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Personalized visual encoding model construction
with small data

Zijin Gu® !, Keith Jamison?, Mert Sabuncu'? & Amy Kuceyeski@® 2>

Quantifying population heterogeneity in brain stimuli-response mapping may allow insight
into variability in bottom-up neural systems that can in turn be related to individual's behavior
or pathological state. Encoding models that predict brain responses to stimuli are one way to
capture this relationship. However, they generally need a large amount of fMRI data to
achieve optimal accuracy. Here, we propose an ensemble approach to create encoding
models for novel individuals with relatively little data by modeling each subject’s predicted
response vector as a linear combination of the other subjects’ predicted response vectors.
We show that these ensemble encoding models trained with hundreds of image-response
pairs, achieve accuracy not different from models trained on 20,000 image-response pairs.
Importantly, the ensemble encoding models preserve patterns of inter-individual differences
in the image-response relationship. We also show the proposed approach is robust against
domain shift by validating on data with a different scanner and experimental setup. Addi-
tionally, we show that the ensemble encoding models are able to discover the inter-individual
differences in various face areas' responses to images of animal vs human faces using a
recently developed NeuroGen framework. Our approach shows the potential to use existing
densely-sampled data, i.e. large amounts of data collected from a single individual, to effi-
ciently create accurate, personalized encoding models and, subsequently, personalized
optimal synthetic images for new individuals scanned under different experimental
conditions.
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responses to images have gained popularity in human

studies with the wide-spread adoption of non-invasive
functional MRI (fMRI) techniques! and recent advances in large-
scale publicly available fMRI datasets of human responses to
visual stimuli®>. These neuroscientific resources have become
available at a time of ubiquitous deep learning applications in
every aspect of science and technology, but particularly in image
analysis>~8. Recent work has revealed some agreement between
image representations in biological and artificial neural networks
(ANNs)°. This is somewhat unsurprising, as ANNs were origin-
ally inspired by the principles of how the feed-forward cortical
network processes visual information!®!l. Understanding how
the human brain, unarguably the most efficient and adaptable
learning system in the known universe, processes incoming
information will no doubt lead to breakthroughs in neuroscience
and artificial intelligence alike.

The functions and response properties of the visual cortex, with
its central evolutionary role and ease of experimental perturba-
tion, have been extensively studied!2-10. Regions that respond to
evolutionarily important content, like faces, bodies and places are
relatively consistent across different individuals in their existence
and spatial locations within the brain. Other regions, like those
that respond to evolutionarily later content, like text/words, are
more variable across individuals and are more experience
dependent!”. Recent work, including ours, has focused on
investigating inter-individual differences in how brains process
incoming stimuli'®. One paper, in particular, revealed variations
in neural and behavioral responses to auditory stimuli that are
related to an individual’s level of paranoial® while another
showed that measuring brain responses to a video of naturalistic
stimuli could amplify inter-individual variability in behaviorally
relevant networks compared to task-free paradigms20.

There are an increasing number of densely-sampled fMRI
datasets, i.e. large amounts of data collected from a single indi-
vidual, which enable both predicting brain response from natural
images and, in turn, identifying natural images from brain activity
patterns221:22, Accurate individual-level voxel-wise and region-
wise encoding models can be created using thousands of training
data provided by these datasets?>-2°. However, due to the
excessive resources required to obtain large data from one indi-
vidual, such experiments are usually restricted to less than
10 subjects and thus far cannot be used to predict a novel indi-
vidual’s responses. Population-level encoding models can be
created by averaging densely-sampled individual encoding mod-
els or trained using pooled data from all subjects;>2¢ however,
individual differences will be obscured using this approach.
Compared to the number of publications that present encoding
models built with large-scale fMRI data, work that utilizes small
data to build encoding models is relatively limited. In one such
example, Wen et al. (2018) used voxel-wise encoding models
trained with 10 h of movie watching fMRI data as a prior to guide
the estimation of the encoding model parameters for a novel
individual for which they used a relatively small amount of movie
watching data. There, they found that the encoding models
trained in this way can achieve similar prediction accuracy as the
10 h trained models for that particular individual?’. While useful,
this work did not examine whether or not the pattern of inter-
individual responses in the resulting encoding models was pre-
served. There is a clear need for a tool that can use previously
collected densely-sampled data to efficiently create encoding
models using small amounts of data in novel individuals, while
preserving the uniqueness of that individual’s brain responses to
external stimuli.

In this work, we create and assess the accuracy of an ensemble
encoding approach that uses existing individual encoding models

N eural encoding models of vision that approximate brain

pretrained with densely-sampled data to predict brain responses
to visual stimuli in novel individuals. We quantify the specific
number of image-response pairs that needs to be collected in the
prospective individual to train a model and obtain accuracy
similar to a densely-trained encoding model. Besides good
accuracy, we also aim to make the model personalized, i..
demonstrate the model’s ability to preserve the inter-individual
differences of measured responses. Most importantly for practical
reasons, we quantified the accuracy of our ensemble encoding
model when applied to novel individuals undergoing several
domain shifts in the data and validated that this modeling
approach could be used to efficiently and accurately create per-
sonalized encoding models. Finally, we demonstrated one
potential application of the ensemble encoding models using a
previously established NeuroGen framework to discover the
inter-individual differences in several face area responses to ani-
mals and humans!8, This shows the ensemble encoding models
may be used to create images optimized to achieve maximal brain
responses in a specific person in prospective experiments
designed to explore inter-individual differences in visual
processing.

