

Since January 2020 Elsevier has created a COVID-19 resource centre with

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related

research that is available on the COVID-19 resource centre - including this

research content - immediately available in PubMed Central and other

publicly funded repositories, such as the WHO COVID database with rights

for unrestricted research re-use and analyses in any form or by any means

with acknowledgement of the original source. These permissions are

granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.

Journal of Biomedical Informatics 117 (2021) 103744

Available online 26 March 2021
1532-0464/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Original Research

ELII: A novel inverted index for fast temporal query, with application to a
large Covid-19 EHR dataset

Yan Huang, Xiaojin Li, Guo-Qiang Zhang *

University of Texas Health Science Center at Houston, Houston, TX, USA

A R T I C L E I N F O

Keywords:
Covid-19
Temporal query
EHR
Big data

A B S T R A C T

Fast temporal query on large EHR-derived data sources presents an emerging big data challenge, as this query
modality is intractable using conventional strategies that have not focused on addressing Covid-19-related
research needs at scale. We introduce a novel approach called Event-level Inverted Index (ELII) to optimize
time trade-offs between one-time batch preprocessing and subsequent open-ended, user-specified temporal
queries. An experimental temporal query engine has been implemented in a NoSQL database using our new ELII
strategy. Near-real-time performance was achieved on a large Covid-19 EHR dataset, with 1.3 million unique
patients and 3.76 billion records. We evaluated the performance of ELII on several types of queries: classical
(non-temporal), absolute temporal, and relative temporal. Our experimental results indicate that ELII accom
plished these queries in seconds, achieving average speed accelerations of 26.8 times on relative temporal query,
88.6 times on absolute temporal query, and 1037.6 times on classical query compared to a baseline approach
without using ELII. Our study suggests that ELII is a promising approach supporting fast temporal query, an
important mode of cohort development for Covid-19 studies.

1. Introduction

Covid-19 is an unfolding global pandemic calling for urgent and
accelerated efforts in identifying appropriate treatment strategies,
developing accurate and rapid testing methods, and producing effective
vaccines. Due to this urgency, clinical trials for treatment and preven
tion of Covid-19 must be complemented by population-based ap
proaches. Clinical data about patients in electronic health records (EHR)
provide an important source of information for Covid-19 research [1].
Benefits include those of traditional retrospective analyses such as
identifying risk profiles, revealing health disparities, and understanding
long-term health implications [2,3]. They also enable machine learning
approaches for outcome predication, drug repurposing, and poly-
pharmacy (combinational drug effects) investigation [4,5].

However, population-based Covid-19 study brings into sharp focus
two unique query requirements in the context of EHR-derived big data.
One is temporal query, particularly on medical events around a patient’s
Covid-19 diagnosis. The second is interface for interactive cohort
exploration, which requires near real-time responses to user-specified
queries to facilitate study design and data access.

1.1. Temporal query

Covid-19 studies often involve temporal relationships on patient
phenotype and healthcare events (e.g. diagnosis, medication, lab test
and procedure) before and after Covid-19 diagnosis [6–8]. Here are
some sample cohorts specifications that involve temporal relationships:

1. All patients who received polymerase chain reaction (PCR) test in May
2020;

2. All patients who developed neurologic complications after extracorporeal
membrane oxygenation (ECMO) for Covid;

3. All patients who had stroke within a month after Covid diagnosis;
4. All patients who did not have any cardiovascular condition before positive

Covid diagnosis.

Example 1 involves absolute temporal query, while the rest involves
relative temporal queries. Example 1 is an instance of query with
negation.

Temporal query, an important query modality for population-based
Covid-19 research, has not been a traditional focus of clinical query
systems [9] which were mostly focused on patient-recruitment for

* Corresponding author.
E-mail address: Guo-Qiang.Zhang@uth.tmc.edu (G.-Q. Zhang).

Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

https://doi.org/10.1016/j.jbi.2021.103744
Received 15 October 2020; Received in revised form 10 December 2020; Accepted 5 March 2021

mailto:Guo-Qiang.Zhang@uth.tmc.edu
www.sciencedirect.com/science/journal/15320464
https://www.elsevier.com/locate/yjbin
https://doi.org/10.1016/j.jbi.2021.103744
https://doi.org/10.1016/j.jbi.2021.103744
https://doi.org/10.1016/j.jbi.2021.103744
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2021.103744&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Biomedical Informatics 117 (2021) 103744

2

clinical trials [10,11]. Fast temporal query on large EHR-derived data
sets presents an emerging big data challenge, since temporal query is
computationally expensive and takes too long to execute using a brute-
force approach. Specifically, relative temporal query involves pairwise
comparison of dates between clinical events, so a new data structure and
query execution strategy is required to achieve a suitable level of
response speed. Near real-time interface response is a critical factor to
achieve a sense of “interactivity” for cohort exploration.

1.2. Interactive cohort exploration

Two general types of data processing pipeline for population-based
studies exist. One is ad-hoc data processing, which involves the devel
opment of study-specific data extraction programming scripts to run
directly on source data to obtain specific patient cohorts of interest [12].
The second is cohort discovery based on a clinical query interface,
allowing an investigator to interactively explore and formulate patient
cohorts of interest [13–15]. Such interfaces are often built on top of
databases constructed using common data models such as those popu
lated through i2b2 [16], PCORnet [17], and OHDSI/MOP [18].

