
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



lable at ScienceDirect

Energy 239 (2022) 122280
Contents lists avai
Energy

journal homepage: www.elsevier .com/locate/energy
Impact of COVID-19 pandemic on oil consumption in the United
States: A new estimation approach

Qiang Wang a, b, *, Shuyu Li a, b, Min Zhang a, b, Rongrong Li a, b

a School of Economics and Management, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
b Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
a r t i c l e i n f o

Article history:
Received 3 January 2021
Received in revised form
21 September 2021
Accepted 3 October 2021
Available online 6 October 2021

Keywords:
COVID-19
U.S. petroleum
Pandemic-free scenario
Simulation
* Corresponding author. School of Economics and M
of Petroleum (East China), Qingdao, 266580, People's

E-mail address: wangqiang7@upc.edu.cn (Q. Wang

https://doi.org/10.1016/j.energy.2021.122280
0360-5442/© 2021 Elsevier Ltd. All rights reserved.
a b s t r a c t

The COVID-19 pandemic broke the balance of oil supply and demand. Meeting these oil market chal-
lenges induced by the pandemic required a more accurate assessment of the impact of the pandemic on
oil consumption. The existing measurement of the impact of the pandemic on oil consumption was based
on year-over-year calculation. In this work, a new measurement approach based on a comparison of
simulated and actual oil consumption was proposed. In this proposed measurement model, the actual oil
consumption was from the official statistics, whereas the simulated oil demand came from business-as-
usual (without pandemic) scenario simulation. In order to reduce the simulation error, three hybrid
simulation approaches were developed by combining the simulation technique and machine learning
technique. The mean relative errors of the proposed simulation approaches were between 1.08% and
2.51%, within the high precision level. An empirical research on the US oil consumption was conducted
by running the proposed measurement model. Through analyzing the difference between the simulated
and real US oil consumption, we found the impact of the epidemic on U.S. oil consumption was obvious
in AprileMay 2020 and JanuaryeFebruary 2021. At its worst, the oil decline in the United States reached
973 trillion British thermal units, compared to the state without the epidemic. During the entire survey
period (January 2020eMarch 2021), the US oil consumption under the epidemic was about 18.14% lower
than that under the normal epidemic-free situation, which was 5% higher than the 13% inter-annual
decline rate reported. This work contributed to understand the impact of the pandemic on oil con-
sumption more comprehensively, and also provided a new approach for analyzing the impact of the
pandemic on energy consumption.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The global pandemic of COVID-19 imposed serious threat to the
public health of the world [1]. In order to prevent the spread of the
virus, more than 187 countries around the world have adopted
measures such as restricting the movement of people and city
blockades, which directly brought about a substantial shrinkage of
global oil demand. As one of the world's largest energy consumers
and oil producers, the changes in US oil demand as a result of the
pandemic affected the stability of the global oil supply chain and oil
prices [2]. For a long time, petroleum was the world's main com-
mercial energy, and it played the role of an engine in the world
anagement, China University
Republic of China.
).
economy [3]. Under the circumstances that the pandemic is not yet
under control, judging the future U.S. oil consumption is of key
significance.

Statistical reports that assessed the impact of the pandemic on
oil consumption were mostly based on inter-annual or inter-
monthly measurements. As mentioned in full-year 2020 pro-
jections of the International Energy Agency [4], global oil demand
was expected to be a record 9.3mb/d lower in 2020 than in 2019. To
soon, the Organization of Petroleum Exporting Countries [5] re-
ported that world oil demand was now expected to contract by
around 9.8 mb/d, year-to-year, in 2020. However, a truly effective
measurement should be to compare the oil consumption under the
outbreak of the 2020 epidemic with the oil consumption under the
absence of the 2020 epidemic. The year-on-year measurement
method assumed that the oil consumption in 2020 without a
pandemic was the same as in 2019 or the historical average, which
was obviously not convincing.
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In this study, the true impact of the pandemic on U.S. oil con-
sumption was re-quantified. We adopt mature forecasting tech-
nology to simulate the monthly oil consumption in 2020 under the
scenario of no pandemic, with the help of data period 2015e2020
issued by Energy Information Administration [6]. Three hybrid
forecasting models covering time series and machine learning
ensured the credibility of simulation results. By comparing the
actual U.S. oil consumption in 2020 with the simulated oil con-
sumption in 2020 under the absence of the epidemic, the real
impact on the U.S. energy industry could be assessed. Analyzing the
impact of pandemics on the U.S. oil market situation from the
perspective of scenario simulation could have a more compre-
hensive understanding of energy consumption under pandemics,
so as to better respond to possible future challenges and impacts.

The remainder of this paper was organized as follows. Section 2
introduced a related literature review. Section 3 discussed the
formulas and processes of several combination forecasting
methods. A quantitative measure of the impact of the pandemic on
US oil consumption was introduced in Section 4. Section 5 sum-
marized the full text.

