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A B S T R A C T   

The outbreak of COVID-19 in 2020 has had drastic impacts on urban economies and activities, with transit 
systems around the world witnessing an unprecedented decline in ridership. This paper attempts to estimate the 
effect of COVID-19 on the daily ridership of urban rail transit (URT) using the Synthetic Control Method (SCM). 
Six variables are selected as the predictors, among which four variables unaffected by the pandemic are 
employed. A total of 22 cities from Asia, Europe, and the US with varying timelines of the pandemic outbreak are 
selected in this study. The effect of COVID-19 on the URT ridership in 11 cities in Asia is investigated using the 
difference between their observed ridership reduction and the potential ridership generated by the other 11 
cities. Additionally, the effect of the system closure in Wuhan on ridership recovery is analyzed. A series of 
placebo tests are rolled out to confirm the significance of these analyses. Two traditional methods (causal impact 
analysis and straightforward analysis) are employed to illustrate the usefulness of the SCM. Most Chinese cities 
experienced about a 90% reduction in ridership with some variation among different cities. Seoul and Singapore 
experienced a minor decrease compared to Chinese cities. The results suggest that URT ridership reductions are 
associated with the severity and duration of restrictions and lockdowns. Full system closure can have severe 
impacts on the speed of ridership recovery following resumption of service, as demonstrated in the case of 
Wuhan with about 22% slower recovery. The results of this study can provide support for policymakers to 
monitor the URT ridership during the recovery period and understand the likely effects of system closure if 
considered in future emergency events.   

1. Introduction 

The ability to understand and accurately predict fluctuations in 
ridership of urban rail transit (URT) systems can help managers plan 
service adjustments effectively and in a timely manner. However, the 
outbreak of COVID-19 at the beginning of 2020, which caused an 
extreme decline in public transit ridership, especially in mass transit, has 
presented a significant challenge for transit planners. Restrictions, such 
as stay at home orders and city-lockdowns, change residents’ daily ac
tivities. Besides, the public transit is vulnerable during the pandemic due 
to its collective nature of its mobility. Under such circumstances, 
determining the relationship between the ridership decline and the 
severity of the COVID-19 outbreak can provide transportation organi
zations with guidance on future ridership trends as many cities gradually 
recover. 

Many researchers and organizations have investigated and reported 
on the negative impacts of COVID-19 on various aspects of public 
transportation. Most notably, many cities around the globe have expe
rienced major reductions in public transit demand as a result of the 
substantially reduced economic activities. Work at home and online 
business became the new norm after the outbreak of COVID-19 (Zhang 
et al., 2021), contributing to reductions in passenger demand in the 
range of 80%–95% (Vickerman, 2021). Modal preferences by com
muters were also impacted by the pandemic. For essential out-of-home 
activities, it was observed that commuters preferred the private car, 
cycling, and walking over public transit (Jenelius and Cebecauer, 2020; 
Zhang et al., 2021). However, modal shifts to cycling and walking were 
generally higher than the shift to the private car, as several cities 
introduced additional lanes for cyclists and pedestrians (EIT, 2020). On 
the supply-side, many transportation agencies have cut service levels to 

* Corresponding author. 
E-mail addresses: xmw117416@163.com, vivian117416@gmail.com (M. Xin), amer@ecf.utoronto.ca (A. Shalaby), zlyfsm2000@sina.com (S. Feng), zhaohuber@ 

163.com (H. Zhao).  

Contents lists available at ScienceDirect 

Transport Policy 

journal homepage: www.elsevier.com/locate/tranpol 

https://doi.org/10.1016/j.tranpol.2021.07.006 
Received 16 June 2021; Accepted 6 July 2021   

mailto:xmw117416@163.com
mailto:vivian117416@gmail.com
mailto:amer@ecf.utoronto.ca
mailto:zlyfsm2000@sina.com
mailto:zhaohuber@163.com
mailto:zhaohuber@163.com
www.sciencedirect.com/science/journal/0967070X
https://www.elsevier.com/locate/tranpol
https://doi.org/10.1016/j.tranpol.2021.07.006
https://doi.org/10.1016/j.tranpol.2021.07.006
https://doi.org/10.1016/j.tranpol.2021.07.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tranpol.2021.07.006&domain=pdf


Transport Policy 111 (2021) 1–16

2

reduce costs and meet government restrictions on service hours (Wang 
and Noland, 2021). Such reductions have consequently contributed to 
further decline in public transit ridership. It is thus obvious that the 
COVID-19 pandemic has adversely affected public transit ridership, both 
directly and indirectly. On the one hand, fewer people were commuting 
to work and school, and those who commuted were less likely to use 
public transit due to the perceived health risks while travelling (Tan and 
Ma, 2020). On the other hand, the restrictions enforced by governments 
and transit agencies have limited the public transit service levels, 
contributing to further decline in transit ridership. 

Public transit ridership is generally estimated using the four-step 
travel demand model or direct demand model (Miller et al., 2018). 
The latter type is an econometrics approach that estimates the direct 
relationship between ridership and its determinants. Many studies have 
used this type of model to study the influence of various factors on 
ridership (Campbell and Brakewood, 2017; Pereira et al., 2015; Yu et al., 
2019). Unfortunately, the direct demand model is difficult to apply for 
analyzing ridership against the background of COVID-19. The spread of 
this disease has been extensive, influencing the entire urban society and 
economic activities. Hence, it is difficult to apply the traditional direct 
demand models due to their requirement of strict independence among 
variables. The Synthetic Control Method (SCM), which has exhibited 
excellent performance in policy studies, could address this challenge. 
The SCM provides a way for predicting the unobserved experiment 
status of a unit affected by an intervention (Abadie et al., 2010). It 
should be noted that the DID method has similar procedures with the 
SCM but requires a parallel trend between the treated and control units, 
which is challenging to meet in practice studies (Doudchenko and 
Imbens, 2016). The SCM can overcome the limitations of the DID 
method. In addition, SCM can be employed when the outcome is at the 
aggregate level (i.e., country or city). It can estimate the effect of the 
pandemic on URT ridership for a specific treated unit in the long term. 
Therefore, this paper employs the SCM to analyze the effects of 
COVID-19 on the URT ridership in various world cities, estimates the 
impact of the system closure in Wuhan during February 2020 on rider
ship recovery. 

The presented study contributes to the literature on the relationship 
between COVID-19 and URT ridership in several ways. First, the quan
titative estimation of the reduction in URT ridership caused by the 
pandemic could provide support for future responses from transit 
agencies. Compared with the pre-existing research, which focused on 
the mechanism of COVID-19’s impact on urban mobility, this paper 
focuses on the effects of COVID-19 on URT ridership. Second, it further 
analyzes URT ridership reductions during the pandemic across several 
Asian cities, which can support transit planners’ evaluations of the ef
fects of different policies (e.g., the severity and duration of restrictions 
and lockdowns). Furthermore, the analysis of “system closure and 
reopening” can provide authorities with insights on ridership patterns 
during the recovery periods and inform policymaking regarding the 
system closure intervention in the event of a future wave of this 
pandemic. As the earliest city to report the confirmed cases, Wuhan can 
provide practical lessons, such as the long-term impact of COVID-19 on 
URT ridership. However, Wuhan’s system closed entirely during 
February 2020. Thus, it is not very meaningful to estimate its ridership 
reduction (equaling zero in February). As another focus of the present 
study, the impact of system closure in Wuhan on ridership recovery is 
investigated. 