Results

The analysis was performed using two different datasets - the
Natural Scenes Dataset (NSD) and the NeuroGen dataset (see
“Materials and methods” for details). In short, the NSD dataset
consists of ~24K pairs of images and corresponding brain
responses from 8 individuals (6 female, age 19-32 years) who
underwent 30-40 fMRIs while viewing natural scenes. The Neu-
roGen dataset consists of data from 6 individuals (5 female, age
19-25 years) who underwent two fMRI scans while viewing 800
images total. Both sets of data were used to train various encoding
models that predict the region-level brain responses to an image,
see “Materials and methods” for details. For the 8 NSD individuals,
we created five different encoding models for each of four brain
regions, including an early visual area - ventral V1 (V1v), and three
late visual regions - fusiform face area 1 (FFA1), extrastriate body
area (EBA) and parahippocampal place area (PPA), shown in
Supplementary Fig. la. The five encoding models are (1)
individual-20K model, which has the model architecture shown in
Fig. 1a and is trained using all available data for a given individual,
i.e. 20-24K image-brain response pairs, (2) scratch model, which
shares the same architecture as the individual-20K model but is
trained on only a subset of the available training data, i.e. 10 to 800
image-brain response pairs, (3) finetuned model, which is identical
to the scratch model but the model weights of the linear readout
were initialized using the average of the individual-20K model
weights from the 7 other NSD individuals, (4) linear ensemble,
which fits a linear model to predict the 8th NSD individual’s
measured responses from the 7 other individual-20K models’
predictions, as shown in Figs. 1b and 5) average ensemble, which
predicts the 8th NSD individual’s responses as the average of the
other 7 NSD individual-20K models’ predictions. We consider the
individual-20K models to be the gold standard reference model
when assessing model performance for the NSD dataset. As there is
no large-scale data available for the NeuroGen individuals, we
created only the scratch, finetuned, linear ensemble and average
ensemble encoding models. The scratch models for NeuroGen
individuals were trained using only NeuroGen data, while the latter
three were based on the 8 NSD individual-20K models and are thus
considered to be out-of-distribution. Models were evaluated in two
ways: (1) prediction accuracy calculated using Pearson correlation
between the predicted activations and the measured activations
from fMRI data and (2) prediction consistency calculated by the
Pearson correlation between the inter-subject correlation (ISC) of
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Fig. 1 Encoding model and ensemble model architecture. a The encoding model architecture. A feature extractor adopted from ResNet-508 extracts
features from the input image and a linear readout maps the extracted features to the responses for a specific brain region. b The ensemble model
architecture. A group of n pretrained encoding models (where n=7 or 8) are used to obtain a set of predicted activations, which are combined via a linear
model fitted via ordinary least squares to optimally predict the query subject’s regional brain response.

the predicted activations (i.e., the correlation between the predic-
tions of each pair of subjects) and the ISC of measured activations.
The latter measure quantifies the capability of the model to pre-
serve inter-individual differences in brain responses. We note that
while most encoding models in the literature use fixed, pre-trained
feature extractors, we take an approach of fine-tuning the feature
extractor (starting from the fixed, pre-trained weights) in order to
achieve a more accurate encoding model (see Supplemental Fig. 4).
This approach may change the interpretation of the model, but
model inference was not the aim of this work—rather it was to
provide a way to achieve the most accurate encoding models for a
prospective individual using small amounts of data. An exhaustive
comparison of the feature extractors of the encoding models used
here to neural representations will be the object of future work.

Validation of the individual-20K models. Individual-20K model
accuracies for regions FFA1, EBA, PPA and Vlv for all 8 NSD
subjects are shown in Supplementary Fig. 1b. Generally, we
obtain good prediction accuracy, as measured via Pearson cor-
relation between predicted and true brain activity in the hold-out
set of test images, across all subjects for all regions. The mean
accuracy for FFALI is 0.531 with standard deviation (SD) 0.087;
for EBA, the mean accuracy is 0.463 with SD 0.091; for PPA, the
mean accuracy is 0.621 with SD 0.078; and for V1v, the mean
accuracy is 0.608 and SD is 0.059. Supplementary Fig. 1c shows
the top 10 images in the test set that have the highest predicted
activation for each of the 4 regions for subject 1 (S1, first row) and
subject 2 (S2, second row); subjects 3 through 8 are shown in
Supplementary Fig. 2). We observe that the 10 images with
highest predicted activity largely reflect the expected properties
associated with activation in these regions. For example, almost
all top images for FFA1 are human or animal faces; top images for
EBA are people engaging in various sports; top images for PPA
are all indoor scenes; and top images for V1v contain an abun-
dance of texture and color. Although there are some common top
images across subjects, there is also quite a bit of variability,

which supports the notion of individual differences in response
patterns.

Comparison of encoding model accuracies in the NSD dataset.
The scratch, finetuned, linear ensemble and average ensemble
encoding models’ accuracies across the 8 NSD individuals for
varied training data sizes are provided in Fig. 2. Each boxplot
illustrates the distribution of accuracy values over the 8 indivi-
duals in the NSD dataset. For comparison, the individual-20K
accuracy is provided via the purple boxplot, after the break in the
x-axis required to indicate the large size of the individuals’ full set
of image-response pairs. As the average ensemble model doesn’t
require any training data from the individual in question, its
accuracy is indicated via the orange boxplot on the right.
Unsurprisingly, the accuracies for the scratch, finetuned, and
linear ensemble models increase with training data size.

There is an obvious accuracy gap between finetuned models
and scratch models, indicating that model performance benefits
from the initialization at the group average readout. Interestingly,
both the linear ensemble and average ensemble models
consistently outperform the scratch and finetuned models. In
fact, when there are more than 100 image-response pairs available
for training, there are no significant differences between the linear
ensemble models and individual-20K models for any region
(Wilcoxon tests with p > 0.05).

