑ [
1 − ϑ 

ABC (ϑ) 
+ 

ϑ 

h ABC (ϑ )�(ϑ ) 

(
ht ϑ 

k +1 

ϑ 

− t ϑ+1 
k +1 

ϑ + 1 

+ 

t ϑ+1 
k 

ϑ + 1

imilarly, we obtain the the ABM scheme for the remaining state v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E(t k +1 ) = E(t k ) + G 2 (t k , E(t k ))	1 (ϑ) − G 2 (t k −1 , E(t k −1 ))	2 (ϑ) ,

A (t k +1 ) = A (t k ) + G 3 (t k , A (t k ))	1 (ϑ) − G 3 (t k −1 , A (t k −1 ))	2 (ϑ

I(t k +1 ) = I(t k ) + G 4 (t k , I(t k ))	1 (ϑ) − G 4 (t k −1 , I(t k −1 ))	2 (ϑ) ,

H(t k +1 ) = H(t k ) + G 5 (t k , H(t k ))	1 (ϑ) − G 5 (t k −1 , H(t k −1 ))	2 (ϑ

R (t k +1 ) = R (t k ) + G 6 (t k , R (t k ))	1 (ϑ) − G 6 (t k −1 , R (t k −1 ))	2 (ϑ

. Parameter estimation, numerical simulations and discussion 

.1. Parameter estimation 

In this section, our model is fitted for ϑ = 1 . We use the COVI

7/10/2020 through 31/12/2020 (86 days) which is publicly availab

o the classical model (3.3) two new compartments, namely, confirm

escribed by the following system of equations 

D t D = d 2 H, 

D t C = φ1 A + φ2 I. 

he confirmed cases compartment ( C) is fitted to the cumulative ”

death cases”. NCDC published that 7222 individuals were quara

umulative death cases as of 07/10/2020 ( Fig. 1 ). Adewole et al [2

E ) , 80,0 0 0 individuals were undetected symptomatic (I) and 83,0 

igeria is roughly a 20 0,0 0 0,0 0 0 population country, we therefore

20 0 0 0 , S(0) = 199 , 600 , 000 . Our simulation was carried out usin

olves nonlinear data-fitting problems in the least-square sense. Th

he observed output data ydata (which could be matrices or vector

in 

x 
‖ F (x, tdata ) − ydata ‖ 

2 
2 = min 

x 

∑ 

i 

(F (x, tdata i ) − ydata i ) 
2 , 

here F (x, tdata ) is a matrix-valued or vector-valued function of th
Fig. 1. (a) & (b) Data and fitted curves from 07/10/2020 through 31/12/2020. 

11 
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Fig. 2. (a) Susceptible individuals, (b) Exposed individuals, (c) Asymptomatic infectious individuals, (d) Symptomatic infectious individuals (e) Infectious individuals in isola- 

tion, (f) Recovered individuals. We take ρ = 0 and other parameter values as contained in Table 1 such that R 0 = 1 . 5128 . 

12 
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Table 1 

Parameter values. 

Parameter Description Value Reference Default Value 

� Recruitment rate of susceptible individuals N 0 μ

β Disease transmission rate 0 . 2129 − 0 . 2162 Data fitting 0.2145 

τ Transmissibility multiple 0 . 4251 − 0 . 4473 Data fitting 0.43620 

θ1 Incubation rate for exposed to become asymptomatic 1 
14 

− 1 
7 

day −1 [44,45] 1 
10 

θ2 Incubation rate for exposed to become symptomatic 1 
14 

− 1 
7 

day −1 [44,45] 1 
8 

φ1 Hospitalized rate of asymptomatic infected individuals 0 . 001331 − 0 . 001391 Data fitting 0.001361 

φ2 Hospitalized rate of symptomatic infected individuals 0 − 0 . 0 0 0 03380 Data fitting 4 . 975 × 10 −6 