As pointed out in [15], the main distinction between the two pipe
lines can be seen in Fig. 1. The ad-hoc approach (Fig. 1, left) requires an
investigator to communicate data request to a data analyst (1), who in
turn implements the request as a data extraction script to run on the data
source (which can be in database or file-based format) (2), and then
obtains requested data and finally returns results for further analysis (3).
The time span between steps 1 and 3 can be weeks if not months, and
steps 1–3 often need to be iterated as study criteria are refined. The
second approach (Fig. 1: right) supports a paradigm which allows in
vestigators and data analysts (1–2) to construct and issue query directly
through a web interface without requiring the knowledge about how the
backend data are structured and stored, whereby shortening the data-
access life-cycle and facilitate collaborative data exploration (Fig. 1,
right).

Many existing EHR data warehouses require the use of a command-
line query language to extract data. Even for those that are equipped
with a graphical user interface, there is a general lack of systematic and
dedicated support for temporal queries in both the query language and
the user interface [19]. Near real-time response to temporal query is one
of the most computationally challenging aspects for interactive cohort
exploration [20]. Methods for exploring, querying and interacting with
data need to be improved to cope with the size and complexity of data.
Indeed, an estimated 40% of study respondents reported that they
sometimes gave up because the task was too time-consuming [19]. This
query response latency challenge is amplified when using larger Covid-
19 EHR dataset for population-based research.

To address these challenges, we introduce a novel approach called
Event-level Inverted Index (ELII) to optimize time trade-offs between
one-time batch preprocessing and open-ended, user-specified temporal
queries. To demonstrate the feasibility of ELII, we developed an exper
imental query engine in a NoSQL (not only SQL) database using the ELII
strategy to support the temporal query modality. Near-real-time per
formance was achieved on a large Covid-19 EHR dataset, with 1.3

million unique patients and 3.76 billion records. We evaluated the
performance of ELII on five types of queries: non-temporal (classical),
absolute temporal, relative temporal, query with negation, and patient-
level event sequence look-up. Our experimental results show that ELII
handled all five types of queries in seconds, achieving average speed
accelerations of 26.8 times on relative temporal query, 88.6 times on
absolute temporal query, and 1037.6 times on classical query compared
to a baseline approach without using ELII. To summarize, our main
contributions are:

• A novel inverted index, ELII, to support fast temporal query on
clinical events;

• A data preprocessing pipeline for a document-based data model for
ELII implementation;

• An experimental query engine to support common queries and
related evaluation using a real-world, large Covid-19 EHR dataset to
demonstrate the enhanced performance using ELII.

2. Background

2.1. Database structure

Relational data store. Relational data store is a commonly used
method for storing and managing clinical data [21]. EHR data is rep
resented as tables, where each row in a table represents a record, and
each column represents an attribute. Table 1 illustrates a clip of Lab
table from an EHR dataset, where the first column captures patient
identifier (ID).

Entity-attribute-value (EAV) data store. One limitation of the relational
data store is the inflexible of attributes [22]. An attribute may have
different types of data and some records may have missing data or
without applicable attributes. EVA data model is an alternative row-
based design. In general, an EAV table stores the attribute-value pairs
of an entity. An entity may have multiple tables separated by data types.
In Table 2, for instance, a Lab record may have text, numeric and date-
time data, and they are stored in three different EAV tables. In each
table, the “ID” (Table 2, first column) is the lab record ID which serves as
a linkage between the EVA tables. i2b2, a popular clinical query engine,
uses EAV data store in the so-called “star-schema” design [16,10].

2.2. Document-oriented data store and MongoDB

Document-oriented data store. Document-oriented data store, or
document-oriented database, is a type of NoSQL database [23]. Different
from traditional relational databases, document-oriented databases are
designed to store, retrieve and manage information [24] represented as
a collection of “documents” in JSON (JavaScript Object Notation) or
XML (Extensible Markup Language) format [25]. A document can be
large, complex, and semi-structured. It serves as the basic unit of data
processing and conceptually is equivalent to a record in a relational data
table. MongoDB is a document-oriented database system using JSON-
type documents with optional schemas [26]. A group of documents in

Fig. 1. Typical data processing pipelines for population-based studies (adapted
from [15]). Left: ad-hoc scripting. Right: data exploration using a web-
based interface.

Table 1
Lab test in EHR represented as a conventional relational data table.

ID CODE NAME TYPE RES UNIT DATE

PT001 26464-
8

White blood
cell

HEMAT 9.4 × 103/

ul
2018-
06-04

PT001 59408-
5

Oxygen
saturation

BLOOD
GAS

99.0 % 2019-
08-05

PT001 N/A Covid19 pcr N/A negative N/A 2020-
05-21

PT002 59408-
5

Oxygen
saturation

BLOOD
GAS

96.0 % 2019-
08-05

PT002 N/A Covid19 pcr N/A positive N/A 2020-
06-23

Y. Huang et al.

Journal of Biomedical Informatics 117 (2021) 103744

3

MongoDB is called a “collection.” Each element or entry in a document is
represented as a key-value pair. Key-value pairs can be nested to provide
tremendous expressive power for capturing complex information.
MongoDB’s collections do not enforce document structure; therefore, it
is “schema-less,” providing flexibility for data type and data-modeling
choices to match application requirements. Table 3 shows three lab-
related documents for the same patient (PT001) in previous examples
using a document-oriented data store.

For this study, we use document-oriented data store implemented in
MongoDB for the following reasons:

1. Rapid response to the Covid-19 pandemic requires data from mul
tiple sites and sources to be pooled together in a short timeframe.
This entails that not all source data can be mandated to follow the
same data model, data format, or coding standard [27]. Document-
oriented data store provides the flexibility for managing data
format and coding variability.