To further explore the differences in each of the models, we
performed a detailed comparison between the encoding models
trained on a dataset of 300 image-response pairs, across-subject
noise ceiling (NC) and within-subject NC, see Fig. 3a-d. The
across-subject NC 1is calculated as the Pearson correlation
between subject’s measured responses and the across-subject
average of the other subjects’ measured responses in the test set,
while the within-subject NC 1is calculated as the Pearson
correlation between the average of two measured responses for
a subject and their third measured response in the test set. A
training size of 300 was chosen because it is reasonable amount of
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Fig. 2 Encoding model accuracies for FFA1, EBA, PPA and V1v regions, by the size of the training dataset (x-axis). a-d Boxplots indicate encoding model
test accuracy across 8 NSD subjects for the scratch (blue), finetuned (green) and linear ensemble (red) models as training size increases from 10 to 800
image-response pairs. Individual-20K model accuracy is illustrated via the purple boxplot (training size of 20K) and the average ensemble model accuracy
is illustrated via the orange boxplot (training size of 0). Asterisks, colored according to the model in question, indicate a significant difference (Wilcoxon
tests, p < 0.05) in those models from the gold-standard individual-20K models.

images that one participant can view during a 60 min MRI scan
and the linear ensemble and scratch model accuracies largely
plateau around a training size of 300. There were no significant
differences in accuracy between the individual-20K and ensemble
models (Friedman’s test with FDR correction p>0.05). The
scratch models trained using 300 image-response pairs always
had significantly lower accuracy for all regions compared to
individual-20K models, and in most cases also had significantly
lower accuracy than ensemble models. The finetuned models
performed better than scratch models but were still significantly
lower than average ensemble models for all regions. The across-
subject NC, higher than the within-individual NC due to a better
signal-to-noise ratio (SNR) of the measurements, behaved as a
upper bound for the prediction accuracy and was always
significantly higher than scratch and finetuned models. The
individual-20K model only showed significantly lower accuracies
than the across-subject NC upper bound for one region (EBA);
similarly, the ensemble models also showed significantly lower
accuracies compared to this upper bound only in PPA. The
within-subject NC was always significantly lower than the
individual-20K and the ensemble model accuracies. We also
compared linear ensemble models with deep-ensembled indivi-
dual-20K models and found similar performances (see Supple-
mentary Fig. 8). These results demonstrate the ability of the linear
ensemble model (trained on only a few hundred image-response
pairs from the novel individual) and average ensemble model
(trained on no data from the novel individual) perform as well as

models trained on very large data (~20K) in predicting the
regional brain responses of the novel individual to a given image.

Comparison of encoding model accuracies in the out-of-
distribution NeuroGen dataset. We assessed the performance of
the scratch, finetuned, linear ensemble, average ensemble
encoding models, and the across- and within-subject NCs using
the NeuroGen dataset. The within-subject NC for NeuroGen
subjects is calculated as the Pearson correlation between two
measured responses in the test set. Importantly, the two NC
metrics were not significantly different from the encoding model
accuracies, indicating that overall the encoding model accuracy is
relatively good. This experiment introduces several domain shifts,
including the modeling of different individuals (not NSD indi-
viduals), (some) different visual stimuli, different MRI scanner/
strength (NSD having 7T vs NeuroGen having 3T) and fMRI
parameters (TR, voxel size etc). Thus, we did anticipate a drop in
the NeuroGen individuals” prediction accuracies compared to the
within-distribution NSD individuals’ accuracies for the fine-
tuned, linear and average ensemble models. Despite experiencing
some of this anticipated drop, overall the prediction accuracies do
remain at a good level, see Fig. 3e-h. For EBA and PPA, both
ensemble models both had significantly higher accuracy than
scratch models; for PPA the ensemble models also outperformed
the finetuned models (Friedman’s test with FDR correction
p > 0.05). No significant differences were found between the linear
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Fig. 3 Encoding model prediction accuracies. Accuracies for the 8 NSD individuals a FFA1, b EBA, ¢ PPA, d V1v, and 6 NeuroGen subjects e FFAT, f EBA,
g PPA, h Vv, measured via Pearson’s correlation between predicted and observed regional activity across a set of test images for 4 regions - FFAT, EBA,
PPA and V1v. Individual-20K models are illustrated in purple, scratch models in blue, finetuned in green, linear ensemble in orange and average ensemble in
yellow. Scratch, finetuned and linear ensemble models were trained with a dataset of 300 image-response pairs from the novel subject in question. The
across-subject noise ceiling (NC), representing the correlation between the average measured test-set responses of the other subjects with the measured
test-set responses of the subject in question, and within-subject NC, representing the correlation of the individual's measured image responses, are shown
in black and brown, respectively. Black bars at the top of the panels indicate significant differences in accuracy across the indicated pairs of models

(Friedman'’s test with FDR corrected p < 0.05). The correspondence between the number of asterisks and the p-value: * - p<0.05, ** - p<0.01, ***

- p<0.001, **** -p <0.0001.

and average ensemble models’ performances for any region. The
ensemble models did not have significantly lower accuracy
compared to either NC for any model (and in fact had sig-
nificantly higher accuracy compared to the within-subject NC for
EBA), while scratch and finetuned models had significantly lower
accuracies than the across-subject NC in PPA. In addition, since
NeuroGen dataset contains both natural and synthetic images
while the individual-20K models were trained only on natural
images, we also examined the prediction accuracy of the natural
and synthetic images separately, and there were no different from
each other (Welch’s t test, two-tailed p=0.9599). Finally, we
verified that the features of the images with the highest predicted
activity from the NeuroGen’s encoding models agreed with
expectations, e.g. top FFA1 images were faces, see Supplementary
Fig. 3.