The remainder of this paper is organized as follows. Section 2 pre
sents a literature review of URT ridership analysis, the application of the 
SCM, and studies that examine the impact of COVID-19 on urban 
mobility. Section 3 describes the COVID-19 infection rates in different 
cities, provides details on the predictors and introduces the principles of 
the SCM. Section 4 presents the application of the SCM and discusses the 
effects of the pandemic on ridership in different cities and investigates 
the impact of the system closure in Wuhan on ridership recovery after 
the system re-opened. Section 5 provides conclusions for the study. 

2. Literature review 

2.1. Public transit ridership analysis 

Typically, the determinants of public transit ridership are classified 
into four broad categories: built environment factors, service attributes, 
socio-economic characteristics, and others. The built environment fac
tors show strong significance in transit usage analysis (Miller et al., 
2018). The service attributes are commonly identified as the primary 
factors when forecasting public transit ridership (Diab et al., 2020). 
Social and economic characteristics usually reflect the economic 
development status of specific cities. Other factors, such as weather, 
influence both the choice of passengers to travel and the operation of the 
system (Zhou et al., 2017). Furthermore, the type of technology applied 
in public transit systems can influence ridership (Brakewood et al., 
2015). 

In contrast to the ridership analysis at the system-wide level, both the 
station and line levels have received attention in various studies. At such 
levels, other methods of panel regression techniques with demonstrated 
high performance have been used, including the cross-sectional model, 
time-series model, and the combination of the two (Brakewood et al., 
2015). Moreover, the application of the autoregressive integrated 
moving average method, and geographically weighted regression model 
provide excellent performance, especially for time series and 
geographical analyses (He et al., 2020). Data mining methods, such as 
support vector machine have been used by some researchers, prompted 
by the abundant availability of data related to ridership (Wang et al., 
2018). 

A policy’s effect on ridership is generally estimated via comparative 
case studies, as seen in studies on the effects of bike-sharing, slow zones, 
and gentrification of station areas (Bernal et al., 2016; Campbell and 
Brakewood, 2017; Chakour and Eluru, 2016). However, an opportunity 
exists to apply other methods based on the precondition that the dummy 
variable representing the policy in question is independent of other 
variables in the model. An alternative method of analyzing the effects of 
new technology on ridership is using the difference in differences (DID) 
model. Campbell and Brakewood (2017) described a representative 
example of using the DID model in ridership analysis. In the inference 
section of the book written by Cameron and Trivedi (2005), the SCM is 
described as a variant (i.e. particular case, transform) of panel regression 
methods using the DID concept under a more relaxed constraint. 
Therefore, it is possible to use the SCM to estimate the COVID-19 effect 
on URT ridership. Combining the ideas of other researchers (Guzman 
et al., 2019), the efficacy of applying this method can be confirmed. 

2.2. Application of SCM 

SCM is widely used in comparative case studies because of its flexi
bility with the selection of the comparison unit and the ability to over
come uncertainty, which is not well represented by the standard errors 
when using traditional inferential techniques (Abadie et al., 2010). 
Abadie and Gardeazabal (Abadie and Gardeazabal, 2003) used the SCM 
initially in 2003, in which two Spanish regions were selected to 
approximate the economic growth in the Basque region without 
terrorism, indicating the extent of the negative effect of terrorism on the 
economy. Based on this central idea, the researchers then analyzed to
bacco consumption in California and the effect of Proposition 99 (Aba
die et al., 2010). 

The SCM has also been used extensively for policy analysis, espe
cially economic-related analysis. The effect of the 1990 German reuni
fication on West Germany was estimated, indicating a negative 
relationship between reunification and GDP per capita (Abadie et al., 
2015). Hsiao et al. (2012) analyzed the impact of the political and 
economic integration of Hong Kong with mainland China based on the 
panel data of 24 countries. With the improvement of the SCM theory, its 
application extended to research areas beyond economics. An 
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innovative application of the SCM, featuring multiple treated units 
instead of a single unit, was proposed for health policy estimation (Ex
periments, 2008). The reduction effect of gun laws on suicide was 
identified in Massachusetts (Kahane and Sannicandro, 2019). Further
more, the application of the SCM to estimate effects was used in trans
portation analysis. One of the latest representative studies was an 
analysis of the fare elasticities on ridership for Bogotá’s BRT system 
(Guzman et al., 2019). Another study focused on the air travel ridership 
changes against a background of aviation tax effects (Borbely, 2019). In 
both studies, the SCM was an appropriate method to produce counter
factual experiments. 

2.3. Examination of the impact of COVID-19 on urban mobility 

Several efforts have been made to assess the impacts of COVID-19 on 
traffic injuries and congestion (Lee et al., 2020; Oguzoglu, 2020). Other 
studies have analyzed quantitatively the effects of COVID-19 on urban 
mobility. For example, to evaluate the changes in modal distribution and 
journey purpose of commuters after the pandemic, Aloi et al. (2020) 
compared urban mobility levels before and during the confinement by 
re-estimating the origin-destination trip matrices, finding that public 
transport ridership in Santander (Spain) has dropped by about 93%. 
Arimura et al. (2020) reported travel demand reduction in Sapporo 
(Japan) due to the declaration of emergency after COVID-19. Fewer 
studies have investigated the impact of COVID-19 on metro ridership. 
Chang et al. (2021) examined metro usage at the station-level in Taipei 
during the pandemic using a DID model, indicating the correlations 
between confirmed cases and ridership reduction. The decline in subway 
ridership in New York City was examined by controlling for weather 
patterns using Ordinary Least Square (OLS) models based on time-series 
data, indicating modal shifts from subway to bike share system (Teixeira 
and Lopes, 2020; Wang and Noland, 2021). Liu et al. (2020) examined 
the impacts of COVID-19 on public transit demand in many public 
transit systems in the United States using a logistic growth function, 
indicating that the communities with higher proportions of essential 
workers tend to maintain higher levels of demand during COVID-19. Hu 
and Chen (2021) investigated the ridership reduction caused by 
COVID-19 using a Bayesian structural time series model, which exam
ined the relationship between ridership decline and various internal and 
external factors comprehensively. Another representative study was 
conducted for several Chinese cities, examining subway’s daily ridership 
using a SCM model. The study analyzed the effects of the fare-free public 
transport policies during the ridership recovery period (Dai et al., 2021). 
That study provides insights and support for our study. 

3. Data and analytical method 

3.1. Samples and COVID-19 infection rates 

Studying cities in both China (the earliest country to witness the 
pandemic) and the US (a later one with high infection rates) could 
provide deep insights into the pandemic’s effects on ridership. Selected 
cities in other countries are also included to ensure the wide applica
bility of this study. It should be noted that many residents of the treated 
cities relocated into neighboring cities and other megacities in China 
after the pandemic (Lai et al., 2020). Thus, there exists regional in
terrelationships and possible spatial-spillover effect of COVID-19 
(Ehlert, 2021). Seven Chinese mainland cities situated around Wuhan 
(the first city that reported confirmed COVID-19 cases) at different di
rections and distances are chosen to account for the regional in
terrelationships and possible spatial-spillover effect of the impact of 
COVID-19 (shown in Fig. 1). The 11 control cities covering the major 
hubs in the UK, Spain, and the US, have well-established URT systems 
operating heavy rail and/or light rail, which are similar to the Asian 
cities. Other cities with identical URT characteristics, such as Tokyo, are 
dropped because of their unavailable detailed published ridership data. 