2. MongoDB provides querying facility which can take advantage of
customized indices, nested/embedded objects and arrays, and sup
port for on-the-fly regular expression processing during query.
MongoDB is also scalable in database size, with a built-in constraint
that the maximum BSON (a binary representation of MongoDB’s
JSON document data records) document size is 16 MB. The number
of levels of nesting for BSON documents is limited at 100. These
generous constraints provide enough flexibility for most applications
(but see Discussion on document size).

3. We have had prior successful experiences using MongoDB [28], so
this database environment is familiar to our team, which can help

facilitate rapid development through code reuse and software ar
chitecture repurposing.

Column-oriented data store. Column-oriented data store is an alter
native data structure used for NoSQL databases. In a column-oriented
database, each column is stored in a single table. Table 4 is an
example of five lab records in the column-oriented data store. Two of the
five records do not have “TYPE” data so only other three records were
stored in the colum “TYPE.” For a query on “TYPE,” three records with
“TYPE” column will be fetched instead of all five records with entire
columns. Such flexibility can help accelerate query execution on sparse
dataset, or when not all the columns are involved in the execution of a
query.

Though not used in this study, we mention graph-based data store for
completeness. Graph-based data store is used in graph databases (GDB),
which uses graph structure for semantic query and uses nodes, edges and
attributes to represent and store data [29]. A node in the GDB represent
an instance, similar to a record or a row in a relational database (or a
document in a document-store database), such as person, business, and
account. An edge represent a relationship connecting two nodes, an
abstraction not directly implemented in a relational model or a
document-store model. Resource Description Framework (RDF) is spe
cial type of GDB that uses XML syntax to describe the characteristics of
web resources and the relationship between resources [30]. The main
idea of RDF is to create statements about resources (in particular web
resources) in expressions of the form (subject, predicate, object), known
as triples [31]. This model provides an infrastructure for metadata of
different web applications [32]. A collection of RDF statements intrin
sically represents a labeled, directed multi-graph, and this makes an RDF
data model better suited to certain types of knowledge representation
[33,34].

2.3. Inverted index

Originating from the field of information retrieval, a forward index,
D→, associates each document D (or its identifier-ID) to the list of words
that the document contains. For example, to answer the query “Which
documents contain word X,” the forward index requires exhaustive
iteration through each document and each word to locate a hit.

Inverted index, D
←

, is a common technique used for enhancing query
performance. For text-based search, an inverted index consists of a list of
all the unique words appearing in a document collection, and for each
word, a list of identifiers for those documents that contain the word. An
inverted index is usually implemented as a hash map: the key is the word

Table 2
Lab test in EHR represented as EAV data tables. ID - lab record ID; A - Attribute; V - Value.

Value type: text Value type: numeric Value type: date

ID A V ID A V ID A V

PT001-1 TEST CODE 26464-8 PT001-1 TEST RESULT 9.4 PT001-1 TEST DATE 2018-06-04
PT001-1 TEST NAME White blood cell PT001-2 TEST RESULT 99.0 PT001-2 TEST DATE 2019-08-05
PT001-1 TEST TYPE HEMAT PT002-1 TEST RESULT 96.0 PT001-3 TEST DATE 2020-05-21
PT001-1 TEST UNIT × 103/ul PT002-1 TEST DATE 2019-08-05

Table 3
Lab test in EHR represented as a document-based data store.

{“DOCUMENT ID”:“1” {“DOCUMENT ID”:“2” {“DOCUMENT
ID”:“3”

“PATIENT ID”: “PT001” “PATIENT ID”: “PT001” “PATIENT ID”:
“PT001”

“TEST CODE”: “26464-8” “TEST CODE”: “59408-5” “TEST NAME”:
“Covid19 pcr”

“TEST NAME”: “White blood
cell”

“TEST NAME”: “Oxygen
saturation”

“TEST RESULT”:
“negative”

“TEST
TYPE”:“HEMATOLOGY”

“TEST TYPE”:“BLOOD
GAS”

“TEST DATE”: 2020-
05-21}

“TEST RESULT”: 9.4 “TEST RESULT”: 99.0
“TEST UNIT”: “× 103/ul” “TEST UNIT”: “%”

“TEST DATE”: 2018-06-04} “TEST DATE”: 2019-08-
05}

Table 4
Lab test in EHR represented as column-oriented data tables. ID - Lab record ID.

Column: NAME Column: TYPE Column: DATE

ID NAME ID TYPE ID DATE

PT001-1 White blood cell PT001-1 HEMATOLOGY PT001-1 2018-06-04
PT001-2 Oxygen saturation PT001-2 BLOOD GAS PT001-2 2019-08-05
PT001-3 Covid19 pcr PT002-1 BLOOD GAS PT001-3 2020-05-21
PT002-1 Oxygen saturation PT002-1 2019-08-05
PT002-2 Covid19 pcr PT002-2 2020-06-23

Y. Huang et al.

Journal of Biomedical Informatics 117 (2021) 103744

4

and the value is an array of document identifiers. If the array only
contains the document identifiers, it is called a “record-level inverted
index.” If the array also contains the location of each word, then it is
called a “word-level inverted index” [35].

In the context of document-oriented EHR dataset, document identi
fiers can be patient IDs and document content can be a list of records for
each patient. Inverted index for lab test consists of, for each lab test, a list
of patients (IDs) who had the corresponding lab test. For example, if
patients PT001,PT002,PT003 had Covid-19 PCR test, then this would
be captured in the inverted index as a corresponding entry:

(Covid-19 PCR : [PT001, PT002, PT003]).

This comes handy when querying for patients who had Covid-19 PCR
test: it is merely a lookup (for Covid-19 PCR) to retrieve the patient list.
In contrast, forward index requires searching the entire patient list, as
well as each patient’s lab records to look for Covid-19 PCR test, which
becomes extremely time-consuming for large EHR dataset.