2. Literature review

2.1. Research on the impact of COVID-19 on the energy-related
fields

It has become a consensus that measures taken in response to
the spread of COVID-19 have a significant negative impact on the
global economy [7,8]. A series of changes have taken place in the
way of social operation during this period, affecting many fields
such as public social interaction, transportation and energy [9].
Following this, the weakening of economic activities inevitably was
reflected in changes in energy efficiency [10] and electricity de-
mand [11]. From the perspective of different sectors of energy, the
pandemic had a certain degree of impact on the industrial, com-
mercial, and residential sectors, as well as the energy mix. Studies
have shown that the pandemic would lead to an increase in resi-
dential energy demand and a decrease in industrial and commer-
cial energy demand [12]. Zhang et al. [13] investigated the impact of
the closure measures caused by the COVID-19 pandemic on the
energy demand of the Swedish building portfolio. Under three re-
strictions, the average delivered power demand across the region
increased by 14.3%e18.7%. However, the average system energy
demand (the sum of heating, cooling and domestic hot water) fell
by 7.1%e12.0%. The two offset each other, resulting in a small
impact of the pandemic on energy demand. In addition to the
above-mentioned department-focused research, scholars have also
launched investigations around different types of energy. For the
development of renewable energy, a significant short-term
contraction was inevitable [14]. However, considering the dual
threshold effect between renewable energy and financial level [15],
the incentives of investment measures may also turn the crisis into
an opportunity for the development of renewable energy. Nader-
ipour et al. [16] proposed the point that the reduction of green-
house gas emissions and pollutant gases allowed more sunlight to
shine on photovoltaic panels, thereby increasing the power gen-
eration of renewable energy. Using an input-output model, Kanit-
kar [17] found that the daily power supply of India's thermal power
plants had been reduced by nearly 26% during the blockade.
Madurai Elavarasan et al. [18] investigated the impact of COVID-19
on the Indian power system. The survey results showed that during
the blockade, the electricity demand for commercial loads in India
had fallen the most, while the electricity demand for residential
loads had increased the most. Corpus-Mendoza et al. [19] studied
the overall impact of COVID-19 on electricity consumption and
2

pollutant emissions. Studies have found that electricity consump-
tion had dropped significantly during the pandemic. On the basis of
the two-way causality between per capita carbon emissions and
structural reforms, it was highly possible that the epidemic
increased carbon emissions by changing energy intensity [20]. The
reasons for this change were closely related to the preventive
measures of various countries.

Furthermore, what was the specific impact of the epidemic on
the energy industry? Norouzi et al. [21] pointed out that the oil
industry was more susceptible to global crises than the power in-
dustry. The elasticity of oil and electricity demand to the number of
infected persons was þ0.1% and ±0.65%, respectively. Adedeji et al.
[22] examined the dynamic impact of COVID-19 on the four major
oil prices and found that the impact of the COVID-19 pandemic on
Bonnie, Daqing, BRENT and WTI oil prices was 17%, 14%, and 7%,
respectively. Studies [23] have shown that compared with 2019, the
energy intensity in 2020 had obvious temporal and spatial differ-
ences, but energy demand and GDP had both declined. There were
differences in the energy intensity of different regions. The United
States had the highest rate of change (þ29.3%), followed by Japan
(þ7.8%); while China (þ2.8%) and the European Union (þ1.03%)
currently had no significant changes. Cihan [24] developed an
automatic regression integratedmoving average (ARIMA) and Holt-
Winters model to predict the impact of the COVID-19 lockdown on
electricity and natural gas consumption. The results found that in
April 2020, electricity consumption fell by 72%e43%, and natural
gas consumption fell by 77%e57%. Rainer et al. [25] considered the
impact of the crisis on major exporters of oil and natural gas re-
sources, with a focus on some G20 countries. The conclusion was
that the COVID-19 crisis had deepened the gap between leaders
and laggards in the global energy transition. Leonardo et al. [26]
investigated the impact of the COVID-19-related lockdown imple-
mented in Spain from March to June 2020 on the share of the na-
tional power sector and photovoltaics in the energy mix. The study
found that the blockade reduced electricity demand by 11% and
increased PV market share by nearly 1%. Some scholars have
answered questions with Europe as the research object. Bahmanyar
et al. [27] first compared the different control measures taken by
European countries against COVID-19, and then investigated the
electricity consumption in these countries. The results showed that
the intensity of restrictive measures was positively correlated with
the reduction in power consumption. Ruan et al. [28] confirmed
that the reasons for the reduction in electricity in the United States
during the pandemic were closely related to the number of cases,
the degree of social distancing, and the level of commercial
activities.

Through the latest literature survey, we found that the impact of
the epidemic on the energy industry was mainly manifested in
changes in electricity demand, residential electricity consumption
patterns, and oil price. In measuring the specific impact of the
epidemic on energy demand, some scholars conducted a correla-
tion analysis by investigating the elasticity coefficient of the
epidemic and energy [29]. Some scholars have analyzed the inter-
annual changes in electricity demand and energy demand based
on the numerical changes over the years. A few scholars have
evaluated the impact of the epidemic by means of prediction and
measurement. In conclusion, the impact of the epidemic on the
energy sector has received extensive attention. Based on the
implementation of predictive tools to assess the impact, if scenario
analysis can be further taken into consideration, it will provide
novel points for current research.

2.2. A review of energy simulation methods

Grasping the future development trend of energy is of vital help
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to the current decision-making process [30]. Therefore, energy
forecasting technology has a key position in today's academic field
[31]. Below we classified and sorted out the research carried out
around energy forecasting in the past two years, in order to gain an
understanding and mastery of popular methods.

First, the comparative study of multiple methods based on time-
series forecasting methods was widely used in energy field's fore-
casting research. Nafil et al. [32] compared three forecasting
methods (ARIMA, temporal causality modeling, and exponential
smoothing) to calculate Morocco's 2020 energy demand forecast.
Ye et al. [33] combined the optimized DGM (1, 1) model with in-
terval grey numbers to predict the annual electricity consumption
per capita in southern Jiangsu with an error of less than 5%. The
combination of ARIMA and GMmodels was the same example [34].
Second, the combination of optimization and machine learning
model [35,36] had become a hot topic in the field of renewable
energy. Rasku et al. [37] made a random planning forecast for the
variable renewable energy (VRE) in the Nordic power system. The
highly nonlinear characteristics of wind energy have prompted
multi-objective optimization algorithms [38] andmachine learning
algorithms [39,40] become a common choice in the field of clean
energy. Studies [41] confirmed that models based on deep learning
to predict fluctuations in power demand and power generation in a
renewable energy system had significant advantages over tradi-
tional models. Third, the integration of traditional models and
artificial neural networks has been proven to be robust and
comprehensive in all application fields and prediction fields [42].
For example, Kazemzadeh et al. [43] proposed a combined method
based on automatic regression integratedmoving average (ARIMA),
artificial neural network (ANN) and support vector regression
technology to predict the annual peak load and total energy de-
mand of the Iranian national power system. Ahmad and Chen [44]
found that supervised learning methods could reduce noise in
network formulations and control unbalanced data. Wang and
Wang [45] proposed a mixed prediction model of a closed loop unit
with random time effective weights (SW-GRU) and applied
empirical mode decomposition (EMD) to global energy price pre-
diction. In agreement, the combined root mean square error
(CRMSE) and average absolute percentage error (CMAPE) were very
suitable for evaluating model performance.