σ Fraction of exposed population that become symptomatic 0 . 5725 − 0 . 6270 Data fitting 0.5997 

ϕ 1 Recovery rate of asymptomatic population 1 
14 

− 1 
3 

day −1 [42,47] 1 
9 

ϕ 2 Recovery rate of symptomatic population 1 
30 

− 1 
3 

day −1 [42,47] 1 
14 

ϕ 3 Recovery rate of hospitalized population 0 . 08013 − 0 . 08594 day −1 [22] 0.0815 

d 1 Disease induced death rate for the infected class 0 . 011 − 0 . 3 day −1 [43] 0.015 

d 2 Disease induced death rate for the hospitalized class 0 − 0 . 001779 Data fitting 0.0003629 

μ Natural death rate 0.01186 year −1 [46,48] 

ρ Efficacy of imposed control measures 0 < ρ < 1 

Fig. 3. Trajectory of disease classes when R 0 > 1 . We use the parameter values in 

Table 1 . 
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.2. Numerical simulations and discussion 

This section presents numerical simulations for our proposed 

ractional model (3.4) using the iterative solution scheme given by 

6.6) - (6.8) as well as the numerical values of the parameters speci- 

ed in Table 1 . We take the time range up to 400 units. The graph-

cal representations demonstrating the behaviour of the numeri- 

al solution for each of the system state variables S , E , A , I , H
nd R at various fractional orders, ϑ = 0 . 7 , 0 . 8 , 0 . 9 , 1 . 0 , are given

n Figs. 2 and 4 . For our simulations, we take N 0 = 10 0 , 0 0 0 , 0 0 0 ,

 0 = 0 . 96 N 0 , E 0 = 0 . 02 N 0 , A 0 = 0 . 01 N 0 , I 0 = 0 . 01 N 0 , H 0 = 0 . 0 0 01 N 0

nd R 0 = 0 . 0049 N 0 . 

Fig. 2 shows the trajectory of the state variables for different 

alues of the fractional index parameter (ϑ) . It can be seen that 

he value of ϑ has a significant effect on the dynamics of the 

isease. For example, when ϑ reduces from 1 to 0.9, the peak 

f the disease is lowered but the disease stays in the population 

or a longer time. In general, the peak of the disease transmission 

s lowered as the value of ϑ reduces however, the disease stays 

onger in the population with reduced value of ϑ . This is probably 

ue to the memory term involved in fractional differentiation. 

It can be seen in Fig. 3 that, irrespective of the value of the frac-

ional index parameter (ϑ) , the infected population (the exposed, 

he asymptomatic infectious, symptomatic infectious) approaches 

he disease-free equilibrium point even when R > 1 . However the 
0 

13 
nfected population first increases before tending to the disease- 

ree equilibrium. This suggests that after a certain percentage of 

he population is infected and recovered, the entire population has 

ndirect immunity. This is called herd immunity. 

.2.1. Reduction in transmission rate 

Measures such as the use of face mask, regular hand washing 

sing hand sanitizer, physical distancing etc. can lead to reduc- 

ion in transmission rate. Suppose 50% of the population is 80% 

ompliant to these measures (ie ρ = 0 . 4 ), then R 0 = 0 . 9077 . The

ffect of this on the dynamics of the disease is investigated and 

resented in Fig. 4 . The isolation compartment first increases be- 

ore it decreases. This is to accommodate individuals who are al- 

eady infected before the initiation of the control measure. Other 

nfected compartment (the exposed, the asymptomatic infectious, 

he symptomatic infectious) tend to the disease-free equilibrium. It 

an also be seen from Figs. 2 & 4 that the closer the value of ϑ to

ne the faster the state variables reach their equilibrium positions. 

his is probably due to the memory term involved in fractional dif- 

erentiation ie the memory of the disease has great influence on 

he control of the disease. 