2.4. Temporal information in EHR data

There are two conceptual types of temporal information in EHR. The
first is event-type, where each occurrence is associated with a single
timestamp. Multiple events can be aligned in a one dimensional timeline
[36]. In an EHR dataset, lab test and medication are event-type data. The
second is interval-type, where each occurrence is associated with a start
timestamp and an end timestamp. Basic interval relations are often
captured in Allen’s interval algebra [37]. Encounters are typical
interval-type occurrences in a patient’s medical record. For this study,
we are interested in the representation and query of event-type infor
mation in EHR dataset.

A challenge of temporal query using the conventional data model
involves comparison of timestamps between two events with a specified
temporal relation. Such a query involves quadratic time complexity of
O(n2), where n is the number of events for a single patient. In extreme
cases, a patient may have thousands of records, and the number of
comparison will be millions. For millions of patients, this operation
quickly becomes intractable. Therefore, optimization is necessary for
temporal query on large datasets. Indexing time (on the timestamp
column) is the most commonly used strategy to speed up temporal query
[38]. Preprocessing query before execution is another approach to
reduce condition evaluation effort [39]. Approach also has been pro
posed [40] to optimize the data model by pre-computing the relation
between two events and cache such information for future use. Another
study [41] demonstrated that complete in-memory processing can
improve query execution time on a dataset with millions of rows,
although memory remains a relatively expensive commodity today. Our
ELII approach is different from those proposed in such studies in that we
address the temporal query performance challenge using an innovative
collection of forward and inverted indices specifically designed to
handle EHR data and clinical events (see Discussion for general
applicability).

3. Methods

Typical EHR data contain four types of source files about a patient:
demographics (I), diagnosis (D), medication (M), and lab test (L). We use
such file types to introduce our concept of event-level inverted index.

3.1. Event-level inverted index

An event-level inverted index consists of four main components:

1. Patient Timeline, which contains all the clinical events and related
information (e.g., date and time) for each patient;

2. Conventional Inverted Index, which includes the inverted indices of
time-invariant variables, especially for demographic data, such as
“gender” and “race;”

3. Timeline Inverted Index (tiII), which consists of inverted indices of
time-dependent variables (i.e., event labels with timestamps), such
as “diagnosis code” and “lab test;” and

4. Global Lookup Table, which is a forward index of all variables and
associated inverted indices.

Patient Timeline Pt. We use multi-level nested documents (supported
by MongoDB) to store patients’ events where “Patient ID” serves as the
“primary key” of documents. Each timeline document consists of all
clinical events of a patient. Each patient may have multiple events and
each event may have multiple attributes. The result follows a structure
of JSON-like nested key-value (a, v) pairs:

Patient ID i : [(Event ID x : [(xa1, xv1), (xa2, xv2), …]),

(Event ID y : [(ya1, yv1), (ya2, yv2), …]),

(Event ID z : [(za1, zv1), (za2, zv2), …]),

⋯ ⋯]

Fig. 2 illustrates the conversion to Patient Timeline document from a
lab test file L and a diagnosis file D. Each record in the source file with
the same “Patient ID” (PT002 in this example) is stored in the same
document. For each table on left of Fig. 2, we selected the values of a
column (marked in blue, “TEST NAME” for lab test table in Fig. 2 and
“DIAGNOSIS CODE” for diagnosis table in Fig. 2) as the event keys. The
rest of the columns (in green) in the source file are the attributes for the
events. In Patient Timeline, the record values of each attribute are sorted
by record date in the structure of array. The length of the array repre
sents the number of occurrence of a certain type of events for a patient.

We use a column-oriented store for the values of each event attribute.
In Patient Timeline for PT002 (Fig. 2), for example, the “TEST RESULT”
field of “Covid-19 pcr” only contains the value in the column “TEST
RESULT” with “Patient ID” equals to “PT002.” Query performance will
benefit from a column-oriented data store because we only need to ac
cess the values of the query attributes instead of loading the entire
document for event-specific queries.

For time-related event, we sorted the “Date” attribute for each event,
which is another key idea for speeding up temporal query. In Fig. 2, for
example, “TEST DATE” field of “Covid-19 pcr” is sorted from the oldest
to the latest, and the values of “TEST RESULT” are sorted with the same
order of “TEST DATE.” Some temporal queries only involve the first or
the latest event, which can be retrieved in constant time. Using sorted
array, searching for a specific date has worst time-complexity O(log n),
where n is the number of elements in the array.

Conventional Inverted Index. Conventional inverted indices are used
for time-invariant variables, such as those involved in file type I. In the
demographic source file (Table 5), each column represents a different
demographic variable as an attribute, such as gender and race, and each
row represents a patient. This inverted index has a key-value pair
structure: {attribute value : patient ID list}, which the key
(attribute value) is the value of attribute and value (patient ID list) is the
list of patient IDs. For Table 5, the corresponding inverted indices for
“GENDER” looks like:

G
←

= [(male: [PT001, PT004]), (female: [PT002, PT003]), (other:
[PT005])].

Timeline Inverted Index (tiII). There are two types of tiII: 1) single-
attribute tiII; and 2) multi-attribute tiII.