The grey forecasting method is an original pedigree forecasting
method developed based on the original grey theory in China. We
found that the development of the existing grey forecasting model
was a closed improvement mode-self-improvement within the
grey system theory. This work took a different approach and
explored a new model of grey forecasting improvement-the open
model, that was, the introduction of foreign forecasting methods to
improve grey forecasting. Based on this, we proposed a new
modeling idea of “error correction þ secondary modeling”. After
using the internally innovative metabolic nonlinear grey prediction
to model the original data sequence, the grey prediction error
sequence was modeled twice using foreign ARIMA and BP models.
The ARIMA and BP models were chosen because we found that
ARIMA was often used to process time-series with obvious overall
trends and fluctuations in individual data points. This feature
coincided with the more obvious characteristics of nonlinear fluc-
tuations in residual series. Because of its strong self-learning ability
and data processing ability, BP could dig out the complex non-
linear relationship and fully capture information such as fluctua-
tions and mutations in the sequence.

2.3. Summary of literature review

By combing the latest literature, we found that analyzing the
impact of COVID-19 had become the focus of the energy sector.
3

Research hotspots included: the comparison of inter-year changes,
the comprehensive impact of clean energy, and the turnover
changes of the power consumption industry. Most of these analyses
started from the perspective of econometrics or statistical analysis
[46]. The premise of the judgment was that the index value in 2020
was not much different from that in 2019. However, the develop-
ment of energy was not a copy of historical years. Starting from this
consensus, only by following the historical development trajectory
to calculate the energy scale under the ideal scenario and
comparing it with the energy scale under the real scenario could
the true impact of the pandemic be determined.

Current energy forecasting hotspots mostly focused on the
combination of traditional models and machine learning models or
traditional models and artificial neural network models [47].
Almost all studies had confirmed that the prediction accuracy of the
combined model was much higher than that of the single model. In
addition, the combined method exhibited strong tolerance and
robustness in terms of applicability to data.

Based on this, the contribution points of this research include
the following aspects. (1) This study designed a new research
framework based on scenario assumptions and predictions to
accurately depict the specific impact of US oil under the epidemic
(as shown in Fig. 1). First, we used high-precision predictive models
to simulate the US oil consumption under the epidemic-free sce-
nario. Then, we calculated the error value of the fitting stage and
implemented the accuracy comparison between multiple models
to evaluate the prediction performance of multiple mixed models.
Finally, we choose the best prediction result as the US oil con-
sumption under the epidemic-free scenario, and compared it with
the actual oil consumption. The difference between the two was
regarded as the change in U.S. oil consumption caused by the
epidemic. (2) This research used multiple types of combined
models to simulate energy in ideal scenarios, including the com-
bination of traditional models and artificial neural networkmodels.
Among them, MNGM-ARIMA, MNGM-BP and ARIMA-BP were all
developed based on the principle of “error correction þ secondary
modeling”. The simultaneous use of multiple combination models
was of vital help to improve the prediction performance and
accurately portray the ideal scenario.

3. Methods

3.1. MNGM forecasting model

The grey predictionmodel (GMmodel for short) originated from
the grey system theory proposed by Professor Deng Julong in 1982
[48]. The grey system contains both known information and un-
known information. The prediction based on the grey system is to
realize the purpose of prediction by treating the discrete data
scattered on the time axis as a series of continuous changes,
weakening the unknown factors in the grey system and strength-
ening the influence of the known factors. The prediction principle
of the GM model is to first generate a set of new data sequences
with obvious trends for a certain data sequence in an accumulative
manner. Secondly, establish a model to predict according to the
growth trend of the new data series. Finally, use the method of
accumulation and subtraction to perform reverse calculation to
restore the original data sequence and obtain the prediction result.
After a period of development, scholars found that the traditional
grey model has certain time constraints during its use. Specifically,
as the prediction time increases, the accuracy becomes very low. To
change this defect, the rolling grey forecasting model came into
being. This rolling grey model is an addition mechanism for initial
data replacement. The replacement of data makes the operation of
each run more novel.



Fig. 1. The framework of this study.
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The metabolic nonlinear GM (1,1) prediction model (MNGM
model for short) is based on this original model and improves the
static model by adding metabolic ideas (that is, adding new ele-
ments and eliminating old elements). The GM model uses 5e10
data to build a set of predictionmodels and predict a series of future
data, so a set of model parameter values are obtained during the
calculation process. However, if the GMmodel is used for long-term
forecasting, the subsequent forecast values gradually lose their
validity, increasing forecast errors [49]. In order to improve this
shortcoming, the metabolic GMmodel first uses 5e10 data to build
a set of prediction models, but only predicts one data value in the
future. Then, it builds the prediction model by continuously
changing the data values used, so in the process, multiple module
parameters are obtained. The idea of metabolism is embodied in
constantly changing the data used, so it can achieve the effect of
reflecting the characteristics of the system in real time. The specific
principles and ideas were as Fig. 2 follows:

During each round of calculation, the specific operating formula
is introduced as follows.