Preservation of inter-individual differences of brain responses
within the encoding models. An encoding model should not
only be accurate, but it should also preserve inter-individual

differences in response patterns as much as possible. To illustrate
our models’ abilities to preserve inter-individual differences, we
constructed and calculated the prediction consistency, which is the
correlation of the ISC of measured activations (ISC-measure-
ment) and the ISC of predicted activations (ISC-prediction) over
the images in the test set. This metric of prediction consistency
quantifies how well the encoding model predictions preserve the
measured between-subjects differences in brain responses. The
average ensemble model does not preserve inter-individual dif-
ferences in predictions and thus can serve as a lower-bound for
comparing model consistency. Since the ISCs of the average
ensemble model’s predicted activities will all be 1 or near 1 (with
leave-one-out training), the prediction consistency of the average
ensemble models is ~0 or undefined. The ISC-prediction and
ISC-measurement were calculated for each pair of subjects within
the two datasets (NSD and NeuroGen), for each of the four brain
regions of interest. We first demonstrated that there are reliable
inter-individual differences in brain responses, evidenced by the
variability of the top images for NSD subjects shown in Supple-
mentary Fig. 2, and the low ISC-measurement values in Fig. 4
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Fig. 4 Preservation of inter-individual differences within the encoding models. a Inter-subject correlations (ISC) are computed as the Pearson correlation
between every pair of subjects’ predicted (ISC-prediction) or measured (ISC-measurement) brain responses, calculated for each of four brain regions
separately. The scatter plots show prediction consistency, which is the relationship between the ISC-measurement and ISC-prediction values across every
pair of subjects for the images in the test set; the same region’s measured/predicted activity is used for both subjects. The number of points in each scatter
plot are therefore the number of brain regions (4) * number of pairs of individuals (for NSD this is (7 x 8)/2 = 23 and for NeuroGen this is (6 x 5)/2 =15).
The scratch, finetuned, and linear ensemble models here were created using a training dataset of 300 image-response pairs for NSD subjects.

b-e represent the NSD subjects while f-h represent the NeuroGen subjects. Individual-20K models are not available for the NeuroGen individuals. The
predicted responses have better SNR than the measured responses (due to the noise in the fMRI responses that is smoothed in the encoding models), thus
note the x and y-axis ranges are quite different. All p values (calculated via permutation testing) are one-tailed and Bonferroni corrected for multiple

comparisons.

which were shown to be pretty robust in Supplementary Fig. 9.
Unsurprisingly, we observed that the NSD dataset’s individual-
20K model has high prediction consistency, as this model’s pre-
dictions best preserve the observed inter-individual differences in
brain responses (see Fig. 4b, Pearson’s r = 0.6071, p = 0). Despite
the overall lower accuracies of the scratch and finetuned models,
they do preserve a good amount of inter-individual differences
(Fig. 4c, Pearson’s r=0.5213, p=0, and Fig. 4d, Pearson’s
r=0.4533, p=0). The linear ensemble model also has good
preservation of inter-individual differences (Pearson’s r = 0.3382,
p =0.0007), see Fig. 4e. When evaluating the NeuroGen dataset,

all three models have similar prediction consistencies (Pearson’s
r=10.399-0.4199, p = 0.0014-0.0049). These results demonstrate
that, out of the four models using small data, the linear ensemble
model has the best balance of accuracy and preservation of inter-
individual differences. Importantly, it also achieves accuracy
similar to the individual-20K model using a training dataset that
is only 1.5% the size of the larger model’s training data.

We assessed the reliability of the prediction consistency and
ISC-measurement metrics by randomly subsampling the data
1000 times and recalculating the ISC-measurement and the
individual-20K model’s prediction consistency. We indeed see
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robustness of the ISC-measurement, with the relative errors being
mostly within 3% of their original values, as well as the prediction
consistency which varied within only 10% of the original value
(see Supplementary Fig. 9). We also investigated how varying the
number of individuals used in the linear ensemble model affected
prediction accuracy and consistency, see Supplementary Fig. 5.
We see that there is an increase in accuracy from using one to two
individuals’ models in the linear ensemble for the NSD subjects,
but additional individuals beyond two do not further increase
accuracy. For NeuroGen, linear ensemble model accuracy does
not seem to increase with increasing number of individuals’
models. However, for both datasets, the prediction consistency, or
the preservation of inter-individual differences in the predictions,
increases with the number of individuals’ models used in the
linear ensemble. This indicates the importance of using at least
several individuals in a linear ensemble in order to maintain
inter-individual differences in a linear ensemble approach.
Supplementary Fig. 6 further visualizes the linear ensemble
model coefficients across all subjects and brain regions; we can
see that there is wide variability in the weights for the linear
ensemble models over the individual and brain region in
question.