For each event, the single-attribute tiII is structured as an attribute
column (e.g., “TEST NAME” or “DIAGNOSIS CODE”), stored as key-
value based documents. Each document consists of event name, the
first date of event for all patients, and the last date of event for all pa
tients. A 2-dimensional array (named Temporal patient list) is used to
capture all patients who have had this event. This 2-dimensional array

Y. Huang et al.

Journal of Biomedical Informatics 117 (2021) 103744

5

divides and sorts patient by event date chronologically:

Temporal patient list =
[[

pt list date0
]
,
[
pt list date1

]
,…,

[
pt list daten

]]
,

where [pt list datei] is an array consisting of patients (IDs) who had this
event i-number of days since the first date. For example, [pt list date0]

represents patients who had this event on the first date of event and

[pt list daten] represents patients who had this event on the last date of
event. This way, one can query and access the data by date in constant
time by looking up the array-index of the date instead of executing an
iteration of temporal comparisons between event time and query-
specified time.

Multi-attribute tiII has a similar data structure to that of single-
attribute tiII. The difference is that it handles combinations of events,
such as

[“TEST NAME” and “TEST RESULT’]

or

[“DIAGNOSIS CODE” and “DIAGNOSIS STATUS”].

Therefore, multi-attribute tiII has additional fields for multiple event
labels. Multi-attribute tiII provides a mechanism for pre-computed
multi-event join using inverted index.

Fig. 2. Illustrative conversion of row-oriented document data to Patient Timeline.

Table 5
Demographics data in table format.

ID GENDER RACE AGE

PT001 male Caucasian 35
PT002 female Asian 62
PT003 female Caucasian 19
PT004 male African American 47
PT005 unknown other 35

Fig. 3. Construct Multi-attribute tiII based on the Patient Timeline.

Y. Huang et al.

Journal of Biomedical Informatics 117 (2021) 103744

6

Fig. 3 shows an example of multi-attribute tiII for “Covid-19 pcr” test
combined with test result (“positive” or “negative”). The dotted box on
top is an example of Patient Timeline containing three patients who had
“Covid-19 pcr” test. The sample event has “TEST NAME” being “Covid-
19 pcr” and “TEST RESULT” being “positive,” with the corresponding
multi-attribute tiII in the second dotted box. Temporal patient list is
shown in the last dotted box, which represents consecutive dates of all
occurrences from the first date of the event to the last date of the event.
In this example, Temporal patient list with id = 1 (Fig. 3, below) stores
the identifiers of patients who had “positive” in “Covid-19 pcr” test from
“2020-05-21” to “2020-06-30.” Each item of the array is a list, which
stores the identifiers of all patients who had the event on this particular
date. For example, the 34th item of the array indicates PT002 and PT003
were tested “positive” for “Covid-19 pcr” in 2020-06-23 (34 days after
2020-05-21). If there is no event record of any patient on a specific day,
this array item will be empty (a place holder).

Global Lookup Table. This is a global forward index designed for
inverted index management. This global forward index makes it
straightforward to look up and access all inverted indices using all the
original variable in the EHR data. For example, the documents for
inverted index of “gender” can be looked up in the collection of de
mographic inverted indices.

3.2. Query execution

The template for temporal query can be structured as:

“Find patients who had [events] with [temporal constraints].”

User input parameters are “events” and “temporal constraints”
(optional). “Events” is one or multiple attributes and value pairs such as
diagnosis code: U071, diagnosis status: diagnosis of.

“Temporal constraints” provide the specification for the time interval
in which the events take place. For example, a temporal constraint can
be a period or temporal relations of two events such as “any stroke
diagnosis AFTER first Covid-19 diagnosis BETWEEN 2020-02-01 and
2020-05-01.”

Fig. 4 presents the architecture of our query engine. For database
content (Fig. 4, right), a NoSQL database with ELII is constructed from a
collection of EHR source files. On the frontend (Fig. 4, left), a user builds
a query using a web-based graphic interface. The query engine translates
a user’s query as a group of database statements for the “Query Back
end.” The Query Backend then executes the database statements ac
cording to statement type by consulting the Global Lookup Table and
combines the results according to query logic. The final result is then

presented back to the user in the web-interface. Query results can be
exported and downloaded for further analysis. Three basic types of
query are available:

1. Classical (non-temporal),
2. Absolute temporal, and
3. Relative temporal.

Classical. Classical query involves only non-temporal attributes, such
as demographics and clinical events without time constraint. Conven
tional inverted index are used to support this kind of query. Pseudocode
for classical query appears in Appendix A, Algorithm 1. Fig. 5 demon
strates the main steps involved in executing the classical query “Find
patients who tested positive in any Covid-19 pcr test.” These steps are
instantiated in the following statements in Algorithm 1:

1. Look up L
←
(TEST NAME : Covid − 19 pcr,TEST RESULT : positive)

⧹⧹Algorithm 1 line 1
2. Merge resulting patient IDs ⧹⧹Algorithm 1 line 2–5
3. Find unique patient IDs ⧹⧹Algorithm 1 line 6
4. Return results ⧹⧹Algorithm 1 line 7

Absolute temporal. Absolute temporal query contains input parame
ters that restrict the times for events, executable using tiII. The pseu
docode for absolute temporal query execution appears as Appendix A,
Algorithm 2. Fig. 6 demonstrates the main steps involved in executing
absolute temporal query “Find patients who tested positive in any Covid-
19 pcr test between 2020-06-01 and 2020-06-30.” These steps are
instantiated in the following statements in Algorithm 2:

Fig. 4. Query engine architecture.

Fig. 5. Query without temporal constraints.

Y. Huang et al.

Journal of Biomedical Informatics 117 (2021) 103744

7

1. Look up L
←
(TEST NAME :Covid − 19 pcr, TEST RESULT : positive)

within interval (2020 − 06 − 01,2020 − 06 − 30) ⧹⧹Algorithm 2 line
1–19

2. Merge resulting patient IDs ⧹⧹Algorithm 2 line 20
3. Find unique patient IDs ⧹⧹Algorithm 2 line 22
4. Return results ⧹⧹Algorithm 2 line 23

Relative temporal. A relative temporal query contains two events: A
and B, instead of a single event in the previous two query types. The
query also specifies a temporal relation between A and B. In EHR, events
of the same type may have multiple occurrences. Therefore, further
elaboration of the temporal relation, as shown in Table 6, is needed. In
total, there are six possible relations between two clinical events with
multiple occurrences (and corresponding timestamps).