First, we define the original sequence as:
Xð0Þ ¼ ðxð0Þð1Þ; xð0Þð2Þ;/; xð0ÞðnÞÞ and the 1-AGO sequence as: Xð1Þ ¼

ðxð1Þð1Þ;xð1Þð2Þ;/;xð1ÞðnÞÞ, while xð1ÞðkÞ ¼ Pk
i¼1

xð0ÞðiÞ.
Then, we define the equations of the model as Eqn 1:

xð0ÞðkÞþ a
�
0:5xð1ÞðkÞ þ 0:5xð1Þðk� 1Þ

�a ¼ b (1)
Fig. 2. Flow chart of the metabolic GM (1,1) model.
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where: xð0ÞðkÞ is the original data sequence. xð1ÞðkÞ is the accu-
mulated data sequence to prepare for the construction of the next
prediction equation.

The differential equation of xð1ÞðkÞ satisfy the solutions of the
following Eqn 2:8><
>:

dxð1ÞðkÞ
dk

þ a
�
xð1ÞðkÞ

�a ¼ b

xð1Þð0Þ ¼ xð0Þð1Þ
(2)

where: xð1ÞðkÞ is the accumulated data sequence; “a” and “b” are
constant term coefficients; “a” is the power coefficient.

The constant term coefficients are solved by constructing the
following matrix. We define a matrix ba of parameters, and satisfies
the following Eqn 3 and 4:

ba¼ ½a; b�T ¼
�
BTB

��1
BTY (3)

B¼

0
B@

�
�
0:5xð1Þð2Þ þ 0:5xð1Þð1Þ

�a
1

�
�
0:5xð1Þð3Þ þ 0:5xð1Þð2Þ

�a
1

««�
�
0:5xð1ÞðnÞ þ 0:5xð1Þðn� 1Þ

�a
1

1
CA;Y ¼

0
BB@

x02
«

x0m

1
CCA (4)

where: “a” and “b” are constant term coefficients, “B” is a matrix
composed of one-time accumulated data sequence xð1ÞðkÞ, and “Y”
is a matrix composed of original data sequence xð0ÞðkÞ.

The solution of coefficients “a”, “b” and “a” can be calculated by
the Runge-Kutta algorithm, which is implemented in Matlab soft-
ware. Substituting the calculated three coefficients into Eqn 2, the

prediction result of a cumulative sequence bxð1ÞðkÞ is calculated.
According to the principle of accumulation and subtraction (as

shown in Equation (5)), the predicted result bxð0ÞðkÞis obtained:
bxð0Þðkþ1Þ¼ bxð1Þðkþ1Þ � bxð1ÞðkÞ (5)

3.2. MNGM-ARIMA forecasting model

Based on the principles of “error correction” and “secondary
modeling”, this study used the Metabolic Nonlinear Grey Model
(MNGM) as the base model and the ARIMAmodel as the correction
model to construct a new MNGM-ARIMA combined model [50].
Firstly, the original sequence was modeled initially, and then the
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error sequence was modeled again to achieve the effect of reducing
the prediction error.

The prediction steps of the MNGM-ARIMA model were as fol-
lows [51]:

(1) Use MNGM to model the original data sequence for the first
time, and calculate the initial prediction value and error
sequence (as shown in Eqn 6);

xð0ÞðkÞþ a
�
Zð1ÞðkÞ

�a ¼ b (6)
(2) Check the stationarity of the initial error series and smooth
the non-stationary series using Eqn 7. The order of difference
corresponds to the "d" in the model ARIMA (p, d, q). If the
statistic obtained was significantly less than the critical sta-
tistic value of three confidence levels (1%, 5%, 10%), the
sequence was considered to be stationary;

Y*
t ¼ð1� BÞdYt (7)
(3) Establish an autoregressive AR model for stationary data
series (as shown in Eqn 8);

Y*
t ¼ cþ a1Yt�1 þ a2Yt�2 þ/þ apYt�p þ ut (8)
(4) Establish a moving average MA model for stationary data
series (as shown in Eqn 9);

Y*
t ¼ut þ b1ut�1 þ b2ut�2 þ/þ bqut�q (9)
(5) Combine the autoregressive AR model and moving average
MA model to construct ARIMA (p, d, q).
3.3. MNGM-BP forecasting model

Based on the principles of “error correction” and “secondary
modeling”, this research combined a mature time-series model
with an advanced artificial neural network model to create an
MNGM-BP model. Among them, the metabolic nonlinear grey
model (MNGM) was the basic model, and the multi-layer feedfor-
ward network (BP) trained according to the error back propagation
algorithm was the correction model.

The BP network could learn and store many input-output
pattern mapping relationships without revealing the mathemat-
ical equations describing this mapping relationship in advance. Its
learning rule was to use the steepest descent method to continu-
ously adjust the weights and thresholds of the network, through
backpropagation to minimize the sum of squared errors of the
network. Therefore, the model could be well used to correct the
errors in the prediction process, and had the effect of improving the
prediction accuracy.

The prediction steps of the MNGM-BP model were as follows:

(1) Select 5 data for each group and construct a nonlinear grey
differential equation (as shown in Eqn 10);

dxð1ÞðtÞ
dt

þ a
�
xð1ÞðtÞ

�a ¼ b (10)
5

(2) Calculate and derive the unknown values of the power co-
efficients and constant coefficients in the equation by using
the fourth-order-Runge-Kutta equation (as shown in Eqn
11);

YN ¼
h
xð0Þð2Þ;…; xð0ÞðnÞ

iT

B ¼

2
6664
�Zð1Þð2Þa 1

�Zð1Þð3Þa 1

««� Zð1ÞðnÞa1

3
7775

(11)
(3) Substitute the solved intermediate parameter values into the
original differential equation, and get the initial prediction
value;

bxð1Þðkþ 1Þ¼
�
xð0Þð1Þ� b

a

�
e�ak þ b

a
; ðk¼0;1;2;/;nÞ
(4) Subtract the actual value from the initial predicted value to
obtain the initial error sequence;

(5) Construct a BP neural network model for the error sequence
[52], and repeatedly train to obtain the corrected error
sequence;

(6) Combine the corrected smoothing error termwith the initial
prediction value to get the final prediction result.
3.4. ARIMA-BP forecasting model

Based on the principles of “error correction” and “secondary
modeling”, this study used the ARIMAmodel as the basemodel and
the BPmodel as the correction model to construct a new ARIMA-BP
combined model.

