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A B S T R A C T   

The COVID-19 outbreak not only threatened global health, it has also –affected the energy markets around the 
world. This paper studies the impact of the pandemic on Ontario’s electricity market assessing the demand and 
supply balance over three distinct periods: pre-pandemic, start of the pandemic and during the period 
2020–2021. The paper also evaluates the contribution of work-from-home and other mandates in reducing GHG 
emission. Furthermore, the impact of such rare events is studied on load forecasting. Our analysis shows that 
although demand dropped by 12% during the beginning of pandemic, it started rising to levels higher than the 
previous years. Consequently, due to the changes in the daily load profile, primarily due to the changes in 
consumers’ behavior, the emissions declined significantly during the lockdown and increased afterwards. Finally, 
this paper provides a short-term Feed Forward Neural Network (FFNN) model to predict future demand. The 
model performance was evaluated during the three distinct periods and showed high accuracy even in the initial 
stages of the pandemic: MAPE of 3.21% pre-pandemic, 13.86% beginning of pandemic and 4.23% during 
pandemic.   

1. Introduction 

After the declaration of the 2019 Coronavirus pandemic as a con
cerning public health emergency by the World Health Organization, 
(2005), most governments around the world initiated rigorous measures 
to mitigate the spread of the virus. These restrictions resulted in schools 
and business closures, changes in public health policies, as well as 
mandating work from home. Such restrictions have caused drastic 
changes in the electricity sector, such as initial drop in the overall load, 
shifts of the peak demand, changes in the energy-related emissions, and 
uncertain demand that is more challenging to forecast. Therefore, un
derstanding the effects of the pandemic on electricity demand and 
supply and GHG emissions profiles, along with its impacts on load 
forecasting has gained importance. 

Previous research investigates the early stages of COVID-19 effects 
on the electricity sector in different countries, such as Canada (Abur
ayash and Dincer, 2020; Adeboye et al., 2020), U.S. (Barooah et al., 

2020), and India (Kentaka et al., 2020). However, they do not study the 
long-term impacts of such events to highlight the lessons learned. 
Ontario experienced a wide range of changes in the electricity demand 
patterns during 2020, as an emergency state was declared in March, 
followed by non-essential businesses closure restriction by the end of 
March, resulting in the reduction of the overall electricity demand by 
around 12% till the end of April 2020. On the other hand, due to initi
ation of work from home mandates, the residential electricity con
sumption increased by 14% between the hours 11 am to 7 pm, 
accompanied by a delayed morning and evening peak periods (IESO, 
2020). However, by the beginning of the summer 2020, this trend had 
changed despite the continuing existence of pandemic and related 
governmental and provincial mandates. Other literature also has 
assessed the environmental and energy-related Greenhouse gas emis
sions (GHG) impacts, which are presented in Jiang et al., (2021) and 
Adeboye et al. (2020). 

In order to check the demand forecast under rare situations such as 
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pandemic, a FFNN model is developed. The model was tested under 
three scenarios: before pandemic, at the beginning of pandemic, and 
during the pandemic. Authors in Alasali et al. (2021) have provided an 
analysis of the COVID-19 impacts on the electricity demand and load 
forecasting model. They have also provided methods to minimize the 
impacts on the forecast model. 

Therefore, the objective of this paper is to provide researchers, en
ergy stakeholders, and policymakers with an improved understanding of 
the pandemic implications on the electricity demand and supply, GHG 
emission, and load forecasting for the province of Ontario. The contri
butions of the paper are as follows:  

1. Analysis of the impacts of COVID-19 on Ontario’s electricity 
demand,  

2. Overview of Ontario’s electricity supply and demand changes during 
the pandemic,  

3. Quantifying the GHG emission reductions due to pandemic,  
4. An FFNN model to highlight the lessons learned from the impacts of 

COVID-19 on the electricity load forecast. 

The demand analysis and forecast modeling have been executed in 
Python 3.7.12., and the supply and emission study was done using R- 
Project 4.11. Both works can be provided upon request. 