Application: linear ensemble models capture individual
regional preferences when integrated into the NeuroGen
algorithm. We used our previously established NeuroGen fra-
mework to demonstrate an application of the proposed linear
ensemble encoding model!8. NeuroGen, originally composed of
an individual-20K encoding model and a image generator (see
Fig. 5a), synthesizes images that achieve a desired target activity
in a specific region or regions of interest. It was previously used to
uncover inter-individual and inter-regional differences in animal/
dog face vs human face preferences, which was validated with
measured preferences in the fMRI datal8. We set out to test if the
NeuroGen framework can be equally as useful using a linear
ensemble encoding model trained with small data. To that end,
within NeuroGen we replaced the individual-20K model with the
linear ensemble model and produced the top 10 synthetic images
that maximize activation for each of three face regions: OFA,
FFA1 and FFA2, see Fig. 5b—d (more examples are provided in
Supplementary Fig. 7). First, we qualitatively observed that the
synthetic images contain animal or dog faces as expected. Note:
each of the top 10 images uses a different one-hot encoded class
vector but some subjects/regions top 10 image sets may have the
same class vector leading to similar-looking images across sub-
jects/regions top 10 image sets (for example, the person wearing a
red wig). Additionally, BigGAN has a truncation parameter that
allows generation of sets of images with varying balance of variety
and fidelity. If the truncation parameter is large, the images will
have more variety but look less realistic than if the truncation
parameter is small. Our images were generated using truncation
parameter 0.1 in order to enforce more realistic images, of course
at the cost of decreased variability within a category. Next, we
correlated (1) the t-statistic of regional observed activity (from the
fMRI data) in response to images of animal faces vs human faces
and (2) the animal face vs human face ratio in the top 10 syn-
thetic images, see Fig. 5e. We observed a significant positive
correlation between the two values (Pearson’s r = 0.5443, two-
tailed p = 0.0195), indicating that the NeuroGen framework using
the linear ensemble encoding model still preserves inter-
individual and inter-regional measured differences in animal vs
human preference. We tested the reliability of this result by
randomly sub-sampling 1000 splits of the NeuroGen data and re-
calculating the animal-person t-statistic and its correlation with
the top 10 synthetic images. We found it to be relatively robust

with a coefficient of variation of +12.3%. The observed correla-
tions are also similar when using more synthetic images, e.g. top
100, to calculate the synthetic image ratio, again strengthening the
point that individual/regional differences can be captured even in
the top 10 synthetic images. Of course, when using the average
ensemble encoding model there are no meaningful results as the
top 10 synthetic images (and ratios) are identical for every
NeuroGen subject. These results demonstrate the relatively robust
nature of the NeuroGen framework for discovering inter-
individual differences in neural representations of visual stimuli
in novel individuals. Validating the NeuroGen framework using
an encoding model trained with small data from a novel indivi-
dual demonstrates how it may be leveraged for prospective
experimental design.

Discussion

Here we propose a visual encoding model framework that linearly
combines outputs from several individuals’ existing encoding
models (trained on densely-sampled NSD data) to predict a novel
individual’s brain responses to a given image. We show that the
proposed linear ensemble model, trained using a relatively small
number of image-response pairs for the novel individual (~ 300,
roughly equivalent to 40 min of fMRI), achieves accuracy similar
to encoding models trained on a very large number of image-
response pairs from that individual (~ 20K, roughly 35-40h of
fMRI). Importantly, the linear ensemble model predictions also
preserve a pattern of inter-individual differences in measured
responses that was on par with what is observed using the
encoding models trained on very large data. We also validated the
accuracy of the linear ensemble model on prospectively collected,
out-of-sample data; despite several domain shifts we still obtained
good accuracy. Using the linear ensemble encoding models within
NeuroGen, a synthetic image generator previously proposed as a
tool for discovery neuroscience, we reproduced the measured
individual/regional differences in animal face vs human face
preference for three face regions. These results suggest that the
linear ensemble model can be used to efficiently create accurate,
personalized encoding models able to be used within our Neu-
roGen framework to optimize synthetic images for prospective
human vision experiments.

Neural encoding and decoding models have long been used to
characterize and predict how sensory, cognitive or motor infor-
mation is spatially represented in the brain!2%2%. Recent work
has revealed that understanding the inter-individual differences
in responses to naturalistic stimuli may shed light on behavioral
or pathological variability in humans!®2030 and monkeys!.
Having high-quality and large-scale stimuli-response data is cri-
tical to building accurate and useful encoding or decoding
models, but due to the massive cost in time and resources there
are only a few such datasets available222, Retrospective analyses
of these datasets are constrained by the original parameters of the
experiment and the characteristics of the stimuli presented within
them. If it is not possible to test a specific hypothesis with the
existing data, scientists will need to collect new data on novel
individuals. Our approach proposed here aims to bootstrap
existing large-scale datasets to improve the starting point of these
prospective experiments by providing a more accurate baseline
visual encoding model that also preserves inter-individual dif-
ferences in response patterns. Furthermore, we provide quanti-
tatively derived guidelines for how many images are needed to
achieve accuracy similar to encoding models trained on very
large-scale data in Fig. 2, and the effects of varying the number of
individuals’ pretrained models used in the linear ensemble model
in Supplementary Fig. 5. For the latter analysis, we conjecture
that, since we are using the higher SNR individual-20K encoding
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identified through optimization Different synthetic images may have different class vectors. The output image is then fed into the encoding model to obtain
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scatter plot indicating for each of the 3 face regions for each of the six NeuroGen individuals, the observed t-statistic of OFA, FFAT, and FFA2's responses to
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different face region.

model predictions in the linear ensemble (and not the lower SNR
measured fMRI responses), that even using one individual’s
encoding model gives us the highest prediction accuracy we can
get (without the prediction consistency). Thus, adding more
individuals’ encoding models to the linear ensemble does not
increase model accuracy but does increase prediction consistency,
i.e. better preserves the inter-individual relationship of responses
across individuals. Relatedly, we found that the linear/average
ensemble models perform as well as the individual-20k models
for the NSD data, which could either be explained by the
individual-20K overfitting (although not likely from our assess-
ments of model fit) or the fact that all three models are
approaching the ceiling of possible accuracy determined by the
relatively low SNR of the fMRI data.