For an improved understanding of the pandemic spread in each city, the 
infection rate (i.e., confirmed cases divided by population) is selected to 
reflect the infection status. The infection rate of the cities considered in 
this research from December 2019 to September 2020 are depicted in 
Fig. 2. 

Fig. 2 illustrates approximately two peaks during the nine-month 
period. The first peak primarily represents the cities in mainland 
China, and the second peak represents the cases in cities in the US and 
other countries. There is a one-month gap between the two peaks, which 
is consistent with the timeline reported by World Health Organization 
(2020). Wuhan had the largest infection rate compared to other cities 
before March. The rapid spiking of the infection rates in the selected 
cities represent outbreaks at different times. The cases in the US cities 
increased to a remarkable level since March 2020. It is noticeable that 
the infection rate in Miami went up sharply in July 2020 due to the 
backlog of test results (Florida Health Care Association, 2020). 
Excluding Miami, the infection rate in New York City and Boston were 
generally the highest during the nine-month period. 

The daily ridership calculated using unlinked trips is used to inspect 
the steep decrease in URT. Notably, the URT in this paper includes both 
heavy rail and light rail, excluding streetcars. The reduction in URT 
ridership for each city is depicted in Fig. 3 and Fig. 4. 

Daily ridership in specific metropolitan cities in China is excessively 
large compared to other cities in the study, as shown in Figs. 3 and 4. To 
distinguish the daily ridership trends in the cities with smaller ridership 
from that in New York City, Fig. 4 employs a logarithm y-axis. After 
January and March 2020, when the pandemic outbreak in China and the 
US respectively, there are two apparent reductions in daily ridership in 
the 22 cities. The reduction in most Chinese cities (as shown in Fig. 3) is 
larger than that in most US cities (as shown in Fig. 4). In Figs. 3 and 4, in 
the previous year, there is no obvious change in each city, except for the 
slight decline for February and August 2019, which overlaps with the 
spring festival in China and the summer vacation in Spain. Fig. 3 shows 
that ridership in most Chinese cities exhibited a recovery pattern as the 
infection rate plateaued after March 2020. Fig. 4 shows ridership in New 
York in January 2020 increased dramatically which is attributed to 
improved on-time performance (MTA, 2020). Cities outside Asia expe
rienced a similar trend after May 2020 with a slighter recovery, which 
indicates that although the infection rate keeps rising, relaxing several 
restrictions during the city’s reopening stage contributed to the 
recovery. 

3.2. Data collection and assembly 

This study uses monthly city-level panel data for the period of 
January 2019 to June 2020. Since the COVID-19 outbreak started in 

Fig. 1. A map of the seven Chinese cities that situating around Wuhan.  
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January 2020 according to WHO’s announcement (WHO, 2020), we 
extended the research period back to the same month in 2019. The data 
after June 2020 are not considered since several cities in the US 
implemented economic recovery measures. The data frame consists of 

six variables as predictors: population, GDP per capita, fare, number of 
stations in the URT network, the system’s age (the difference between 
the opening year and the current year), and the average operating speed 
of the train across the network. Table 1 presents the sources and 

Fig. 2. Infection rate of COVID-19 from January to September 2020. 
*Data collection sources: (Abbott et al., 2020; Dong et al., 2020; Ministry of Health of Singapore, 2020) 

Fig. 3. Daily ridership trends in Asian cities from January 2019 to September 2020. 
* Data collection sources: (Department of Statistics Singapore, n.d.; Mass Transit Railway, 2020; Ministry of Transport of the People’s Republic of China, 2020; Seoul 
Mero, 2020) 

Fig. 4. Daily ridership trends in cities outside Asia from January 2019 to September 2020. 
* Data collection sources: (American Public Transportation Association, 2020; Government of UK, 2020; National Institute of Statistics of Spain, 2020) 
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statistics of variables for selected cities. 
One variable is used as the dependent variable: the relative change in 

daily ridership, which is defined as follows:  

where mi indicates the sequence of months (e.g. mi = 1 for January 
2019, mi = 17 for May 2020), dailyridershipmi is the average daily 
ridership for mi, dailyridershipmi ,2018 is the average daily ridership for mi 

in 2018, averagedailyridership2018 is the mean of the average daily 
ridership across the 12 months in 2018. 

The rationale for variable selection is as follows. First, the predictors 
controlled in this paper represent the three broad categories generally 
used in ridership forecasting: built environment factors, service attributes, 
and socio-economic characteristics. Therefore, the controlled predictors 
can adequately explain the relative change in daily ridership. The popu
lation density and GDP can reflect both built environment and socio- 
economic attributes of each city, while the number of stations and the 
age of a URT system can be used to reflect the built environment status of 
that system and to a lesser extent its service attributes (system coverage). 
The fares and the operation speed of the URT system can be used as in
dicators of the service level of each URT system. Other service-related 
attributes, such as frequency, were dropped because they were affected 
by the pandemic, making them difficult to employ in the model. Second, 
the definitions of the relative change in daily ridership are derived from 
previous studies. It is challenging to employ the SCM if the outcomes in 
the selected cities are not comparable (e.g., the ridership of some Chinese 
cities is higher than in US cities). One potential solution to this issue is to 
transform the outcome to time differences, growth rates, or differences 
with respect to pre-intervention means (Abadie, 2021; Ferman and Pinto, 
2019). Thus, this paper uses the relative change in daily ridership as the 
dependent variable. The effect of China’s spring festival in February 2019 
and the summer vacation in Madrid and Barcelona in August 2019 can 
lead to the monthly variation differing among countries. Thus, this paper 
employs the relative change in daily ridership concerning the time dif
ferences at the same month between the current year and 2018 
(relative ​ change ​ in ​ daily ​ ridership) in Section 4.1, removing the in
fluence of monthly variation in August and February. Besides, the relative 

change in daily ridership concerning pre-intervention means 
(relative ​ change ​ in ​ daily ​ ridership∗) can reflect the effect of China’s 
spring festival in February 2019, allowing for the ridership recoveries 
after the spring festival and system closure to be compared. Thus, this 
paper employs relative ​ change ​ in ​ daily ​ ridership∗ in Section 4.2 to 
investigate the long-term effect of COVID-19 on Wuhan’s URT ridership 
recovery. The daily ridership data, the number of stations, average train 
speed, and system’s age are collected from the transit authority website 
for each URT system. Notably, the daily ridership data in the 22 covered 
cities are unlinked ridership, which encompassed transfer trips according 
to the agencies that published the ridership data. The population and GDP 
per capita are collected from the Statistics Bureau of each city. Only the 
data in the period before the pandemic for population and GDP is applied 
in synthetic control. 

Several key points should be discussed concerning the data. First, 
fare rates and structures in different cities vary, which presents a chal
lenge in this comparative study. For consistency, the fare is collected 
from a report published by the Union Bank of Switzerland (UBS, 2015). 
For the cities considered in our study but not included in the report, the 
fare is recorded according to neighboring cities available in the report 
and has a comparable fare level at present. Second, URT fare is assumed 
to remain stable during the pandemic because of few changes on a year- 
on-year basis from 2019 to 2020. The number of stations remained 
stable except for the month when new stations or lines were opened. 