The rest of the paper is organized as follow: section II studies the 
impacts of COVID-19 on the electricity demand on an annual, monthly, 
and daily basis, as well as the electricity supply implications. Section III 
studies the GHG emissions resulting from electricity use profile during 
the pandemic. Section IV illustrates the method used for the forecast 
model, including its selection and architecture and provides the evalu
ation of the forecast model prediction performance in three different 
phases (before the pandemic, during the early stage of the pandemic, 
and after the electricity demand recovery in the beginning of 2021). 
Finally, Section V presents the major conclusions and recommendations 
of the paper. 

2. Impacts of COVID-19 on demand & supply 

This section provides an overview of the changes in Ontario’s elec
tricity demand and supply during different stages of pandemic. The 
demand data between 2019 and 2020 was collected from the IESO data 
directory and used to investigate the impact of pandemic on Ontario’s 

energy consumption on monthly and daily basis. The electricity supply 
and emissions for the same range was provided by Energy Insight 
through their GridWatch application. 

2.1. Electricity demand impact analysis 

This section describes the changes in Ontario’s hourly electricity 
demand during the pandemic, adjusting for the potential effects of 
weather conditions. The features selected for the data are date, time, 
Ontario’s demand (MW) and temperature (Celsius) data for each hour of 
the day form the year 2019–2020. The obtained data, after checking for 
missing values, consists of 17544 observations. 

2.1.1. Annual comparison of demand 2019 vs 2020 
This section includes an overall comparison between the year 2019 

and 2020 electricity demand, including the interesting changes in the 
load profiles based on different clusters of months. Moreover, the mean 
hourly electricity load and the load duration curve of both years is 
analyzed. 

To give an overview of the changes in the hourly electricity demand 
in the year 2020 due to the pandemic, the demand data for both 2020 
and 2019 are plotted against each other as illustrated in Fig. 1. The 
weekdays are aligned for both years to create an accurate comparative 
analysis between weekdays and weekends. 

Fig. 1 compares Ontario’s electricity demand for the years 2019 and 
2020. As shown, the demand in the year 2020 has experienced different 
trend than 2019, which can be identified through 4 different intervals of 
time illustrated by the red vertical lines. For example, from the 3rd week 
of March after the essential business closure and until the 3rd week of 
May, the load dropped significantly compared to the load in 2019 as 
shown in part 2 Fig. 1. On the contrary, as shown in part 3, the load has 
unexpectedly experienced a high rise from the end of May until the 
beginning of September. Subsequently, the electricity demand in 2020 
started to follow approximately the same normal shape as 2019. These 
three classifications of the electricity demand are going explained in 
detail in the next section with a profile of the monthly demand. 

As shown in the first graph of Fig. 2, generally there are two common 
peaks throughout the day: morning and evening peaks, where the eve
ning peak is much higher than the morning one. Beside the overall drop 
in the 2020 peak load, the morning and evening peaks also shifted. For 
example, in 2020 morning peak occurs later in the day and evening peak 

Fig. 1. Ontario hourly electricity demand of the year 2019 against the year 2020 (The date displayed on the x-axis is considered for the year 2020, but the same 
weekdays are applied for both years). 
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occurs earlier in the day than 2019. The reason for the changes in peak 
hours can be mainly due to the changes in individuals’ daily routines 
initiated by schools and business closure and working from home reg
ulations implemented during COVID-19. 

Lastly, the load duration curve is shown in the second graph of Fig. 2 
to give an overall view of the cumulative hourly electricity demand for 
the year 2019 and 2020. The load duration curve is crucial in the elec
tricity planning phase to identify the optimal capacity needed for gen
eration. An annual load duration curve represents the load profile vs the 
time duration in hours where the load is arranged in a descending 
magnitudes order with the peak demand is the first point in the curve 
from the left. By reducing the peak demand, utilities can improve the 
efficiency of power generation (Alain et al., 2008). The second graph of 
Fig. 2 demonstrates the highest peak in 2020 surpasses 24,000 MW 
compared to 22,000 MW in 2019. On the other hand, the lowest peak is 
almost around 10,000 MW for both years, being slightly lower in 2020 
which can be relevant to the decline that happened to the electricity 
demand in March and April due to the pandemic. 