The pseudocode for query with relative temporal constraints appears

as Appendix A, Algorithm 3. Fig. 7 shows the main steps involved in
executing relative temporal query “Find patients with any diagnosis
U071 (Covid-19) before diagnosis I63 (stroke).” These steps are
instantiated in the following statements in Algorithm 3:

1. X = D
←
(DIAGNOSIS CODE : U071) ⧹⧹Algorithm 3 line 5

2. Y = D
←
(DIAGNOSIS CODE : I63) ⧹⧹Algorithm 3 line 6

3. U = unique IDs in X ∩ Y ⧹⧹Algorithm 3 line 8
4. Find Pt

̅→
(Patient ID ∈ U) with x < y, where

x = first date for U071 and y = last date for I63 ⧹⧹Algorithm 3 line
9–49

In addition to these basic types of query, the query engine also
supports full boolean queries and individual patient Pt lookup.

Boolean query. Boolean query involves a combination of multiple
sub-queries using logical operators (AND and OR). Sub-queries are
executed independently first. Then, set intersection is performed on the
resulting patient identifiers resulting from sub-queries for AND and set
union (with unique patient identifiers) is performed on the resulting
patient identifiers resulting from sub-queries for OR. For example, result
for the following OR query

“Find patients who had a Covid-19 diagnosis OR a Covid-19 test with
a positive result”

Fig. 6. Query with absolute temporal condition.

Table 6
Possible relations between two clinical events with multiple timestamps.

Relation Operator Interpretation

A takes place before B All Last A occurs before first B
A takes place before B Any First A occurs before last B
A takes place before B First First A occurs before first B
A takes place before B Last Last A occurs before last B
A meets B All Every A occurs on the same day that B occurs
A meets B Any At least one A occurs on the same day that B occurs

Fig. 7. Query with relative temporal condition.

Y. Huang et al.

Journal of Biomedical Informatics 117 (2021) 103744

8

will be the union of patient identifiers from sub-queries “patients
with any Covid-19 diagnosis” and “patients with any positive Covid-19
test.”

Negation. Negation is a useful operation for clinical studies to find
patients without certain conditions. For EHR data, negation is handled
by appropriately interpreting “lack of data or information.” Three
typical scenarios are possible with the lack of information: 1. using
“Closed-World Assumption,” lack of information entails negation. For
example, if a patient did not have cancer diagnosis in medical record, it
is safe to infer that the patient did not have cancer. 2. No information.
For example, if a patient did not have HIV test, we have no way of
knowing if the person has HIV or not. 3. No available result. For
example, a patient may be coded as a smoker, but we have no “packs per
day” information at all.

With these possible interpretations in mind, “lack of data or infor
mation” query can be executed by forming two groups of patients: a
group Z of patients to exclude, and the group of all patients U. For
example, the query “Find patients who did NOT have any diagnosis
U071 (Covid-19) before diagnosis I63 (stroke)” can be performed by
following these steps:

1. Z = patients with any diagnosis U071 before diagnosis I63
2. U = all patients in the database
3. R = U⧹Z

Individual patient data look up. ELII is also designed for fast individual
patient history data retrieval, another important query modality. It uses
the Patient Timeline forward index Pt

̅→. The query input is a patient ID,
with other options including specific events the user wants to show in
the output, and a period of time the events fall within.

3.3. Evaluation method

Data source. We used OPTUM® de-identified Covid-19 EHR dataset
with Aug 6, 2020 release date. This dataset consisted 1.3 million patients
who had either Covid-19 related diagnoses (U071, U072 and U073) or
had Covid-19 specific lab tests (positive or negative). 16 individual
source files were contained in the release, for different types of EHR
records, such as patient demographics, diagnosis, medication, and lab.
Each source file comes with several types of attributes (i.e., the “col
umns”). For instance, the PATIENT source file contains demographic
attributes such as gender, age, and race. The DIAGNOSIS source file
contains attributes such as diagnosis code, diagnosis code type, and
diagnosis status. The MED ADMINISTRATIONS source file contains at
tributes such as drug name, National Drug Code (NDC), quantity of dose,
and dose frequency. Definition of these attribute types are given in the
accompanying data dictionary provided by OPTUM®. In total, 132 such

attribute types are suitable for query construction. Table 7 lists the
numbers of attributes and lines of records in the main source files, status
of relevant date fields, and file size.

Query performance was evaluated using MongoDB with the entire
dataset imported (1.3 million total patients). To test the performance of
ELII’s four components (patient timeline, inverted index, timeline
inverted index and global lookup table), three types of query (described
in Section 3.2) were tested:

1. Classical: Find patients who diagnosed/tested with [xxx];
2. Absolute temporal: Find patients who diagnosed/tested with [xxx]

after 2020-02-20;
3. Relative temporal: Find patients who diagnosed/tested with [xxx]

after 2020-02-20 and before first Covid-19 diagnosis.

For these three types of queries, we selected test events from Lab and
Diagnosis for two reasons: 1) they are two commonly used record types
for temporal query; 2) they are the top three largest record types in data
size and the record number of the OPTUM® Covid-19 dataset version
20200806. As listed in Table 7, “Lab” has the largest data size and the
second largest record number, and the data size and record number of
“Diagnosis” are both the third largest.