Since the four variables (population, GDP per capita, the average 
operating speed of trains, and system’s age) are available at one-year 
intervals (i.e., 2019 and 2020), the data every two months are calcu
lated by linear interpolation. Linear interpolation is a conventional 
approach to producing estimates for missing data, assuming natural 
linear propagation of estimates between two consecutive intervals 
(Huang, 2021). This approach is conducted using the “ipolate” com
mand in STATA 15.0. All parameters are applied using a logarithm form 
to eliminate different parameters’ measurement effects. 

3.3. Analytical method - the SCM 

The principle of the SCM is introduced based on the notation pro
posed by Abadie et al. (2010). Suppose there are + 1 regions observed 
for T periods and only the first region (treated unit) is exposed to an 
intervention (e.g., COVID-19 outbreak in this case). Suppose T0 is the 
time at which the intervention was applied. The observed outcome Yjt in 
region j at time t can be written in two parts, the potential outcome due 
to predictors (YN

jt ) and the estimated effects (αjt) of the intervention, as: 

Yjt =YN
jt + αjtDjt (2)  

YN
jt = δt + λtμj + θtZj + εjt (3)  

where δt is a constant factor across all units, Zj is a vector composed of 
the predictors not affected by the intervention, μj is a vector of unob
served predictors, and θt ,λt are two vectors of coefficients. Djt is a 
dummy variable with value 1 if unit j is exposed to the intervention and 
0 otherwise. εjt is an error term. 

Both Djt and YN
jt are required to estimateYjt. However, Yjt,t≤T0 can be 

observed, which equals YN
jt,t≤T0 

because αjt equals 0. For t > T0, for the 
threated unit, YN

1t is not observed. Estimating the effect of the inter

Table 1 
Sources and summary statistics for predictors.  

Units Source 

Cities in the U.S. APTA 
Madrid, Barcelona Centro Nacional de Epidemiología 
Seoul Open Data Plaza of Seoul 
Singapore Singapore’s Public data 
Hong Kong Transport Department of Hong Kong 
Cities in Mainland China China Association of Metros 
London Office of National Statistics, U.K.  

Variable Obs. Mean Std. Dev. Min Max 

URT Fare (USD) 420 1.08 0.73 0.28 2.75 
System’s Age 420 55 45 6 156 
Average Speed (km/h) 420 30.78 6.96 14.47 48.47 
Number of stations 420 219 121 23 472 
Population (1000 people) 420 9316 6244 706 24,200 
GDP per capita (USD) 420 49,686 25,717 14,753 100,225 

*Obs. = 8*21 + 14*18. The samples in the eight Chinese mainland cities were 
collected for January 2019–September 2020 (21 months), the samples in other 
cities were collected for January 2019–June 2020 (18 months). 

relative change in daily ridership=
(
daily ridershipmi − daily ridershipmi , 2018

) /
daily ridershipmi , 2018 (1-1)  

relative change in daily ridership* =
(
daily ridershipmi − average daily ridership2018

) /
average daily ridership2018 (1–2)   
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vention with SCM requires creating a “synthetic control unit”, which is a 
weighted combination of other units which are not exposed to the 
intervention. Consider a vector W = (w2,⋯,wJ+1) where wj is a weight 
for each potential unit that contributes to the weighted combination 
when creating the “synthetic control unit”; then, 

ŶN
1t =

∑

j=2,⋯,J+1
wjYjt (4) 

The weights can be combined with the predictors as follows: 

∑J+1

j=2
wjZj =Z1 (5) 

The estimation process for vector W is proposed in the literature 
(Abadie et al., 2010), as well as the significance of the estimation. The 
estimation of Wis achieved by Stata 15.0 using the “synth” command in 
this study. The outputs of this command include W, variables’ balance, 
and the root mean square prediction error (RMSPE). W includes the 
optimal combination of weights, which are obtained by minimizing the 
discrepancy between the vector of pre-intervention characteristics for 
the treatment unit and that for the control units. The RMSPE is the 
average of the root squared discrepancies between Y1tin the treated unit 

and its synthetic counterpart ŶN
1t during T periods and is written as 

follows: 

RMSPE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑T

t=1

(
Y1t − ŶN

1t

)2
/

T

√
√
√
√ (6) 

RMSPE before T0 can measure the quality of the estimation of ŶN
1t 

where a near-zero RMSPE indicates better qualification.Abadie and 
Gardeazabal (2003)also introduced a placebo test method to assess the 
significance of the SCM. In the placebo test, one of the control units is 
assigned as the pseudo treatment unit, while the remaining untreated 
cities are assigned as potential control units for the pseudo. For example, 
set the unit j = 2 as the treated unit and the rest as the control units that 

can generate ŶN
2t , the effect estimated by the placebo test (i.e. α2t) is the 

gap between ŶN
2t and Y2t. The placebo test executes multiple times for 

cities in the control group, and a series of estimated effects (αjt ,j = 2,⋯,

J+ 1) can be obtained. Then the placebo test results can assess whether 
the effect estimated by the intervention for the treated unit (α1t) is 
relatively large compared with that of the random assignment results for 
cities in the control group (αjt , j = 2,⋯, J+ 1). The intervention’s sig
nificant effect can be confirmed if α1t is the largest effect among all 
estimated effects. 

4. Estimation and discussion 

4.1. COVID-19 impacts on URT ridership in asian cities 

Before implementing the SCM, its basic settings (intervention, the 
treatment period and the treated unit) should be discussed and 
confirmed. In the case of COVID-19, the intervention setting is more 
challenging due to the complex relationship between the pandemic and 
URT ridership. Although previous research generally set the restrictions 
and lockdowns as the intervention (Dai et al., 2021), it is not appropriate 
to disregard the companion effect of health risks perceived by citizens on 
ridership reduction. According to previous studies, the outbreak of 
COVID-19 is a common cause of lockdowns and perceived health risks 
(Loske, 2020; Zhang, 2021). This means that without restrictions and 
lockdowns, the ridership can decrease due to the health risks perceived 
by citizens. Therefore, the COVID-19 outbreak, instead of lockdowns, 
should be set as the intervention in this study. It should be noted that 
only the ridership reductions in January and February 2020 are 
considered when assessing the effect of COVID-19 on URT ridership. The 
outbreak of COVID-19 and lockdown times in Europe and the US, which 

occurred after February, should not influence the results. 
However, it is difficult to specify the exact time of the intervention. 

Because the virus first appeared in any given city due to the possibility of 
initial asymptomatic cases. Therefore, the outbreak time is selected ac
cording to WHO’s announcement. The news release by the WHO 
declared the infections of COVID-19 in China in January of 2020 and 
then proclaimed that COVID-19 was a pandemic in March after the sharp 
increase of cases globally (WHO, 2020). Therefore, the treatment period 
is either January or March. It is possible to form a control group (which 
is required to be unexposed to COVID-19) if the intervention time is set 
before the outbreak in the US; therefore, the treatment period for Asian 
cities is set to January 2020. The 11 cities in the sample—Beijing, 
Shanghai, Guangzhou, Shenzhen, Chengdu, Wuhan, Nanjing, Zhengz
hou, Hong Kong, Seoul, and Singapore—are used individually as treated 
units; the remaining cities in the US and Europe in which an outbreak 
occurred later than the former group are used to construct the synthetic 
control unit. Figs. 5 and 6 display the SCM and placebo test results for 
the 11 cities in the treated group and Table 2 presents the numerical 
outputs for the same cities. 