2.1.2. Monthly comparison of demand 2019 vs 2020 
In this section the monthly electricity load is clustered into 3 cate

gories as shown in Fig. 1 to present the reduction, the increase, and the 
recovery of the load between 2019 and 2020, as follows:  

a. From the first week of March until the third week of May.  
b. From the last week of May until the first Thursday of September.  
c. From the first Friday of September until the last week of December. 

2.1.2.1. Monthly demand comparison: March to May. On March 12th 
Ontario’s government announced the closure of schools, later on the 
17th a state of Emergency was declared, followed by non-essential 
business closure on the 23rd (Nielsen, 2020). As a result of these 
fast-paced regulations implemented to reduce the risks of the COVID-19 
spread, the energy consumption has witnessed a significant drop of 
almost 12% (IESO, 2020). This drop of load can be observed in the 
second part of Fig. 1. 

2.1.2.2. Monthly demand comparison: May to September. As the weather 
became warmer and some businesses reopened, the electricity con
sumption started to ramp up once again by the mid of May. Conse
quently, towards the end of May, the demand of 2020 got significantly 
above 2019 demand rates. This phenomenon has been predominant in 
the period from the last week of May until the first few days of 
September as can be noticed in part 3 of Fig. 1. One reason for the high 
peaks in June 2020 is the Industrial Conservation Initiative (ICI) Hiatus 
that was announced to help large industrial consumers across Ontario 

recover from COVID-19 by focusing on higher production more than 
reducing their peak demand by reducing their electricity rates and 
minimizing their Global Adjustment costs ("Edgecom Energy,", 2020). In 
July 2020, the electricity demand jumped to its highest since July 17, 
2013. Part of the demand increase in 2020 comparing to 2019 was due 
to hotter days. However, the weather did not have much impact on 
demand patterns as it was observed from the data. Overall, the recovery 
of the electricity demand in the summer exceeded the expectation of the 
Ministry of the Energy as well as the IESO ("Edgecom Energy,", 2020). 

2.1.2.3. Monthly demand comparison: September to December. As 
COVID-19 cases started to rise in September, the government of Ontario 
decided to suspend the reopening plan on the 8th of September 2020 for 
a period of 4 weeks (Davidson, 2020). Therefore, as shown in part 4 of 
Fig. 1a decline in demand in September 2020 is evident. By the end of 
September, the load followed the same pattern as in 2019, which was 
consistent for the rest of the year, except for the first half of November, 
in which the demand declined, due to a rise in the around the 5th until 
almost the 20th of November 2020. 

2.1.2.4. Mean hourly load based on months. This section illustrates the 
hourly load for a typical day for the three classifications (March-May, 
May-September, September-December) mentioned in section II. A. 2) 
comparing 2019 and 2020. Fig. 3. 

As shown, the difference between the representations of days for 
each group of months indicates load drop in March and April 2020 with 
a more flattened morning consumption due to the mandatory lockdown 
and working from home regulations. Also, an overall higher electricity 
demand is observed in the summer days of the year 2020, reaching its 
highest between 4 and 6 pm with delayed morning peaks and earlier 
evening peaks. The demand patterns are not changed between the years 
and months between 12:00–6:00 am, except March and April. Moreover, 
the lines representing the months from September to December are 
demonstrating the closest load patterns between 2020 and 2019, 
showing that the electricity demand nearly returned to normal behavior. 

2.1.3. Daily comparison of demand 2019 vs 2020 
This part compares the average hourly electricity demand for each 

day of the week, by evaluating the daily load profiles in 2020 and 2019. 
Also, to visualize this comparison in a general way, the daily demand is 
clustered, using K-means Clustering. 

2.1.3.1. Weekdays mean hourly load. Fig. 4 displays 2 graphs of the 
mean hourly electricity demand for each day of the week for the years 
2019 and 2020. By looking at the shown demand profiles, the general 
trends could be summarized as follow: the average morning and evening 
peaks were significantly higher in 2019, reaching around 19,000 MWh 

Fig. 2. Electricity mean hourly demand and load duration curve 2019 vs 2020.  
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and over 20,000 MWh, respectively. Whereas in 2020 the maximum 
morning and evening peaks were around 17,000 MWh and over 18,000 
MWh, respectively. Additionally, most of the weekdays demand pattern 
of 2020 are more converged and flattened than those of 2019. 