The prediction steps of the ARIMA-BP model were as follows:

(1) Bring the data series into the ARIMAmodel. The unit root test
was used to judge the stationarity of the initial data series.
Perform difference processing on non-stationary series to
make it a stationary series.

(2) Judge the order of autocorrelation and partial autocorrela-
tion of the processed stationary series to establish the
autoregressive and moving average model ARIMA (p, d, q).

(3) Subtract the actual value from the initial predicted value to
obtain the initial error sequence;

(4) Construct a BP neural network model [53] for the error
sequence, and repeatedly train to obtain the corrected error
sequence;

(5) Combine the corrected smoothing error termwith the initial
prediction value to get the final prediction result.

4. U.S. Oil consumption under pandemic-free scenario and
actual scenario

4.1. Ideal oil consumption simulated according to historical
trajectory

We assumed that "oil consumption under pandemic-free sce-
nario in 2020" as an ideal scenario. In this study, we used the hybrid
forecasting technique mentioned in the previous section to simu-
late the US oil consumption under ideal scenario. It was worth
noting that all the models involved simulated the endogenous
change characteristics of the data based on the historical trend of
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the data, and then predict the value of a specific stage in the future.
Based on this, this study selected a total of 60 data sets from January
2015 to December 2019 to train the predictive model. After data
training, US oil consumption at a certain stage in the future (January
2020eMarch 2021) was predicted. Therefore, the data value in
2020 was learned from the evolution characteristics of historical
data. The result predicted from the historical data series was
regarded as the 2020 U S. oil consumption in an ideal scenario
(without an epidemic). According to the method flow shown in
Section 3, this section focused on the specific operations of the
forecasting methods.
4.1.1. Preliminary prediction: base model in two forms
The predicted principle of these hybrid models in this study was

that the base model performed initial prediction, and then the
modifiedmodel performed error re-prediction. Following the order
of modeling, this section first introduced the calculation process of
the base MNGM and ARIMA model.

The first demonstration was the MNGM model. We bring the
data into the calculated equation of MNGM. With the help of the
Matlab software, the intermediate parameter values of the model
solution were calculated.

Then, we bring the intermediate parameters in Fig. 3 into Eqn 1.
MNGM model adopted the operation mechanism of circular flow.
Each round of calculation was based on the nonlinear grey model
(NGM) modeling ideas. Specifically, each time we put five data into
the model to solve for a set of parameters and the predicted value
for the sixth year. By continuously updating the five data back-
wards, the forecast value of a newmonth was solved each time. The
calculation ends until all predicted values have been solved. In this
study, 15 prediction results were derived based on the law of 60
original data, which meant that the NGM formula would be circu-
lative run for 70 times inside the model.

In the internal operation of the model, the MNGM model
learned the changing laws of the 60-month data. On the one hand,
it introduced historical fitting values, and on the other hand, it
introduced multiple future forecast values. The MNGM model's
prediction of the historical fit value was shown in Fig. 4. The black
curve in the picture came from EIA's monthly statistics, and the
green curve was the predicted value fitted based on historical
values. The gap between the two represented the predictive
Fig. 3. Intermediate parame
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performance and accuracy of the model. The data in Fig. 4 showed
thatMNGM could simulate the trend of the original data as awhole,
but the simulation at each time point had a lag. In the figure, the
gap line (black thin line) between the real value and the simulated
value was set. This also represented the prediction error of the
model at each point in time.

Furthermore, we quantitatively measured the forecast error of
each monthly node. The indicator of quantization error was usually
a relative error calculation formula. According to this formula, the
relative error of each monthly node was shown in Fig. 5. The
relative error of the ring graph in the figure was 0% in the middle
and 16% in the outer circle. From the distribution of the error values
of each month, more than 85% of the data blocks have an error of
less than 6%, and only the relative error of 4 months has reached
more than 10%. Based on the number of months covered by the
simulation, we averaged 60 relative errors to derive specific values
for the average relative error. After calculation, the average relative
error predicted by the MNGM model was 3.9%. To a certain extent,
this value reflected the accuracy of the constructed model in terms
of prediction. In terms of the integrity of the full text, this value has
also become an exclusive measurement for the comparison and
analysis of the predictive capabilities of multiple models.

The second demonstration was the forecasting process of the
ARIMA model. The ARIMA model adopted three main steps: sta-
tionarity test, parameter determination based on correlation coef-
ficient, and model construction. The pre-judgment and analysis of
the ARIMA model were introduced as follows.

The first was the unit root test. Due to the existence of the false
regression problem, the stationarity of testing variables was a
problem that must be solved. ADF was a strict statistical method to
test the stationarity of a series. The null hypothesis of the ADF test
was that the sequence had a unit root, that was, it was not sta-
tionary. For a stable time-series data, it needed to be significant at a
given confidence level and reject the null hypothesis. If the statistic
obtained was significantly less than the critical statistic value of 1%,
5%, 10% confidence levels, it means that the null hypothesis is
rejected. In addition, it depended on whether the P-value was very
close to 0 (4 decimal places were basically sufficient). Table 1
showed the value of the data after ADF inspection processing.
Among them, the T-test values of the original datawere all less than
the test values within the confidence interval of 1%, 5%, and 10%,
ters of MNGM model.
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Fig. 4. Fitted result of MNGM model.