Fig. 5 illustrates the comparison between the relative change in daily 
ridership of the treated city and that of the synthetic control unit. The 
solid treated unit curve is the observed relative change in daily ridership 
(i.e., Y1t). The dotted synthetic control unit curve is the fitted relative 

change in daily ridership (i.e., ŶN
1t ), indicating the likely pattern of the 

relative change after January 2020 in the absence of the pandemic’s 
influence. The gap in Fig. 6 is the estimated effects of COVID-19 (i.e., α1t , 

the difference between Y1t and ŶN
1t ). The black curves in Fig. 6 represent 

the estimated effects for the pandemic’s treated unit in January 2020, 
and the brown curves (placebo tests) are the estimated effects for cities 
in the control group. 

As shown in Fig. 5, the synthetic control unit curves in seven cities 
(Beijing, Shanghai, Guangzhou, Shenzhen, Nanjing, Seoul, Singapore) 
are at comparable levels with the treated unit curves before January 
2020, which means the synthetic control units can reasonably interpret 
the relative change in daily ridership reasonably well for these treated 
units. The selected western cities were sufficient and appropriate to 
approximate the counterfactual ridership changes for the treated units 
due to the near perfect fit of the synthetic control curves in the seven 
cities. However, there are discrepancies with an apparent gap between 
the two kinds of curves in the other four cities (Chengdu, Wuhan, 
Zhengzhou, and Hong Kong). The rapidly extend URT network topology 
in Chengdu, Wuhan, and Zhengzhou can be responsible for that. 
Chengdu and Zhengzhou opened 68 and 79 stations in 2019–2020, 
while Wuhan extended a trunk subway line across the downtown area 
transferred with a split suburb line (Metros, 2019). The ridership decline 
is related with a series of demonstrations during the fourth quarter of, 
2019 in Hong Kong. After January 2020, the corresponding synthetic 
control unit curves increased slightly in February 2020 when the 
pandemic was not in effect for potential control cities. In contrast, the 
treated unit curves declined when the pandemic affected the treated 
cities, except in Singapore. The lower confirmed cases (less than 100) 
and delayed restrictions (after March 2020) in Singapore can be 
potentially responsible for that. Although the synthetic control unit 
curves start decreasing in March 2020 (when the pandemic outbreak 
occurred in the U.S.), the comparison between the treated and the 
synthetic control units in January and February 2020 could illustrate the 
effects of the pandemic by comparing the two different trends in the 
treated and the synthetic control units. The increase in the treated unit 
curves after March 2020 is due to the recovery and reopening of the 11 
treated cities. 

As shown in Fig. 6, the curves of seven treated cities (Beijing, 
Shanghai, Guangzhou, Shenzhen, Nanjing, Seoul, and Singapore) are 
around zero before the outbreak of the pandemic in January 2020, 
indicating that the gap between the treated unit curve and the synthetic 
unit curve is small for both treated and placebo cities. This means that 
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the synthetic control units can perfectly fit the pre-intervention outcome 
of their treated units. After January 2020, the gap for the treated cities 
(in black) is visibly large compared to that of the placebo cities (in 
brown), reflecting the negative effect of COVID-19 on ridership reduc
tion. In terms of the four excluded cities, which show imperfect synthetic 
results (as shown in Fig. 5), the gap between the two kinds of curves 
before the pandemic outbreak in January 2020 is larger than zero. Thus, 
the synthetic control unit can not capture the trajectory of the pre- 
intervention outcome in the treated unit. Under such circumstances, 
the effect of COVID-19 on URT ridership can not be estimated by SCM, 
although the gap is enormous in the post-intervention period (after 
January 2020). 

To evaluate the gaps for treated cities that are relatively larger than 
the rest, this paper uses the method employed by Abadie et al. (2010). 
The distribution of the ratio of RMSPE before and after COVID-19 is 
calculated as follows.   

The numerator is the RMSPE after the outbreak of COVID-19. 
Considering that the pandemic outbreak in the U.S. occurred after 
February, the gap after February 2020 is a combined reaction for both 
the reduction in the treated and control units. Therefore, the effects of 
COVID-19 on ridership are only explained by the gap in January and 
February 2020. The denominator is the RMSPE before January 2020. 
Fig. 7 gives the frequency distributions for the 11 cities. 

Each sub-figure in Fig. 7 displays the distribution of the ratio of 
RMSPE before and after COVID-19 for one treated city and 11 control 
cities. Therefore, there are 12 RMSPE ratios in each sub-figure, with the 
one for the treated city clearly labelled. Except for Chengdu, Wuhan, and 
Zhengzhou, all ratios for the other treated cities stand out on the right of 
each distribution with considerably larger values than those for the 
control cities in the same graph. Therefore, the estimated effect of 
COVID-19 is meaningful. The ridership in Chengdu, Wuhan, and 
Zhengzhou was already fluctuating before the pandemic outbreak, 

Fig. 5. SCM results for 11 cities.  
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responsible for the relatively small ratio. Although the ratio in Hong 
Kong is relatively larger than in the placebo cities, it can not illustrate 
the effect of COVID-19 on ridership since the outcome already decreased 
before the pandemic outbreak because of the demonstrations. 

Table 2 provides the outputs of the SCM. The RMSPE (calculated 
from January to December 2019) varies within 0.03–0.09 for the treated 
cities except three (Chengdu, Wuhan, and Zhengzhou), which indicates 
that the synthetic control unit’s relative change in daily ridership before 
the pandemic is close to that of the treated unit. The three excluded 
cities have larger RMSPE; thus, the pre-intervention synthetic control 
outcomes were biased and cannot represent the counterfactual outcome 
of the three cities. That conclusion corresponds to the placebo test re
sults (as shown in Fig. 7). The estimated effect of COVID-19 in February 
2020 is approximately 0.9 for most Chinese cities, which represents a 
ridership relative reduction of about 90%, whereas it was smaller for 
Hong Kong, Seoul, and Singapore (51%, 19%, and 6% respectively), 
indicating a higher reduction in the relative change in daily ridership in 
most Chinese cities than in Hong Kong, Seoul, and Singapore. These 
results warrant further attention. First, the outbreak of COVID-19 in the 
treated cities was clustered in January 2020, which means that the 
different outbreak dates of COVID-19 in the treated cities have little 
impact on the unequal ridership reductions. Second, the unequal 
ridership reductions are less likely the result of the disparate infection 
rate among cities. The estimated reduction in the former eight Chinese 
cities, which does not correspond with their infection rates, can provide 
evidence for that. For example, the infection rate in Beijing is lower than 
that in Guangzhou, whereas the estimated reduction is larger. Under 

such circumstances, the health risks perceived by citizens and the re
strictions and lockdowns are potentially responsible for the unequal 
reductions among the treated cities. According to the perceptions- 
related research, the health risks perceived by citizens are similar 
(Attema et al., 2021; Mondino et al., 2020). Thus, it is reasonable to infer 
that the unequal reductions are associated with the restrictions and 
lockdowns among different treated cities. 