The “[xxx]” in each test query template is the place holder for query
parameter. Since the output of the temporal query is a list of patients, we
selected 19 query parameters with different number of patient counts.
We first picked 5 events with the number of patients ranging from 10 to
100,000 in base 10 logarithmic scale.

For events involving a number of patients greater than 100,000, we
picked additional four events with a number of patients from 100,000 to
500,000 in linear scale (every 100,000 patients). We also tested an
extreme case of “Lab” records: “test name” = “Oxygen saturation
(SpO2).pulse oximetry,” which has the largest number of patients in this
data release. The last event is Covid-19 diagnosis (“diagnosis code” =
“U071”), used as Event B for relative temporal query testing. Summary

Table 7
OPTUM® Covid-19 dataset summary statistics.

Table #
Attribute

Record Temporal File Size
(GB)

PATIENT 18 1,317,565 No 0.15
DIAGNOSIS 13 567,441,527 Yes 49.94
MED

ADMINISTRATIONS
21 170,517,390 Yes 42.32

PRESCRIPTIONS
WRITTEN

21 78,359,556 Yes 15.02

PATIENT REPORTED
MEDS

15 115,972,976 Yes 13.60

LAB 18 761,370,078 Yes 106.19
Other 93 2,067,229,913 N/A 131.22
Total 199 3,762,209,005 N/A 358.44

Table 8
19 events used for query evaluation.

ID Attribute Orignial Table # Record # Patient

D1 diagnosis code DIAGNOSIS 89 10
D2 diagnosis code DIAGNOSIS 247 100
D3 diagnosis code DIAGNOSIS 1,718 1,000
D4 diagnosis code DIAGNOSIS 52,863 10,015
D5 diagnosis code DIAGNOSIS 295,752 100,680
D6 diagnosis code DIAGNOSIS 2,053,756 203,739
D7 diagnosis code DIAGNOSIS 994,277 328,912
D8 diagnosis code DIAGNOSIS 3,987,244 452,383
D9 diagnosis code DIAGNOSIS 12,954,359 515,517

L1 test name LAB 19 10
L2 test name LAB 147 100
L3 test name LAB 1,035 1,004
L4 test name LAB 11,941 10,327
L5 test name LAB 305,057 102,405
L6 test name LAB 655,291 206,620
L7 test name LAB 1,151,535 300,434
L8 test name LAB 2,970,457 405,081
L9 test name LAB 3,034,999 531,467
L10 test name LAB 120,677,164 1,141,175

Reference diagnosis code DIAGNOSIS 555,733 100,686

Notes: D1: T25321S, D2: 236439005, D3: 3739, D4: I878, D5: 110033, D6:
E559, D7: Z1159, D8: Z79899, D9: I10, L1: Urate, L2: angle, L3: rv psp, L4: 2019
novel coronavirus naat, L5: Human chorionic gonadotropin (HCG).quantitative,
L6: Iron binding capacity.total (TIBC), L7: Thyroxine.free (FT4), L8: Prothrom
bin time (PT), L9: Hemoglobin A1C, L10: Oxygen saturation (SpO2).pulse ox
imetry. The last query value “U071” was only used in relative temporal query as
a reference event.

Y. Huang et al.

Journal of Biomedical Informatics 117 (2021) 103744

9

statistics for each event tested are shown in Table 8. For each event, we
executed all three query testing templates and recorded the execution
times for MongoDB statement translation, MongoDB running time, and
result array conversion. All queries were repeated 10 times consecu
tively and the average time were reported.

Baseline database. For baseline performance, we imported the
OPTUM® Covid-19 EHR dataset into MongoDB and kept its original
row-oriented data format. Each row in the source files is stored as a
document (the document keys are contained in the first column of each
source file). To optimize query performance for the baseline database,
we use MongoDB’s standard built-in indexing for all query experiments
for a fair comparison. In this setup, classical query shows how the
conventional inverted index in ELII improves performance. Temporal
query shows how “timeline inverted index” and “patient timeline” in
ELII improves performance, at a different scale.

4. Results

4.1. Data preprocessing

We developed an automated script for preprocessing OPTUM®
Covid-19 EHR dataset version 20200806 into MongoDB. 3.76 billion
records from 360 GB of text files were processed, creating event time
lines for 1.3 million patients. The global lookup table contained 132
attribute types (diagnosis code, test code, test name, etc.), based on
which we built single-attribute tiII for all 1.94 million attribute-value
pairs. Single-attribute tiII is indexed for only one data field, and multi-
attribute tiII is for multiple-field queries. For example, to query the
patients with “Covid-19 pcr” test and “positive” result, we needed two-
attribute tiII for the “TEST NAME” and the “TEST RESULT.” Creating
multi-attribute tiII will increase the performance for multi-field queries
but it requires extra pre-processing time.

4.2. Query performance

Table 9 shows the performance result for queries without temporal
constraints. Conventional inverted index worked well: all queries were
completed in less than 0.1 s for classical query.

Table 10 shows the performance result for absolute temporal query.
ELII performed an average 88 times faster than the baseline setup. It was
not as dramatic as in the case of classical query because query execution
time for the baseline setting is reduced by filtering out more records with

Table 9
Execution time (in seconds) for classical query “Find patients with [query
event].”