Fig. 5. Prediction result of MNGM model.
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which means that the data reject the null hypothesis and reach a
plateau.

Next is the parameter determination. AC is the autocorrelation
coefficient of the sequence, that is, the correlation coefficient
Table 1
Index value of ADF unit root test.

Augmented Dickey-Fuller Test Statistic

Test critical values: 1% level
5% level
10% level
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between the t-period sequence and the t-k period sequence; PAC is
the partial correlation coefficient of the sequence, that is, the partial
regression coefficient when the t-period sequence is regressed to
the t-1, t-2, …, t-k period sequence. In the first unit root test pro-
cess, the seasonal component of the data has been removed.
Therefore, the correlation coefficient graph at this stage is carried
out for the data sequence that has been stationary after removing
the seasonality. The main purpose of observing autocorrelation
graphs and partial correlation graphs is to determine the specific
form of the sequence of the ARMA (p, q) model. The autoregressive
process (AR) is formed by the addition of the linear combination of
the lagging variables of the sequence and the white noise (random
interference term conforming to 0 mean fixed variance), and the
moving average process (MA) is composed of the linear combina-
tion of white noise.

Fig. 6 showed the autocorrelation and partial autocorrelation
parameters of the original data series (when the difference
order ¼ 0). On the one hand, the autocorrelation coefficient graph
was truncated towithin twice the standard deviation after the sixth
order. On the other hand, the partial autocorrelation coefficient
graph was truncated after the 6th order into the double standard
deviation curve. From these two points, it could be concluded that
the data was suitable for the ARIMA (6,0,6) model.

After SPSS software simulation, the initial prediction result
based on the ARIMA model has been calculated. As shown in Fig. 7,
the yellow curve represents the simulation result, and the blue
curve represents the real value. The close relationship between the
two shows that the ARIMAmodel overcomes a certain degree of lag
t-Statistic Prob.*

�6.069258 0.0000

�4.137279
�3.495295
�3.176618



Fig. 6. Autocorrelation/partial autocorrelation graph of stationary time series data.
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in simulating data trends compared with the MNGM model.
However, the reflection of individual extreme points still has a
certain degree of limitation.
4.1.2. Second prediction: error correction of the initial prediction
Following the combination principle of “error

correction þ secondary modeling”, this research further selects
Fig. 7. Fitted result o
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different models on the basis of the above two basic models
(MNGM and ARIMA) to realize the error correction of the pre-
liminary prediction process. With the help of backpropagation
artificial neural network (BP for short) and the fitting characteris-
tics of ARIMAmodel to volatility data, three combinedmodels were
constructed respectively. They were MNGM-ARIMA model,
MNGM-BPmodel, and ARIMA-BPmodel. Among them, the MNGM-
f ARIMA model.
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ARIMA model was based on the previous MNGM model and used
the ARIMA model to correct errors. The MNGM-BP model was
based on the previous MNGM model and used the BP model to
correct errors. The ARIMA-BP model was based on the previous
ARIMA model and used the BP model to correct errors. This section
focused on the error correction process of the ARIMA and BP
models in the second step of modeling.

The first was the error correction process of the MNGM-ARIMA
model. By calculating the difference between the predicted value of
the MNGM model and the true value, we got the initial error
sequence of the MNGM model. The fluctuation degree of this error
sequence still has room for further reduction. We used the ARIMA
model to further correct the error sequence to make its fluctuation
smaller and more stable. After a series of unit root tests and related
identification processes, the ARIMA (1,0,1) model was finally
selected for the secondary correction of errors. Fig. 8(a) compared
the two error curves before and after the correction. Among them,
the blue curve was the error sequence after ARIMA model correc-
tion, and the orange curve was the original error sequence. It could
be seen from the comparison that the blue curve was smoother
than the orange curve. In other words, the ARIMA model does
correct the initial prediction results of the MNGM model.

The second was the error correction process of the ARIMA-BP
model. Based on the calculation results of the ARIMA (6,0,6)
model above, this study used the BPmodel tomodel and correct the
errors obtained. Through the BP model's machine learning and
repeated correction of errors, the corrected error sequence was
calculated. Fig. 8(b) showed a comparison of the curves before and
after error correction. From the curves in the figure, it could be seen
that the green curve had an obvious error reduction effect on the
basis of the orange curve.

The third was the error correction process of the MNGM-BP
Fig. 8. Error correction diagram of co
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model. Similar to the prediction idea of the MNGM-ARIMA com-
bined model, MNGM-BP also used the prediction principle of the
quadratic model to modify the base model. The difference was that
the modified model (BP neural network model) used by the
MNGM-BP model was nonlinear. The residual corrected in the
following two steps: (1) Set parameters. In this study, 4 input layer
nodes, 1 output layer node and 10 hidden layer nodes were
selected. In addition, the relevant parameters were set as follows:
system accuracy 10�8, the maximum number of training times was
10,000, and the step sizewas 0.001. (2) Train and predict. This study
used the prediction residuals of the MNGM model to train the
neural network and predict the new residual sequence. This step
used ‘trainRatio’, ‘valRatio’ and ‘testRatio’ to divide the sample data,
of which 70% was used for training, 15% was used for verification,
and 15% was used for testing. In order to improve the prediction
accuracy, the BP model adds a loop statement in the network
design: each prediction value is calculated based on the first four
residual data. After repeated calculations by Matlab software,
Fig. 8(c) showed the optimal effect after the model is run. As shown
in the figure, the orange part of the curve represented the original
residual value generated by the MNGM model, and the purple part
represented the predicted residual value generated by the BP
model. It can be seen from the figure that the new residuals ob-
tained by the BP model were smoother than the original residuals,
which also proved that the nonlinear model had a certain correc-
tive effect in the combined model.
4.1.3. Comparison of oil consumption under ideal conditions
The above sections first introduced the prediction process of the

base model, and then demonstrated the secondary modeling pro-
cess of each modified model in detail, showing the intermediate
parameters generated in the prediction process. This section
rrected errors and initial errors.