Two potential inferences explain the association. First, earlier re
actions to the pandemic can result in a more considerable ridership 
reduction. Chinese mainland cities imposing lockdown earliest at the 
end of January experienced a more considerable ridership reduction 
than other cities. Besides, the overall reduction of ridership in Hong 
Kong, Seoul, and Singapore (− 51%, − 19%, and − 6%, respectively) has 
corresponded with their lockdown times (Fig. 8). Second, the severity of 
the restrictions can influence the extent of reduction of URT ridership. 
According to previous research, Chinese mainland cities adopted much 
more severe restrictions during the pandemic than Seoul, Hong Kong, or 
Singapore (Meep, 2020). Instead of strict stay-at-home orders, these 
three cities adopted less restrictive responses combined with trans
parency, comprehensive testing, and quick quarantining and isolation. 
Thus, it can be inferred that the severity and duration of restrictions and 
lockdowns can influence the extent of URT ridership reduction. Un
derstandably, on the one hand, in governments that provided earlier 
reactions, cities may experience longer lockdown duration and thus 
have a more considerable ridership reduction. On the other hand, gov
ernment regulations can induce citizens’ perception of health risks 
during the pandemic, leading commuters to become afraid about 

Fig. 6. Placebo test results for 11 cities.  
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Table 2 
Outputs for 11 treated cities.  

SCM No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 

Treated unit Beijing Shanghai Guangzhou Shenzhen Chengdu Wuhan Nanjing Zhengzhou Hong Kong Seoul Singapore 

RMSPE before T0  0.03 0.04 0.07 0.07 0.18 0.15 0.08 0.4 0.09 0.02 0.02 
Estimated reduction in February 2020 − 0.96 − 0.94 − 0.88 − 0.91 − 0.92 − 1.14 − 0.96 − 1.01 − 0.51 − 0.19 − 0.06 
Causal Impact Estimated reduction − 0.57 − 0.55 − 0.54 − 0.53 − 0.44 − 0.74 − 0.45 − 1.10 − 0.15 − 0.09 − 0.01 
Straightforward reduction − 0.88 − 0.82 − 0.78 − 0.82 − 0.81 − 1.00 − 0.89 − 0.87 − 0.53 − 0.10 − 0.03 
Infection rate in February 2020 19.50 13.95 21.92 29.56 8.44 4226.56 11.74 14.67 12.56 7.18 17.90  

Unit Weights 

Barcelona 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.00 0.00 0.00 0.00  
Boston 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
Chicago 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
Houston 0.32 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.14 0.06  
London 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00  
Los Angeles 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.00 0.00  
Madrid 0.38 0.55 1.00 1.00 0.65 0.11 0.28 0.00 0.00 0.31 0.48  
Miami 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.18 0.13  
New York City 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13  
San Francisco 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
Washington D.C. 0.00 0.45 0.00 0.00 0.35 0.89 0.00 1.00 0.00 0.37 0.20   

Predictor balance T S T S T S T S T S T S T S T S T S T S T S 

Fare − 0.8 0.3 − 0.8 0.3 − 1.3 0.0 − 0.8 0.0 − 0.6 0.3 − 1.3 0.6 − 1.3 0.2 − 1.3 0.7 − 0.1 0.5 − 0.6 0.4 0.0 0.3 
Population 16.9 15.7 17.0 14.7 16.6 15.7 16.4 15.7 16.6 14.9 16.2 13.7 16.0 15.6 16.2 13.5 15.8 15.8 16.1 14.7 15.6 15.1 
GDP 9.9 11.1 10.0 11.0 10.1 10.9 10.3 10.9 9.6 11.0 10.0 11.1 10.1 10.8 9.7 11.2 10.8 11.2 10.6 11.0 11.2 11.0 
Speed 3.6 3.2 3.6 3.4 3.6 3.4 3.5 3.4 3.6 3.4 3.5 3.5 3.9 3.3 3.5 3.5 3.4 3.3 3.4 3.4 3.4 3.4 
Station 5.9 5.2 6.0 5.2 5.5 5.9 5.3 5.9 5.6 5.4 5.6 4.7 5.3 5.1 4.7 4.5 5.1 4.5 5.9 4.6 4.8 5.1 
Age 3.9 4.0 3.3 4.2 3.1 4.6 2.7 4.6 2.3 4.3 2.7 3.9 2.7 4.3 1.9 3.8 3.7 3.8 3.8 3.9 3.5 4.2 

*T-Treated unit; S-Synthetic control unit. 
*Predictors are introduced in logarithm form. 
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travelling or selecting public transit. These conclusions can provide 
support for policymakers in terms of the lockdown period. 

The potential control cities are Madrid, Houston, and Washington D. 
C. since these three gained weights for more treated cities, indicating 
that combinations of two of these cities can reproduce the relative 
change in daily ridership for the 11 cities of interest. Another five cities 
(Barcelona, London, Los Angeles, Miami, and New York City) also car
ried weights for different cities, thus assisting the potential control cities 
to generate a reasonable counterfactual outcome that perfectly fits the 

pre-intervention. Besides, Madrid is the only control city that gained 
weight in the SCM of Guangzhou and Shenzhen, which means that the 
relative change in daily ridership in Madrid was similar to that in 
Guangzhou and Shenzhen. Thus, it does not need to be combined with 
other cities. 

A close match of predictors between the treated and synthetic units 
(shown in Table 2 as the predictor balance) would confirm the reason
able approximation of the synthetic control unit for the treated unit. The 
population, GDP, number of stations, and the operation speed were close 
between the treated and synthetic control units. However, the discrep
ancies of the system’s age and fares are larger than other predictors 
(population, GDP, the number of stations, and the average operating 
speed). The URT systems characteristics between Asian and other cities 
can explain the discrepancy. It is challenging to generate a comparable 
age for the treated cities using the potential control cities because most 
control cities established their URT systems decades earlier than the 
treated cities. Besides, fares in Asian cities, collected in US dollars, have 
been much smaller than those in the US and European cities. These 
discrepancies can be of lesser concern since the synthetic control unit 
can closely track the relative change in daily ridership in most cities 
(Abadie, 2021). However, it is undeniable that these discrepancies could 
influence the optimization of the estimation because the predictor 
values for treated units fall close to but outside the convex hull of the 
predictor value for untreated units. Several methods have been proposed 
to overcome this problem, such as Bayes SCM, penalized SCM, and 
generalized SCM (Abadie and L’Hour, 2020; Doudchenko and Imbens, 
2016). The penalized SCM is selected to further analyze the impact of 

Fig. 7. Distributions of the ratio of RMSPE before and after COVID-19 for 11 cities.  

Fig. 8. Restricted dates by country. 
*Data collection sources: Wikipedia, 2020. 
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COVID-19 on URT ridership. The penalized SCM relaxes the convex hull 
by introducing a penalty term when estimating the weights. The R code 
‘pensynth’ provided by Abadie (2020) is used to search for the optimal 
coefficient for the penalty term, lambda. According to the estimation 
results, the optimal lambda was zero. This means that the penalized SCM 
can generate the same synthetic control unit for the treated units as the 
pure SCM (employed in the present study). The pure SCM can generate 
the optimal solution for the treated cities. Thus, we use the pure SCM to 
investigate the effect of COVID-19 on URT ridership, ignoring any 
concern for the discrepancies between variables. Because this is not the 
primary focus of the study, a detailed analysis of this is not provided. 