Also as shown, the average energy consumption on the weekends is 
remarkably lower than the weekdays, especially in the morning and the 
afternoon, which can be expected due to schools and businesses nor
mally functioning on weekdays. As for Sunday evenings, the demand 
ramps up getting closer to Fridays’ load pattern, reaching an average of 
18,500 MW/h. On the other hand, in 2020, the weekends are showing a 
slightly lower average electricity demand in the morning and the af
ternoon, with a peak on Sunday evenings almost the same as the 
weekdays, attaining more than 17,500 MW/h. This similarity could be 
the result of business closures and working from home mandates. 

Finally, some distinctive trends can be noted for the different 
weekdays. For example, all the weekday curves of 2019 are adjacent 
except for Friday where the afternoon and evening energy profile is 
lower than the other weekdays. This variation can mostly be due to the 
fact that some businesses close earlier on Fridays. In 2020, the load 
profiles look different than usual, as the Mondays, Tuesdays, and Fridays 
average hourly consumption are closer to each other and more flattened 
than those of Wednesdays and Thursdays. Another noticeable trend is 
the presence of additional peak hours in the afternoon as can be seen on 
Tuesdays, Wednesdays, and Fridays. This fluctuation could be referred 
to the increase in residential electricity which mainly occurs between 
11 am and 5 pm as customers are staying at home. 

2.1.4. Daily K-means clustering of hourly loads 
To dive deeper into the daily electricity consumption changes 

throughout, the K-means clustering algorithm is applied, using Scikit- 
Learn Python package (Viola, 2018). The data used for the clustering 
is starting from the first Sunday of March until the last Tuesday of 
December, which makes it 304 days (about 10 months) in total for each 
year. The optimal number of clusters was identified to be 3 clusters using 
the elbow method (Li, 2019) as shown in Fig. 5. 

The resulted three clusters of daily demand profile are shown in  
Fig. 6. The green cluster represents the days with the highest peak load, 
while the blue and pink clusters represent days with moderate and base 
loads. Days with low demand could mainly be related to the mild- 
weather sunny days in both years, which is also confirmed by the 
March until May curve in Fig. 3. 

2.2. Electricity supply impact analysis 

Due to changes in demand, the supply of electricity in Ontario has 
changed accordingly, and therefore in this section an overview of 
changes in the supply sources of electricity is presented. The effect of 
changes in the supply mix on CO2 emission is studied in the next section. 

In Fig. 7, supply is strictly more than demand with the excessive 
amount is exported to other provinces or US. Both years exhibit a similar 
seasonality, reaching peak demand on January, July, and December. 

Most of the supply is provided by nuclear and hydro generators.  
Fig. 8 shows that the supply by hydro generators is closely similar 

Fig. 3. Mean hourly demand for each group of months for the years 2019–2020.  

Fig. 4. Mean hourly energy demand for each day of the week 2019–2020.  
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between 2019 and 2020, as hydro capacities are used to satisfy the base 
load. However, nuclear and gas capacities are shown to generate slightly 
more in 2020 between January to April, while after the start of closure in 
Ontario, they supply less electricity. Lastly, it is important to note that 
the reduction in renewables supply seems to be covered by gas gener
ators in February, March, and November. The supply by gas generators 
doubled in 2020 compared to 2019. Fig. 9. 

3. Impacts of COVID-19 on the energy-related GHG emissions 

To measure the impact of pandemic on GHG emissions in Ontario, 
the GHG intensity factor data ranging between January 2019 and 
December 2020 is used (Frommann and DiValentino, 2012). The data 
contains hourly energy production for each type of generator (i.e., Nu
clear, Hydro, Gas, Solar, Wind, Biofuel, Other) in Ontario along with the 
GHG Intensity Emission Factor (EF), which is the ratio of total emission 
in grams of CO2 equivalent (gCO2eq) to the generated electricity (kWh), 
as follows: 

EFt =

∑
iCO2kt

Pkt  

for power plants k ∈ [1,…,K], where CO2kt and Pkt are the total hourly 
emission (in grams) and electricity generated (in kWh) by generator k at 

Fig. 5. Elbow method.  

Fig. 6. Daily K-means clustering of hourly demand for the years 2019–2020.  

