Skip to main content
. 2021 Jun 25;228:107242. doi: 10.1016/j.knosys.2021.107242

Table 3.

Details of hyperparameters used for the proposed CNN model.

Parameter name Value Description
Max features 20,000 Vocabulary size of the embedding layer.
Embedding dim 50 Embedding dimension.
Dropout 0.2 Dropout rate
Number of filters 250 Number of filters in the convolution layer.
Kernel size 3 Kernel size in the convolution layer.
Activation function Relu Activation function of the convolution layer
Dense 250 Number of neurons in the hidden layer.
Loss function Categorical cross entropy Loss function of the output layer.
Optimizer Adam Optimization algorithm of the model.