Table 3.
Details of hyperparameters used for the proposed CNN model.
| Parameter name | Value | Description |
|---|---|---|
| Max features | 20,000 | Vocabulary size of the embedding layer. |
| Embedding dim | 50 | Embedding dimension. |
| Dropout | 0.2 | Dropout rate |
| Number of filters | 250 | Number of filters in the convolution layer. |
| Kernel size | 3 | Kernel size in the convolution layer. |
| Activation function | Relu | Activation function of the convolution layer |
| Dense | 250 | Number of neurons in the hidden layer. |
| Loss function | Categorical cross entropy | Loss function of the output layer. |
| Optimizer | Adam | Optimization algorithm of the model. |