Fig. 7. Total Demand and supply of electricity in 2019 and 2020.  
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Fig. 8. Comparison between nuclear and hydro, 2019–2020.  

Fig. 9. Comparison between Gas and Renewables, 2019–2020.  

Fig. 10. GHG intensity by month.  
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time t (IPCC, 2006). 
Fig. 10 presents the average hourly GHG Intensity factor described in 

Section II. As presented in the plot, GHG emissions are generally lower in 
2020, with an overall 16.25% reduction. During the first five months of 
2020, there is a significant difference between two years. This may be 
due to the first lockdown between March 17 and May 20. After the 
lockdown, however, the emissions are slightly higher compared to 2019, 
except for July and November. 

The impact of the pandemic on GHG emissions is more severe, 
comparing to its impact on the electricity demand. As shown in Fig. 11, 
during the first five months of 2019, the GHG emission was approxi
mately double its amount in 2020, indicating the impacts of industries 
closures. 

The positive correlation between demand and GHG emission is more 
evident for some generators rather than the others, as seen in Fig. 12. As 
shown, the linear relationship between GHG intensity and the produc
tion from gas generators imply that the main source of emission is the 
generated power from gas generators. Since the peak demand was 
reduced during pandemic, there was less need for the electricity pro
duction from gas generators and therefore the emission was reduced. 

The reduction in GHG emission cannot be significantly attributed to 
more renewable energy production, as there was approximately the 
same amount of renewable generation in 2019 and 2020, as shown in 
Fig. 9. The gas generators produced noticeably higher electricity be
tween January to April and November in 2019, while their production 
was higher for the rest of the months in 2020. 

4. Impacts of COVID-19 on load forecasting 

Forecasting the electricity load is crucial for power system planning 
and operation. Understanding the impact of sudden events, such as 
COVID-19, on the electricity demand forecast is critical for policy 
makers. An accurate forecasting model becomes more challenging 
amidst the ongoing pandemic. Therefore, in this section the artificial 
intelligence (AI) models are studied for their prediction potentials in the 
presence of rare events. 

4.1. Forecast model selection and structure 

There are different types of forecast models that can be used to 
predict electricity demand; some are linear statistical models such as 
ARIMA and SARIMAX, and others are non-linear models, like neural 
networks. The comparison between the performance of the different 
types of forecast models are presented in (Kandananond, 2011) and 

(Pao, 2006), indicating better performance of Artificial Neural Network 
(ANN) compared to other linear methods. Neural Network models could 
learn complex non-linear relationships between the inputs and outputs 
whereas linear models, like SARIMAX, rely on more historical data 
(Shahriar et al., 2019) and (Singh et al., 2016). 

In this paper, based on the electricity demand analysis, a load fore
cast Feed-Forward Neural Network (FFNN) model is chosen to consider 
different features, impacting the demand, such as seasons, days, hours, 
and weather. The related Ontario’s weather data, including tempera
ture, wind direction, wind speed, and humidity, is obtained from 
Meteoblue’s historical data (Meteoblue, 2006–2021) and paired with 
Ontario’s demand data in the forecast model. The model provides 
comparisons of the resulted forecast between before and during 
pandemic. 

Fig. 13 shows a typical structure of a multi-layer FFNN model. The 
FFNN contains input data x in input l1, consisting of p neurons, one or 
more hidden layer(s) li, for i > 0 and an output of yi, in output layer ln , 
consisting of k neuron(s). Each (i − 1)th layer is fully connected to each 
ith layer with a coefficient matrix, W(i) for each layer i. Each neuron in 
the hidden layer(s) is activated using proper activation functions such as 
sigmoid and ReLU (Sharif and Taylor, 2000). 

The data used for training the FFNN model consist of 27528 rows and 
8 columns: date, time, hour, Ontario demand, temperature, humidity, 
wind speed, and wind direction, starting from the 1st of January 2018 
until February 2021. The data is first examined for missing values, then 
more features are added to the data such as, the year, the season, the 
months, and the days to be used as input variables in the model. In order 
to find the relevant features for the analysis a feature selection method, 
considering the correlation between input and output layers is used. 