To further validate the credibility of the selected variable on URT 
ridership analysis, this study employs a backdating method proposed by 
Abadie (2020)to address the anticipation effects on the outcome vari
able before intervention occurs, which can be taken as the placebo test in 
terms of time. The backdating method divides the pre-intervention pe
riods into an initial training period and subsequent validation periods, 
backdating the pseudo intervention to a time point before the COVID-19 
pandemic. In this study, the data for January–June 2019is divided into 
the initial training period, and the data for July–December 2019is 
divided into the validation periods. The pseudo intervention is set as 
July 2019. The results of the backdating analysis are displayed in Figs. 9 
and 10. 

Figs. 9 and 10 display the SCM and placebo test results of estimating 
the effect of the pseudo intervention backdated to July 2019. The syn
thetic and treated curves show similar trends, with a stable trend before 
and after the pseudo intervention except for Chengdu, Wuhan, 

Zhengzhou, and Hong Kong. The results in the four excluded cities 
correspond with the imperfect synthetic controls in Figs. 5 and 6. 
Despite the placebo tests in the four cities, the gaps between the syn
thetic and treated curves are around zero before and after the pseudo 
intervention, as expected. Several important features can be indicated. 
First, the synthetic control outcomes fit closely the relative change in 
daily ridership in July–December 2019before the COVID-19 pandemic 
actually started in seven treated cities. This means that the controlled 
predictors can credibly generate a synthetic control outcome that re
produces the trajectory of the outcome in the treated unit because the 
estimated counterfactual outcome is close to the observed outcome. 
Second, there is no visibly large gap between the treated and synthetic 
control curves, despite the pseudo intervention backdated in July 2019. 
This demonstrates that the synthetic control can reproduce the outcome 
for the treated unit under the “in-time placebo test” (Abadie et al., 
2015). 

This study employs two other traditional methods (straightforward 
analysis and causal impact analysis) to re-estimate the URT ridership 
reduction after the outbreak of COVID-19 in the 11 treated cities to 
illustrate the usefulness of the SCM. Straightforward analysis, which 
estimates the effect of an intervention by comparing differences in the 
outcome between the current and previous year, was selected for com
parison because it is a traditional method for the analysis of time-series 
data. The causal impact analysis is another method used to estimate 
counterfactual outcomes of a treated unit, which has a similar idea to the 
SCM. Thus, it was selected to illustrate the usefulness of the SCM. The 
fifth and sixth columns in Table 2 display estimation results of the two 

Fig. 9. SCMs for the 11 treated cities based on backdating intervention.  
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methods. 
The causal impact analysis is conducted in R 4.0.5 using the package 

“CausalImpact” (Brodersen et al., 2015). The estimated ridership re
ductions by the causal impact analysis are lower than those estimated by 
the SCM, except the results for Zhengzhou; this is understandable given 
the principle of causal impact analysis. Causal impact analysis estimates 
a counterfactual outcome using covariates that were not affected by the 
intervention rather than the weighted outcome of control units. How
ever, for the COVID-19 pandemic, for the covariates, which meet these 
requirements, it was challenging to generate counterfactual outcomes 
because most remained stable in the long term. This means that the 
dynamics of the outcome can be neglected and not comprehensively 
captured by the covariates. Thus, a lower reduction was estimated in 
most cities. Regarding the reverse case in Zhengzhou, there is a 
considerable increase in the relative change in daily ridership before the 
outbreak of COVID-19, which can influence the estimation of SCM. The 
estimated effects in the straightforward analysis are also lower than 
those by the SCM, except in Hong Kong. The straightforward analysis 
can reasonably interpret the reduction in URT ridership when it remains 
stable from year to year. However, the URT ridership changes dynami
cally, especially in most Chinese cities. According to a report published 
by the China Association of Metros (2019), URT ridership has increased 
recent prior to 2019. Thus, it is not reasonable to use a straightforward 
comparison to analyze any reduction in ridership. The demonstrations in 
Hong Kong led to a ridership reduction before the outbreak of 
COVID-19, which influenced the estimated results of SCM. Therefore, in 
the case of COVID-19 impacts, the SCM demonstrate its usefulness for 

estimating the effect of COVID-19 on ridership compared with other 
methods. 

4.2. Extending the SCM application: effects of system closure in wuhan 

The URT system of Wuhan closed on January 23 and reopened on 
March 23. Therefore, the application of SCM is extended to estimate the 
effects of the system closure on ridership recovery. 

Suppose that the effect of the system closure on ridership recovery in 
Wuhan can be estimated with the aid of the control cities which were 
also exposed to the COVID-19 but did not close the system. Then the 
observed outcome Yjt can be written as three parts, the potential 
outcome is determined by the predictors (YN

jt ), the estimated effects of 
COVID-19, αCOVID− 19

jt , and the estimated effects of system closure, 

βsystem closure
jt , defined as 

Yjt =YN
jt + αCOVID− 19

jt DCOVID− 19
jt + βsystem closure

jt Dsystem closure
jt (8)  

where DCOVID− 19
jt is a dummy variable with value of 1 for the unit affected 

by the outbreak of COVID-19 and 0 otherwise; Dsystem closure
jt is a dummy 

variable with value of 1 for the unit which closed its URT system and 
0 otherwise. βsystem closure

jt can be estimated if we assume that the αCOVID− 19
jt 

is equal for the treated city and potential control cities. According to 
Fig. 4, there is a 90% reduction approximately in daily ridership for the 
seven considered cities (Beijing, Shanghai, Guangzhou, Shenzhen, 

Fig. 10. Placebo tests for the 11 treated cities based on backdating intervention.  
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Chengdu, Nanjing, Zhengzhou). The ratio of RMSPE before and after 
COVID-19 for Hong Kong, Seoul, and Singapore is not obviously large. 
Therefore, the former seven cities are considered as potential control 
cities. 

Under this assumption, the treated period is February 2020, the 
treated unit is Wuhan. Table 3 provides the fitted details. Fig. 11 dis
plays the SCM results and distribution of the ratio of RMSPE. 

Table 3 illustrates the efficiency of the SCM. Four cities (Beijing, 
Shenzhen, Chengdu, and Zhengzhou) in the control group are assigned 
positive weights while all others receive a weight of zero. The differ
ences between the predictor values of the treated and synthetic units are 
smaller than those in Table 2, indicating that the potential control cities 
from the same region have a larger power to generate the synthetic unit 
for the treated city. However, the disparity in the system’s age is larger 
than the other five predictors. The synthetic control curve in Fig. 11-a 
represents the tendency for the relative change in daily ridership if the 

system had not closed in February 2020, distinct from the treated unit 
curve after the system closed and reopened. The treated unit curve is 
clearly under the synthetic control unit, indicating the slower recovery 
compared to the scenario if it had not closed. Besides, the curve’s slope 
after the system closed and reopened is smaller than after the spring 
festival in February 2019, indicating the slower recovery speed. It is 
estimated that ridership would be 22% higher if there was no system 
closure in Wuhan. The gap in Fig. 11-b for Wuhan and the control cities 
indicates the system closure effect. Wuhan’s gap is visibly larger than 
the cities that did not close their URT system during the recovery period 
after the system closed and reopened in February 2020. Shanghai’s 
curve is obviously larger than zero, which means that its ridership level 
was already above their average daily ridership in 2018. However, 
Beijing’s curve is under the x-axis, which indicates Beijing’s URT rid
ership’s slow recovery speed. One potential reason is that Beijing’s URT 
restrictions are stricter than other cities. Besides, the second wave of 

Table 3 
SCM details and predictor balance for Wuhan.  