Fig. 9. Prediction accuracy of the three combined models at each prediction node.
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compared and analyzed the accuracy and prediction results of each
model.

In order to reflect the effectiveness of multiplemixed time series
models in forecasting, this study selected the average relative error
term as the evaluation index. The average relative error is the
weighted average of the average absolute error. The specific for-

mula is as follows: MAPE ¼ 1
n
Pn
t¼1

����bxt�xt
xt

����. Generally speaking, the

average relative error can better reflect the credibility of the pre-
diction error. The evaluation standard is that the smaller the error
value, the better. The correlation between the relative error and the
prediction effect is as follows: when the relative error is between
0% and 5%, the prediction effect of the model is excellent; when the
relative error is between 5% and 10%, the prediction effect of the
model is good; When the relative error is between 10% and 15%, the
prediction effect of the model is passing; when the relative error is
greater than 15%, the prediction effect of the model is unqualified.
Table 2 listed the MAPE results of each model. Among them, the
average relative errors of the five models were all within 4%, which
belonged to the category of excellent prediction effects. Relatively
speaking, the three composite models were more accurate than the
two single models. Relatively speaking, better forecasting models
included ARIMA-BP and MNGM-ARIMA models, with average
relative errors were 1.08% and 1.63%, respectively.

Corresponding to the relative error, this study took 1 minus the
percentage value of the relative error as the prediction accuracy.
Fig. 9 showed the accuracy values of each sample point. With 5% as
the division unit, we used different colors to indicate different ac-
curacy intervals. Among them, the darker the color, the lower the
accuracy. It can be seen from the figure: (1) The minimum accuracy
of any sample point was above 85%. (2) The average accuracy of
most data points was between 95% and 100%. (3) Among the three
models, the prediction accuracy of the ARIMA-BP model was
slightly better than the other two models.

In the previous section, the above four improved models have
been applied to the forecast of oil consumption. Through the
calculation of the formula and the operation of the software, the
prediction results of each of the five models were obtained. In
addition, Fig. 10 showed the prediction results of theMNGMmodel,
ARIMA model, MNGM-ARIMA model, MNGM-BP model and
ARIMA-BP model. In Fig. 10, the entire curve was divided into two
parts according to the time axis, namely the fitting part before 2020
and the forecast part after 2020. The fitting part was composed of
black, purple, orange, green, and blue. Among them, black repre-
sented the true value, and color represented the predicted value of
different models. In the fitting part, Fig. 10 compared the predicted
results of each model with the true values one by one. The gap line
between the black curve and the colored curve represented the
difference between the predicted value and the true value in each
year. During the January 2015 to December 2019: (1) the simulation
results of the combined model were closer to the true value than
the single model. (2) the three combinedmodels could simulate the
operation characteristics of the data well, and the ARIMA BP model
was better than other combined models in predicting the key
fluctuatingmonths. The prediction part was uniformly composed of
red and yellow. Among them, yellow represented the true value,
and red represented the predicted value. The gap between red and
Table 2
Comparison table of mean relative error of each model.

Single model Model with error-corrected

MNGM ARIMA MNGM-ARIMA MNGM-BP ARIMA-BP

MAPE 3.90% 2.06% 1.63% 2.51% 1.08%
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yellow was regarded as the change in oil consumption caused by
the epidemic. It can be seen from the figure that the yellow curves
of different models were different. The Section 4.3 focuses on the
gap between these components.
4.2. Oil consumption under real pandemic situation

According to the monthly energy review published by the U.S.
Energy Information Administration, oil is widely used in the
transportation sector, industrial sector, commercial sector, resi-
dential sector and electric power sector during social operations.
We have extracted U.S. oil-related consumption from the energy
consumption used in different sectors. Since the data is updated to
March 2021, we selected the US oil consumption during the January
2020eMarch 2021 pandemic. As shown in Fig. 11, the US oil con-
sumption peaked in January at 3006 Trillion Btu. In the following
months, oil consumption did not exceed the value in January. In
April 2020, U.S. oil consumption reached its lowest point in 2020
history at 2140 Trillion Btu. Since then, oil consumption has been
slowly picking up, but it still has not exceeded the commanding
heights at the beginning of the year. After entering 2021, US oil
consumption fell into a downturn in February, reaching 2387 Tril-
lion Btu. This situation was subsequently restored in March.

In terms of the proportion of oil consumption used in different
sectors, oil demand in the transportation industry accounts for
more than half of the total demand. In addition to the trans-
portation sector, the demand for industrial sector is also above 20%.
After that, the demand for oil consumption in industrial, com-
mercial and power generation industries came at the end. This is
the performance of US oil consumption in the context of the
pandemic. We also regard it as oil consumption data under real
scenario.
4.3. Real impact judging from the difference of the two scenarios

This study analyzed the specific performance of oil consumption
in 2020 from two scenarios. Specifically, the ideal scenario was to
use various forecasting tools to derive the ideal oil consumption in
the absence of a pandemic from the historical trajectory. The actual
scenario was the U.S. oil consumption monthly data of EIA. Ac-
cording to the research ideas, the difference between the two
scenarios was regarded as the impact of the epidemic on the energy



Fig. 10. Fitting results of oil consumption of five models.

Fig. 11. The real value of U.S. oil consumption in 2020 affected by the pandemic.
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industry.
Based on the results of the two scenarios given in the previous

two subsections, this section focused on analyzing the difference
between the two. On the one hand, multiple prediction results in
the ideal scenario were integrated. On the other hand, the differ-
ence/impact was analyzed based on different epidemic intervals.