In order to tune the model, different combinations of the number of 
layers, neurons, epochs, and batch sizes are examined. The best outcome 
is achieved with three hidden layers with 100 neurons, using ReLU 
activation function. Also, a subset of six predictors: temperature, hu
midity, wind speed, season, weekday, and hour yielded the best results. 
The network is trained with Adam optimizer to minimize the mean 
squared error between model predictions and output. The model is 
trained, using 100 epochs with batches of 10 data points in Python 
3.7.12. and Tensorflow library with Keras interface. 

Three separate models are trained for the time intervals, before and 
after the start of pandemic. The first interval (January 2018–January 
2020) is to predict demand before the spread of the coronavirus, the 
second (January 2018–March 2020) is to study the performance of 
prediction methods during the lockdown, and the last interval (January 

Fig. 11. Comparison between GHG and demand, 2019–2020.  

M. Pirnia et al.                                                                                                                                                                                                                                  



The Electricity Journal 35 (2022) 107111

8

2018–January 2021) is to examine the impact of pandemic on prediction 
models after the stabilization of COVID-19 in 2021. The data is split such 
that there would be 15 days in each interval for test set and the rest used 
for training. 

4.2. Forecast model performance and evaluation method 

To evaluate the performance of the models, the Mean Absolute 
Percentage Error (MAPE) is calculated for each of the models to indicate 
the percentage of the error between the prediction and actual values for 
the training and testing datasets (Khair et al., 2017): 

MAPE =
1
n
∗ Σ

(
|A − F|
|A|

)

∗ 100  

Where, n is the size of the sample, A is the value of the actual data, and F 
is the value of the forecast data. 

4.2.1. . Model performance: pre-pandemic 
The pre-pandemic model is trained over pre-pandemic historical 

demand data (Jan 2018 – Jan 2020) and tested over pre-pandemic 
period of Jan 15, 2020 – Jan 29, 2020. As shown in Fig. 14 the 

performance of the test data in base case scenario is extremely accurate 
and has a MAPE = 3.21%. 

4.2.2. Model performance: beginning of pandemic 
Next, a second model is trained using the same FFNN architecture, 

using training data (Jan 2018–March 2020), and then tested over the 
data in the beginning of pandemic, March 25, 2020–April 8, 2020. As 
shown in Fig. 15 and Table 1, the test performance declined signifi
cantly, due to the sudden changes in demand. The resulted MAPE during 
this period is 13.86%. 

4.2.3. Model performance: during pandemic 
The FFNN model is retrained using the data from pandemic (Jan 

2018–Jan 2021) and tested over the data from Jan 25, 2021–Feb 8, 
2021, when the load behavior was stabilized. As seen in Fig. 16, the 
retained model, with the additional data from pandemic, performs with 
much higher accuracy of MAPE = 4.23%. 

A summary of the error comparisons among the three models is given 
in Table 1. The results show good performance of the FFNN model, even 
during the beginning of. As noted in (Lewis, 1982), the evaluation of the 
accuracy of NN models, using MAPE can be categorized into 4 following 
categories in which the worst result of the proposed model is labeled as 
“good forecasting”:  

• Highly accurate forecasting if the MAPE < 10.  
• Good forecasting if the MAPE is between 10 and 20.  
• Reasonable forecasting if the MAPE is from 20 to 50.  
• And an inaccurate forecasting if the MAPE > 50. 

4.2.4. Model Performance, using Cross Validation: beginning of pandemic 
To examine, the model performance for the second model (beginning 

of pandemic) a cross validation on a rolling basis is used (Shrivastava, 
2020). For this purpose, 5-folds cross validation technique is performed 
on the test data, while the training data is from January 1st, 2018, to 
March 15th, 2020, and the test data is from March 16th, 2020, until 
March 29th, 2020, for the first fold. For each of these intervals, the last 
test data points are then added as part of the training dataset and sub
sequent data points are included in the test data of the next fold. Finally, 
the average accuracy of the 5-fold cross validation is calculated. Table 2 
illustrates each of the 5-fold intervals used, the accuracy of each fold, 
and the average accuracy for the overall cross validation performance. 

As shown in the table, the main model here is represented by the 5th 
fold. The average accuracy presented by the cross-validation method is 

Fig. 12. Pairs plot between demand, gas, GHG and total production.  