Linear models, with their simplicity and desirable statistical
properties, have been a fundamental statistical/machine learning
approach3? with many applications in network, cognitive, visual
neuroscience?333:34, The gold-standard validation of statistical or

machine learning models is demonstrating their accuracy is
robust to domain or distribution shift of the underlying data3>.
Here, our domain shift happens in three major ways—first is the
data acquisition (scanner, scanner strength, repetition time, voxel
size, etc.), second is the individuals undergoing the experiments
were not identical and the third was the type of images shown to
the individuals during the scan (natural versus natural and syn-
thetic). Despite these several major shifts in data characteristics,
the linear ensemble models are still able to obtain a good level of
accuracy that outperforms scratch trained or finetuned models.
The drop in accuracy from the NSD dataset was not identical for
each region, some regions, e.g. EBA, appeared more robust to
domain shift than others. Future work could explore using non-
linear approaches to ensemble modeling that may allow better
preservation of accuracy across varied experimental conditions.
Prediction accuracy is the most common metric when evaluating
neural encoding models. However, few works have investigated
how the models preserve inter-individual differences. For example,
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a model only predicting the population average (or just using
responses from one other individual) may have high prediction
accuracy, however, these models do not preserve individuality of a
subject’s brain responses. This work focused on evaluating both
accuracy and individuality (here called consistency) with the aim to
create models that are both accurate and personalized. We gen-
erally found a trade-off between prediction accuracy and con-
sistency, which may explain why the linear ensemble models
(which maintain consistency) did not outperform the average
ensemble models (which do not maintain consistency). Across
individuals, consistency and model accuracy are somewhat
entwined. If a query subject’s responses are very similar to the
reference individuals’ responses (and thus have high ISC-
measurement and high ISC-prediction), the accuracy of the
ensemble model will also be high. On the other hand, if a query
subject’s responses are uncorrelated with the reference individuals,
the ISC-measurement and accuracy will be low but the ISC-
prediction will remain high (as it will be based on the reference
individual’s models that are all very similar to one another). This is
one consideration to make when interpreting the consistency
metric. However, they are clearly not entirely overlapping, as evi-
denced by two facts: that the average ensemble has similar accuracy
compared to the linear ensemble but undefined consistency and
Supplementary Fig. 5, which demonstrates that maximal linear
ensemble model accuracy is achieved with only 1 or 2 reference
subjects while model consistency continues to increase as more and
more individuals are added to the model.

Our previously developed NeuroGen framework!® was used to
generate synthetic images that were predicted by a given encoding
model to achieve a targeted pattern of activity in a specific brain
region, e.g., maximizing the activity in the FFA1. Unlike similar
frameworks developed for monkey or mouse models3©-38, it is
difficult to directly optimize stimuli for humans in real time while
they are undergoing fMRI. An achievable alternative may be to
fine-tune our linear ensemble model for a prospective individual
using image-response data collected at the first scan, which could
then be inserted into the NeuroGen framework to create perso-
nalized, optimized synthetic images shown to the same individual
at a second scan. In this scenario, if the linear ensemble encoding
model accuracy drops for synthetic images then the NeuroGen
framework will fail. In our current results, we didn’t find a sig-
nificant difference between the linear ensemble models’ predic-
tion accuracy for natural and synthetic images, which provides
essential evidence that the linear ensemble model accuracy is not
different between the natural and synthetic images and is thus an
essential part of prospective experiments utilizing NeuroGen.

Interestingly, we demonstrated that the inter-individual pre-
ference in face regions for animal versus human faces was suc-
cessfully replicated with the NeuroGen framework utilizing the
personalised linear-ensemble models for the prospective Neuro-
Gen individuals, despite the fact that the linear ensemble models
had somewhat lower accuracy compared to the NSD individuals.
This demonstrates the robustness of the NeuroGen framework to
drops in the accuracy of the encoding model used within, and
suggests that our previously identified inter-individual differences
in face area responses to images containing animal versus human
faces exists in novel individuals and can be quantified using the
top 10 images created by NeuroGen.

This work proposes and validates an ensemble framework that
uses previously collected, densely-sampled data to efficiently create
accurate, personalized encoding models and, subsequently, opti-
mized synthetic images for novel individuals via NeuroGen.
Importantly, we validate that the encoding models can be applied
in novel experimental conditions and that they did not have dif-
ferent accuracy for predicting responses to natural versus synthetic
images. Future work will use this framework to prospectively

investigate inter-individual differences in visual encoding and
create personalized synthetic images designed to achieve a targeted
pattern of brain activity within a specific individual.

Materials and methods

Data description

Natural Scenes Dataset. The individual encoding models were created using the
Natural Scenes Dataset (NSD)2. The informed consent for all subjects was obtained
by NSD. Our data usage was approved by NSD, and complies with all relevant
ethical regulations for work with human participants. NSD contains densely-
sampled fMRI data from eight participants (6 female, age 19-32 years). Each
subject viewed 9000-10,000 distinct color natural scenes with 2-3 repeats per scene
over the course of 30-40 7T MRI sessions (whole-brain gradient-echo EPI, 1.8 mm
iso-voxel and 1.6 s TR). The images that subjects viewed (3's on and 1s off) were
from the Microsoft Common Objects in Context (COCO) database?® with a square
crop resized to 8.4° x 8.4°. A set of 1000 images were shared across all subjects,
while the remaining images for each individual were mutually exclusive. Subjects
were asked to fixate centrally and perform a long-term continuous image recog-
nition task (inf-back) to encourage maintenance of attention.