Treated unit Wuhan 

RMSPE before T0  0.04 

Unit weights Beijing 0.28 Predictor balance Predictors Treated Synthetic 
Shanghai 0.00 fare − 1.27 − 1.10 
Guangzhou 0.00 population 16.25 16.31 
Shenzhen 0.63 GDP 9.99 10.06 
Chengdu 0.09 Speed 3.47 3.76 
Nanjing 0.00 stations 5.62 5.50 
Zhengzhou 0.28 age 2.75 3.08 

* Predictors are introduced with logarithm form. 

Fig. 11. SCM and placebo test results for Wuhan.  
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COVID-19 at the end of June 2020 in Beijing hit the URT ridership, and 
thus delayed the ridership recovery (Dong et al., 2020). The difference 
between the brown curve for cities in the control group and the black 
curve for Wuhan reveals the slow step of Wuhan’s ridership recovery. 
The RMSPE ratio has the largest value for Wuhan compared to other 
control cities, thus confirming the expected effect of system closure on 
ridership recovery. 

5. Conclusions 

Based on the SCM proposed by Abadie et al. (2010), this paper 
demonstrates the negative effects of COVID-19 on the URT daily rider
ship change in 11 Asian cities (the majority of which from China) uti
lizing data from other cities around the world, primarily the US. The 
delay of the outbreak of COVID-19 in the US and other western countries 
provides ideal control samples for the application of the SCM. The 
negative impacts of the pandemic on the relative change in daily 
ridership in seven cities are confirmed according to the SCM results. The 
SCM results in four cities (Chengdu, Wuhan, Zhengzhou, and Hong 
Kong) did not yield meaningful results. The estimation significance is 
evaluated using a series of placebo tests to control cities and times for 
the 11 cities in the potential control group. The results show that the net 
effect of COVID-19 on URT ridership in seven Chinese cities was in the 
range of 85%–95%, larger than that in Hong Kong, Seoul, and Singapore, 
which had the net effects of 51%, 19%, and 6%, respectively. The esti
mated impact of COVID-19 on URT ridership diversity from the treated 
cities indicates that the duration and severity of the restrictions and 
lockdowns are associated with ridership reduction. 

The results indicate several vital conclusions. First, the effects of 
COVID-19 on URT ridership reduction are not associated with the 
infection rate since some Chinese cities experienced a more considerable 
ridership reduction but a lower infection rate than others. Second, 
longer lockdowns and stricter restrictions can lead to a greater ridership 
reduction under the assumption of similar health risks perceived by 
citizens. URT ridership in Chinese cities that took timely actions with 
severe restrictions after the outbreak of COVID-19 experienced a visibly 
larger reduction than that in Seoul and Singapore, which adopted rapid 
and extensive testing instead of further lockdowns during the pandemic. 
This means that policymakers needed to make a trade-off between the 
URT ridership reduction and health protection. Governments and 
agencies played an essential part in determining URT ridership during 
the pandemic based on their restrictions. Timely and reasonable 
response adopted by governments and agencies were necessary during 
the pandemic. As such, these conclusions are meaningful for policy
makers. Generally, policymakers implemented restrictions and lock
downs according to the number of confirmed cases. However, since the 
URT ridership reduction is associated with restrictions and lockdowns, 
lessons from other cities should be carefully considered. For example, 
the implemented measures in Seoul maintained ridership numbers; 
despite a significant increase in the number of new infections occurring 
in August 2020. While the severe restrictions in most Chinese cities 
controlled the spread of infections very well, ridership was greatly 
reduced. 

In addition, an extended application of the SCM method was per
formed to estimate the effects of system closure in Wuhan on ridership 
recovery in the city. In this analysis, Wuhan is the treated unit, while 
seven other cities in China are selected as the potential control cities. 
According to the SCM results, the gap of Wuhan is relatively larger than 
those of the cities that did not close their URT systems. Because of the 
influence of the system closure, the recovery of Wuhan did not reach the 
expected level as shown in the synthetic control unit, as the treated unit 
curve is persistently under its synthetic control unit, indicating that 
system closure caused a slower recovery in Wuhan, by about 22%. From 
a policy perspective, the conclusions of this study could provide transit 
agencies with support and guidance on the net effects of COVID-19 on 
ridership reduction and the likely consequences of system closure on 

ridership recovery. 
The usefulness of the SCM to estimate the effects of COVID-19 on 

ridership was demonstrated by comparing the estimation results with 
those of two other methods: causal impact and straightforward analyses. 
For both methods, it was challenging to obtain a reasonable estimation 
of the counterfactual outcome due to their inherent limitations per
taining to the case of COVID-19. In contrast, the SCM uses a data-driven 
method to generate a weighted average of outcomes in control units; 
thus, it is less affected by the absence of service-related attributes when 
estimating the counterfactual outcome. Furthermore, two other char
acteristics of SCM are ideal in the case of COVID-19. First, the SCM could 
estimate the effects of COVID-19 on ridership reduction for each treated 
unit, thus allowing the ridership reduction across cities to be compared. 
The associations between COVID-19 restrictions and ridership reduction 
are evidence of this. Second, the SCM could estimate the effects over a 
long period. In the present study, this can be reflected by the estimation 
of the impact of system closures on Wuhan’s URT system. Other esti
mation methods, like the DID model, can only obtain the average effects 
pre- and post-intervention. Thus, SCM provides an appropriate method 
of estimating ridership reduction in the case of COVID-19. However, 
there is currently little guidance on the practical implementation of SCM 
in ridership analysis. The implication of SCM across 11 cities in this 
paper can fulfill the relevant research. 

Although this study confirms and quantifies the negative effects on 
ridership due to the COVID-19 pandemic, further analysis is required to 
extend the research of this study and address its limitations. For 
example, the predictors in this paper are somewhat limited, and they 
exhibit discrepancies between the treated and synthetic control units. 
They were selected empirically according to previous studies. Other 
factors (e.g., land use attributes and the availability of other modes) that 
can influence ridership reduction during the pandemic should be added 
to strengthen the counterfactual outcome’s interpretability. Besides, the 
system’s closure that was investigated in this study is a network-level 
strategy; investigating such effects at the station and route levels 
would be meaningful since several agencies partially closed their URT 
systems for specific routes or stations. These analyses would help transit 
agencies formulate reasonable policies to minimize ridership loss. 
Finally yet importantly, the SCM can only estimate the effect of an in
dividual intervention. In a practical study, there might exist several in
terventions that simultaneously affect the outcome, which would 
challenge the application of the SCM, (e.g. the outbreak of COVID-19 
together with the flu season in US). It should be noted that the rider
ship reduction in the case of COVID-19 is also a combination result of 
several causations (infections, health risks perceived by citizens, 
severity and duration of different restrictions), but the potential influ
ence of the perceived health risks and infections were excluded while 
combining the related research and the results in this study. Admittedly, 
this paper provides an analysis based on the results and samples in the 
11 covered Asia cities; however, the effect of different severity and 
duration of restrictions on URT ridership in the US and Europe cities 
should be studied carefully in the future. 
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