Fig. 13. Feed forward neural network structure (Airforce Institute of Tech
nology, 2021). 
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11.6%, indicating higher accuracy than the MAPE error of 14%. 

5. Conclusion & future work 

In this paper, an extensive analysis of the COVID-19 impacts on 
Ontario’s electricity demand and supply has been performed including 
consequential GHG emissions and the complications that arise for ac
curacy of load forecasts in the presence of rare events. The additional 
complexity is addressed through use of the FFNN forecast model. The 
study showed significant load drop during March and April 2020 and 

unforeseen demand rise in the summer of 2020. In addition to a dis
cussion on the changes in consumer’s behavior, the weather data was 
analyzed in detail shed light on the unexpected variations in demand. 
Also, the overall comparison between GHG emission and demand 
showed that the pandemic resulted in a significant reduction of GHG 
emissions during lockdown, when demand was lower than previous 
year. The study also showed noticeable increase in GHG emissions after 
the lockdown when the demand was higher than previous years. 
Through a detailed study, the relationship between demand and sources 
of generation, especially gas generation was illustrated. The paper also 
investigated the accuracy of forecasting methods before, beginning and 
during pandemic, and suggested that FFNN could result in good forecast 
of demand even in the beginning of pandemic. 

In the future, this research will be extended to cater to scenarios for 
planning models that explicitly address unique rare events impacting the 
operation of electric grids, using insights gained in this study. Also, the 
changes in mobility, transportation, or employment data will be added 
to the proposed forecast model and tested for future improvement. 
Moreover, this research could be used as a benchmark to compare the 

Fig. 14. Test data from Jan 15th, 2020, until Jan 29th 2020.  

Fig. 15. Test data from the 25th of March 2020 until the 8th of April 2020.  

Table 1 
MAPE scores for the three models. The percentages in the table were rounded to 
2 decimal places.  

Models Train data MAPE Test data MAPE 

Before the outbreak  6.58%  3.21% 
During the outbreak  6.76%  13.86% 
After the recovery  6.69%  4.23%  
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Covid-19 pandemic to other rare events in the future. 
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Alain, P., Michel, D., Michaël, F., Simon, S., 2008. Load duration curve: a tool for 
technico-economic analysis of energy solutions. Energy Build. 40 (1), 29–35. 

Alasali, F., Nusair, K., Alhmoud, L., Zarour, E., 2021. Impact of the COVID-19 pandemic 
on electricity demand and load forecasting. Sustainability 13 (3), 1435. 

Barooah, Agdas, D., P, 2020. Impact of the COVID-19 pandemic on the U.S. electricity 
demand and supply: an early view from data. IEEE Access 8, 151523–151534. 

Airforce Institute of Technology, Data Science Lab R Programming Guide: Feedforward 
Deep Learning Models, Air Force Institute of Technology, (Online). 〈https://afit-r. 
github.io/feedforward_DNN〉. (Accessed 12 September 2021). 

S. Davidson, CTV News Toronto, Bell Media, 8 September 2020. (Online). 〈https://toron 
to.ctvnews.ca/ontario-forced-to-pause-reopening-plan-for-four-weeks-as-cov 
id-19-cases-spike-1.5095876〉. (Accessed 16 February 2021). 

Edgecom Energy, Edgecom Energy Inc 2020, 11 January 2021. (Online). 〈https://www. 
edgecomenergy.ca/resources1/the-industrial-conservation-initiative-is-coming-ba 
ck-in-may-2021〉. (Accessed 15 February 2021). 

Frommann, K., DiValentino, E., 2012. Calculation and application of hourly emission 
factors for increased accuracy in scope two emission calculations. Trans. Canadian 
Soc. Mech. Eng. 36 (2), 143–148. 

IESO, IESO News: COVID-19 impacts on Ontario’s electricity system. Independent 
Electricity System Operator, 30 April 2020. (Online). 〈https://ieso.ca/en/Sector-P 
articipants/IESO-News/2020/04/COVID-19-impacts-on-Ontarios-electricity-syste 
m〉. (Accessed 3 June 2020). 

IPCC, Stationary combustion, In: Guidelines for National Greenhouse Gas Inventories, 
2006, 2.13. 
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