The fMRI data were pre-processed to correct for slice time differences and head
motion using temporal interpolation and spatial interpolation. Then the single-trial
beta weights representing the voxel-wise response to the image presented was
estimated using a general linear model (GLM). There are three steps for the GLM:
the first is to estimate the voxel-specific hemodynamic response functions (HRFs);
the second is to apply the GLMdenoise technique?4! to the single-trial GLM
framework; and the third is to use an efficient ridge regression?? to regularize and
improve the accuracy of the beta weights, which represent activation in response to
the image. FreeSurfer was used to reconstruct the cortical surface, and both
volume- and surface-based versions of the voxel-wise response maps were created.
The functional localizer (fLoc) data was used to create contrast maps (voxel-wise
t-statistics) of responses to specific object categories, and region boundaries were
then manually drawn on inflated surface maps by identifying contiguous regions of
high contrast in the expected cortical location, and thresholding to include all
vertices with contrast > 0 within that boundary. Early visual ROIs were defined
manually using retinotopic mapping data on the cortical surface. Surface-defined
regions were projected back to fill in voxels within the gray matter ribbon. Region-
wise image responses were then calculated by averaging the voxel-wise beta
response maps over all voxels within a given region.

NeuroGen Dataset. To further prove the proposed encoding models are robust
against domain shift and translatable to novel individuals, we collected prospective
data we are calling the NeuroGen dataset. The study protocol is approved by an
ethical standards committee on human experimentation, and written informed
consent was obtained from all participants. The NeuroGen dataset contains data
from two MRI sessions about 4 months apart. During the first session, six indi-
viduals (5 female, age 19-25 years) underwent MRI, including an anatomical

T1 scan (0.9 mm iso-voxel), a functional category localizer to identify higher-order
visual region boundaries (as in the NSD acquisition), and, finally, fMRI while
viewing a set of 480 images. Two-hundred and forty of the images were selected
from NSD image training set, and 240 were synthetic images created by
NeuroGen!8, a generative framework that can create synthetic images designed to
achieve a specific desired brain activity pattern (see Fig. 5a). During the second
MRI session, the same six individuals underwent fMRI while viewing 336 images
(half natural and half synthetic). In the second session, the images varied across
individuals. The image viewing fMRI acquisition setup was replicated as closely as
possible to the NSD acquisition, i.e. the images were square cropped and resized to
8.4° x 8.4° and were presented for 3s on and 1 s off. Data were acquired on a GE
MR750 3T scanner. The fMRI scans had posterior oblique-axial slices oriented to
capture early visual areas and the ventral visual stream (gradient-echo EPI,

2.25 % 2.25 x 3.00 mm, 27 interleaved slices, TR = 1.45s, TE = 32 ms, session-
encoding in the A»P direction). EPI susceptibility distortion was estimated using
pairs of spin-echo scans with reversed session-encoding directions®3. Preprocessing
included slice-timing correction with upsampling to 1s TR, followed by a single-
step spatial interpolation combining motion, distortion, and resampling to 2 mm
isotropic voxels. GLMs were fitted identically as in the NSD description above.
Retinotopic regions were defined on NSD subjects, from which a probabilistic map
was created in surface-aligned fsaverage space. Probability maps for each ROI were
then binarized (>0) and projected to each NeuroGen subject’s surface and then
functional voxel space.

Encoding model architecture, building and quality assessment

Model architectures. Figure la illustrates the architecture of the individual-20K,
scratch and finetuned encoding models, which takes an input image and predicts a
particular visual region’s average response (the mean response over the voxels in
that region). The encoding model contains a feature extractor taken from ResNet-
508 which extracts both low and high level image features via convolutional blocks,
a global max-pooling layer and a linear readout layer which maps the features to
brain response. The image feature maps (shape 7 x 7 x 2048) are derived from the
final layer of the ResNet50 backbone. Since the weights of the feature extractor
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derived from pretraining on ImageNet were not fixed but instead finetuned using
the neural data, empirically we found that encoding models based on feature maps
derived from later layers had better accuracy (compared to earlier layers) for both
early visual areas and higher order regions. The model was built in PyTorch. We
initialized the feature extractor with ImageNet*4 pretrained weights for the indi-
vidual-20K, scratch and finetuned models. The linear readout was randomly
initialized for the individual-20K and the scratch models, while for the 8th NSD
subject’s finetuned model it was initialized with the average weights from the
individual-20K models across the remaining 7 NSD subjects and initialized with
the average across all 8 NSD subjects for each NeuroGen subject. During training,
the parameters in both the feature extractor and readout were updated by mini-
mizing the mean square error between the predicted responses and the measured
responses. The optimizer was AdamW and batch size was set to 32. Models were
trained until the correlation between the predicted responses and measured
responses in the validation set stopped increasing and demonstrated convergence.

Linear and average ensemble models. The framework for the linear ensemble model
is shown in Fig. 1b. This model predicts an individual’s response to image S using a
linear model applied to the predictions from the other subjects’ pretrained
individual-20K encoding models:

LE(S) = ﬁi,o +j§v, :Bij?j(s) (1)

where B, is the intercept for individual 7’s model, N;- indicates the set of indices
not including individual i, B; ; is the coefficient for the jth individual-large
encoding model in predicting individual 7’s responses, and r*(S) is the predicted
activation in response to image S for subject j’s individual-large encoding model.

For each NSD subject, the linear ensemble model was constructed using a leave-
one-out method where the other 7 NSD subjects’ pretrained individual-20K models
were used. For the NeuroGen subjects, all 8 NSD subjects’ pretrained individual-
20K models were used. The linear ensemble weights were fitted via ordinary least
squares using randomly selected samples (number equals to train size) from the
original 20K training set. The training size for NeuroGen models is on average 560.
The average ensemble model shares the same framework as linear ensemble but
there is no model fitting involved—it merely averages the predicted responses from
the individual-20K models from the other 7 NSD individuals (in the case the
individual is from the NSD dataset) or all 8 NSD individuals (in the case the
individual is from the NeuroGen dataset).