Fig. 12 showed the situation of oil consumption in the United
States between January 2020 and March 2021 under the ideal sit-
uation of no epidemic situation and the actual situation. The black
curve in the figure represents the ideal value of fuel consumption
based on different high-precision models in the disease-free state.
The yellow curve represents the true value of oil consumption
under the epidemic situation. It can be further seen from the figure
that an irregular area map is formed between the black curve and
the shadow. This area mathematically means the gap between the
ideal state and the actual state of the indicator. Applied to this
study, it is regarded as the loss value of oil consumption caused by
11
the pandemic.
Further visualize the gap between the real scene and the ideal

scene (as shown in Fig. 13). Among the various models, we have
selected the gap between these simulations and true value as a
visual difference analysis. The different curves in Fig. 13 represent
the difference between the two states calculated by different pre-
diction models. Although the curves were not completely over-
lapped, the overall trends were similar. In other words, there was a
certain uniformity in the impact of the pandemic on oil con-
sumption in specific months.

From the perspective of time interval, the difference between
January and March 2020 is much smaller than the rest of the time,
and we set this time as a low-impact period. The difference be-
tween April and June of 2020 is significantly higher than the rest of
the month, which can be judged as a period of high impact. Sub-
sequently, the difference entered a long period of downturn from
July 2020 to January 2021. In February 2021, the difference between



Fig. 12. Fitting results of oil consumption in pandemic year under ideal conditions.

Fig. 13. The quantitative impact of the pandemic on U.S. oil consumption.
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the oil consumption under the ideal scenario and the actual sce-
nario once again showed a small upsurge. In summary, during the
epidemic cycle investigated, US oil consumption has been affected
in different stages in different stages. April 2020 and February 2021
were the most severely affected months, which led to a 45% and
32% drop in U.S. oil, respectively. In the remaining months, fluctu-
ations in U.S. oil consumption were flat, and the rate of decline
remained at around 15%. In the context of the impact of the
pandemic, this difference was speculated to be closely related to
the confirmed cases of COVID-19. The number of confirmed cases
was the best measure of the severity of a pandemic in a country.
Considering the oil consumption under the influence of the
pandemic, there was a certain positive correlation between the
two.
12
4.4. Judgment of future oil consumption trends

The severe impact of the COVID-19 global pandemic on U.S. oil
consumption in 2020 has become a reality. As the pandemic con-
tinues to raging, people's social isolation and economic recovery
measures have gradually brought the operation of society onto the
right track. So, under the dual impact of the stimulus of the
epidemic and the economic recovery, how will US oil consumption
change in 2021?

Several high-precision hybrid computing models used in this
research will help clarify this problem. Using the modeling prin-
ciples of the MNGM-ARIMA and MNGM-BP models, the monthly
data during 2015 and 2019 were used to predict the oil trend
throughout 2021. Through internal learning and modeling of 72
historical data points, the intermediate operating coefficients and
future prediction results of several sets of models were solved.

Fig. 14 showed the original data values from 2015 to 2020 and



Fig. 14. Projections of 2021 derived from four models based on historical trends.
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the forecast trend for 2021. The black curve in the figure repre-
sented the historical data of US oil consumption, and the blue curve
represented the oil forecast for 2021. It can be seen from the evo-
lution trend that after the low tide in 2020, US oil consumption
tends to show a trend of gradual recovery in 2021. Although the
prediction results of the four models are slightly different, overall
recovery and intermittent lows will become the characteristic
keywords of US oil consumption in 2021. This result also warns us
that the impact of the epidemic on U.S. oil consumption is long-
term, and we should be alert to occasional oil downturns.
5. Conclusion

This study adopted a new research framework to quantify the
true impact of COVID-19 on U.S. oil consumption.We built and used
three advanced hybrid forecasting models (ARIMA-BP, MNGM-
ARIMA and MNGM-BP) based on the principle of “error
correction þ secondary modeling”. Through training on monthly
data from 2015 to 2019, we simulated the U.S. oil consumption from
January 2020 to March 2021 in an ideal state (no trending list
occurred). After precision calculation, the MAPE of the three
models in the fitting stage of the historical data were 1.08%, 1.63%,
and 2.51%, respectively, which confirmed that the forecasting
technology has a certain degree of credibility for the forecast results
of US oil consumption. Furthermore, we compared the simulated
values under this ideal scenario with real monthly energy data. The
difference between the two is judged to be the decrease in U.S. oil
consumption due to COVID-19. The decline in the U.S. oil industry
derived from this statistical method takes into account the natural
growth of oil consumption during the inter-year period. Therefore,
the difference between the scenarios is more in linewith the reality
than the 2019e2020 rate of change mentioned in the existing
report.

Through analyzing the difference between the simulated and
real US oil consumption from January 2020 to March 2021, we
found the following interesting conclusions. (1) The impact of the
epidemic on U.S. oil consumption was most obvious in AprileMay
2020 and JanuaryeFebruary 2021. When the epidemic was at its
worst, the oil decline in the United States reached 973 trillion
13
British thermal units, a decrease of about 45%, compared to the
state without the epidemic. (2) During the entire survey period
(January 2020eMarch 2021), the US oil consumption under the
epidemic was about 18.14% lower than that under the normal
epidemic-free situation. This value was 5% higher than the 13%
inter-annual decline rate reported in the BP Statistical Yearbook
2021.

In summary, this study used advanced forecasting methods to
simulate the US oil consumption in an epidemic-free state. This
framework helped us quantify the true impact of COVID-19 on US
oil consumption. Research contributes to assess the impact of the
pandemic on the energy industry and the macro economy. In
addition, the research results also have reference value for energy
decision-making.
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