.2.2. Contact tracing 

Contact tracing involves locating and quarantining individuals 

nfected with the disease. The parameters responsible for contact 

racing are φ1 and φ2 . Suppose the average period taken to de- 

ect an asymptomatic individual is 25 days while it takes 12.5 days 

o detect a symptomatic individual (ie φ1 = 0 . 04 , φ2 = 0 . 08 ), then

 0 = 0 . 8833 . The effect of this on the dynamics of the disease is

nvestigated and presented in Fig. 3 . Isolation compartment first 

ncreases greatly before it decreases irrespective of the fractional 

ndex parameter (ϑ) . This is because, with contact tracing, more 

eople are gathered into isolation centers. Other infected compart- 

ents tend to the disease-free equilibrium. It can also be seen 

rom Figs. 2, 4 & 5 that the closer the value of ϑ to one the faster

he state variables reach their equilibrium positions. This is prob- 

bly due to the memory term involved in fractional differentiation 

e the memory of the disease has great influence on the control of 

he disease. 

It can be seen in Figs. 4 & 5 that, irrespective of the value of

he fractional index parameter (ϑ) , the infected population (the 

xposed, the asymptomatic infectious, symptomatic infectious) ap- 

roaches the disease-free equilibrium point whenever R 0 < 1 . In 

ther words, the condition R 0 < 1 is sufficient for the disease con- 

rol irrespective of the order of differentiation. 
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Fig. 4. Investigating the contribution of fractional index parameter (ϑ) on the disease dynamics with reduction in transmission rate as control measure (a) Susceptible 

individuals, (b) Exposed individuals, (c) Asymptomatic infectious individuals, (d) Symptomatic infectious individuals (e) Infectious individuals in isolation, (f) Recovered 

individuals. We use the parameter values in Table 1 and take ρ = 0 . 4 . With these values, R 0 = 0 . 9077 . 

14 
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Fig. 5. Investigating the contribution of fractional index parameter (ϑ) on the disease dynamics taking contact tracing as control measure (a) Susceptible individuals, (b) 

Exposed individuals, (c) Asymptomatic infectious individuals, (d) Symptomatic infectious individuals (e) Infectious individuals in isolation, (f) Recovered individuals. We use 

the parameter values in Table 1 and take φ1 = 0 . 04 , φ2 = 0 . 08 . With these values, R 0 = 0 . 8833 . 
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. Conclusion 

We extended a basic COVID-19 model to a fractional or- 

er model with the fractional derivative taken in the Atangana- 

aleanu-Caputo sense. The model incorporate the dynamics of sus- 
15 
eptible, exposed, asymptomatic, infectious, isolated and recovered 

ndividuals. Existence and uniqueness of solutions were established 

or the fractional order model via a fixed point argument while 

he stability of the model solutions was established in the sense 

f Ulam-Hyers. As part of the motivation, the influence of the dis- 
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[  
inct values of the fractional order parameter on the dynamics of 

he system state variables of fractional order model was also inves- 

igated. The model is calibrated using COVID-19 data provided by 

igeria Centre for Disease Control (NCDC) and important param- 

ters were estimated. Furthermore, the two-step Adams-Bashforth 

ethod incorporating the noninteger order parameter is used for 

he numerical simulations of the model. 

The obtained numerical simulations show that the value of frac- 

ional index parameter has effect on the dynamics of the dis- 

ase status of individuals. More precisely, the peak of the disease 

ransmission is lowered as the value of the fractional index ϑ re- 

uces. The graphs also indicate that the equilibrium solution is sta- 

le. Moreover, the equilibrium solution is approached faster as the 

alue of ϑ moves closer to 1. The simulations also demonstrate 

hat the infected population (that is, the exposed, asymptomatic 

nd symptomatic individuals) shrinks with time when the basic 

eproduction number is less than unity, irrespective of the value 

f ϑ . It should also be noted that contact tracing placed a heavy 

urden on health care facilities irrespective of the order of differ- 

ntiation. 
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