Model building: Training set. The training set for individual-20K models contains
8500 unique images (each shown 0-3x), corresponding to around 20,000 image-
response pairs for each subject. The training sets for the NSD encoding models
using small data, including the scratch, finetuned and linear ensemble models, were
random subsets of the complete set of images. For NeuroGen subjects, the training
set contains around 560 image-response pairs from the second MRI session. No
brain-responses to the same image were averaged—each datapoint in the training
set represented a single brain-response to a given image.

Model building: validation set. The validation set was identical for the same subject
across all model types. For each NSD subject, we selected 500 images from their set
of 9000 unique images that had at least two fMRI measurements. We averaged
brain response maps for images that were shown to the subject twice; if an image
was shown three times two of the corresponding brain responses were randomly
selected and averaged. This ensured the SNR properties of the brain response maps
would be consistent across images within a subject and across subjected within the
NSD dataset. For the NeuroGen subjects, we selected 86 images from the second
MRI session and obtained the average brain response of two image presentations,
as in the NSD dataset.

Model building: test set. The test set was identical for the same subject across all
model types. For each NSD subject, we selected the 766 images from the shared
1000 set of images that had at least 2 presentations per subject, over all subjects. We
then averaged the brain responses from two different viewings of that image. For
the NeuroGen subjects, the test set of brain responses corresponded to the 127
images from the first MRI session that were identical across all NeuroGen indi-
viduals and shown at least twice; the brain-response maps were again averaged over
the two presentations of the image.

Encoding model assessments. Models were assessed in two ways—prediction
accuracy and prediction consistency, i.e. preservation of inter-individual differ-
ences in brain responses. The model’s prediction accuracy was calculated as the
Pearson’s correlation between the predicted and the measured responses across the
test set of images. Wilcoxon tests were used to compare the prediction accuracy of
models with different training data sizes to the “gold-standard” individual-20K
models in Fig. 2. Friedman tests with FDR corrections for multiple comparisons
were used to assess significant differences in prediction accuracy between different
models in Fig. 3. A model’s ability to preserve individual differences in image
response patterns was assessed via prediction consistency, which is calculated as the
Pearson correlation of the ISC of the predicted responses, or correlation of the
predicted responses for every pair of individuals, and the ISC of the measured

responses within the test set of images. The second level p-values were calculated
using 10,000 random permutation tests.

Noise ceiling estimates. We calculated two types of noise ceilings (NC) with which to
compare our encoding models” prediction accuracies: across-subject NC and within-
subject NC. Across-subject NC is computed as the Pearson correlation between
subject’s measured responses and the average of the other subjects’ measured
responses across the test data set. Within-subject NC calculations are slightly different
across NSD and NeuroGen subjects. For NSD subjects, the within-subject NC is
calculated as the Pearson correlation between the average of two measured responses
and the third measured response. For NeuroGen subjects, the within-subject NC is
calculated as the Pearson correlation between two measured responses in the test set
as there are very few images that have three measured responses.

NeuroGen: activation optimized image synthesis. The NeuroGen framework,
illustrated in Fig. 5a, concatenates an image generator (BigGAN-deep?®) with an
encoding model to generate synthetic images predicted to optimally achieve a
specific regional response pattern (i.e. maximize the response in a single region)!8.
In our previous paper, synthetic images from NeuroGen with individual-large
models were not only having the region-preferred features, but also demonstrated
the ability to discover possible individual-level or regional-level preferences which
were not easily seen from the noisy fMRI data and the limited images shown to
subjects during fMRI. During optimal image generation, we first identified the top
optimal image classes by ordering the indices of the 1000 ImageNet classes based
on the average predicted activation of class-representative synthetic images gen-
erated from 100 random initializations. After that, the class information was one-
hot encoded into a class vector and fixed. The noise vector was sampled from a
truncated normal distribution, with a truncation parameter of 0.1 to have better
image reality. During the optimization, the gradient flows from the region’s
response back to the synthetic image and then to the noise vector. To see whether
NeuroGen combined with the ensemble models can replicate the previous finding
of inter-regional and inter-individual preferences of animal vs human faces in
various face areas, we generated the top 10 images for three face regions: OFA,
FFAL, and FFA2 using NeuroGen with the linear ensemble models as the encoder.
We then compared (via Pearson correlation) the ratio of animal vs human faces in
those top 10 images to each region’s t-statistic of the observed activity in response
to animal vs human faces.

Statistics and reproducibility. In Fig. 2, Wilcoxon matched-pairs signed rank test
was used to compare each model’s accuracy with the accuracy of gold standard
individual-20K model. In Fig. 3, Friedman’s test was used to compare each model’s
accuracy with every other model’s accuracy. FDR method of Benjamini and
Hochberg was used to correct for multiple comparisons. In Fig. 4, the one-tailed
p-values were calculated based on the permutation test and were Bonferroni cor-
rected. The number of pairs was 8 for all NSD related statistical tests and 6 for all
NeuroGen related statistical tests. Statistical differences were considered significant
if p <0.05. All p-values reported in the paper are two-tailed unless otherwise stated.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The Natural Scene Dataset is publicly available at http://naturalscenesdataset.org. The
NeuroGen Dataset will be made available upon reasonable request. The source data
behind Figs. 2-5 are provided in Supplementary Data 1-4.

Code availability

Code is available at https:/github.com/zijin-gu/linear-ensemble®’.
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