ID Baseline ELII Saved X-faster

D1 0.001 0.0004 0.0006 2.5
D2 0.0016 0.0003 0.0013 5.3
D3 0.0078 0.0005 0.0073 15.6
D4 0.2574 0.0009 0.2565 286.0
D5 1.3608 0.0056 1.3552 243.0
D6 8.0205 0.015 8.0055 534.7
D7 4.3322 0.0611 4.2711 70.9
D8 14.5332 0.0499 14.4833 291.2
D9 36.1807 0.0607 36.12 596.1

L1 0.0007 0.0003 0.0004 2.3
L2 0.0013 0.0004 0.0009 3.3
L3 0.0077 0.0005 0.0072 15.4
L4 0.0883 0.0009 0.0874 98.1
L5 1.8039 0.0057 1.7982 316.5
L6 3.2602 0.0135 3.2467 241.5
L7 5.4892 0.0215 5.4677 255.3
L8 17.2616 0.0545 17.2071 316.7
L9 16.8289 0.0481 16.7808 349.9
L10 345.8775 0.099 345.7785 3493.7
Avg 23.9639 0.0231 23.9408 1037.6356

Notes: Baseline: baseline model using row-oriented data store, ELII: our method
using document-oriented data store with ELII, Saved: ELII Time - Baseline Time,
X-faster: Baseline Time ÷ ELII Time.

Table 10
Execution time (in seconds) for absolute temporal query “Find patients with
[Query Event] after Feb 20, 2020.”

ID Baseline ELII Saved X-faster

D1 0.001 0.0008 0.0002 1.3
D2 0.0014 0.0007 0.0007 2.0
D3 0.0069 0.0009 0.006 7.7
D4 0.2112 0.0024 0.2088 88.0
D5 0.8956 0.0078 0.8878 114.8
D6 5.4155 0.0702 5.3453 77.1
D7 4.2298 0.3043 3.9255 13.9
D8 10.5411 0.3058 10.2353 34.5
D9 24.707 0.9459 23.7611 26.1

L1 0.0007 0.0009 -0.0002 0.8
L2 0.0014 0.001 0.0004 1.4
L3 0.0063 0.0012 0.0051 5.3
L4 0.0942 0.0036 0.0906 26.2
L5 1.3034 0.1885 1.1149 6.9
L6 2.3589 0.051 2.3079 46.3
L7 4.3796 0.0694 4.3102 63.1
L8 14.7904 0.2539 14.5365 58.3
L9 14.9931 0.2764 14.7167 54.2
L10 319.2168 2.0664 317.1504 154.5
Avg 21.2186 0.2395 20.9791 88.5839

Notes: Baseline: baseline model using row-oriented data store, ELII: our method
using document-oriented data store with ELII, Saved: ELII Time - Baseline Time,
X-faster: Baseline Time ÷ ELII Time.

Table 11
Execution time (in seconds) for relative temporal query “Find patients had any
[Query Event A] before first Covid-19 diagnosis.”

ID Baseline ELII Saved X-faster

D1 2.652 0.1338 2.5182 19.8
D2 2.6504 0.1325 2.5179 20.0
D3 2.6716 0.1382 2.5334 19.3
D4 2.9773 0.2031 2.7742 14.7
D5 4.4099 0.7081 3.7018 6.2
D6 11.9138 1.3572 10.5566 8.8
D7 7.8546 1.2973 6.5573 6.1
D8 17.8092 2.5436 15.2656 7.0
D9 39.6454 3.2416 36.4038 12.2

L1 2.4523 0.1175 2.3348 20.9
L2 2.4235 0.0865 2.337 28.0
L3 2.4848 0.0888 2.396 28.0
L4 2.5785 0.1044 2.4741 24.7
L5 4.5704 0.7681 3.8023 6.0
L6 7.144 1.3152 5.8288 5.4
L7 10.5915 1.6565 8.935 6.4
L8 41.8886 2.4278 39.4608 17.3
L9 38.694 3.2004 35.4936 12.1
L10 493.3144 6.5753 486.7391 75.0
Avg 36.7751 1.3735 35.4016 26.7747

Notes: Baseline: baseline model using row-oriented data store, ELII: our method
using document-oriented data store with ELII, Saved: ELII Time - Baseline Time,
X-faster: Baseline Time ÷ ELII Time.

Y. Huang et al.

Journal of Biomedical Informatics 117 (2021) 103744

10

the time constraints. Meanwhile, query time for ELII was slightly
increased since an additional step was involved to slice the patient list
according to time period.

Table 11 shows the performance result for relative temporal query.
The baseline result shows relative temporal query was the most time-
consuming in our experiments. ELII achieved even better performance
than the other two query types. For the large scale query L10, it had a
significantly improvement over the baseline, achieving an average 26
times faster and reduced query execution time by 35 s on average.

Our ELII-based query engine surpassed the baseline in almost every
single testing query by execution time except for L1 (negligible difference
for a small query). Our approach demonstrated more significant time
reduction as the number of records became larger. The most time-
consuming query was “test name” = “Oxygen saturation (SpO2).pulse
oximetry,” which had 120 million records and 1.1 million patients. For all
three tested query types, baseline setup for SpO2 took 345.9, 319.2, and
493.3s respectively, while ELII reduced the time to 0.1, 2.1, and 6.6s,
demonstrating dramatic performance improvements for larger queries.

We performed validation of ELII result for query accuracy by
comparing the results with the same query using the baseline setup. For
all 57 tested queries (19 query events in Table 8 tested on three query
types), the results of the two approaches are exactly the same in both
number of patients and sets of patient IDs. We also randomly selected
and manually validated query results using the patient timeline lookup
function. By reviewing the records of a set of randomly selected patients,
we were able to independently confirm that the query results met our
query conditions.

4.3. Query interface

To demonstrate the feasibility of ELII for interactive cohort explo
ration, we developed a web-based user interface called CovidSphere
with which to build temporal queries for cohort exploration. The main
idea and design of CovidSphere followed the best practice of our pre
vious established query interface design experiences. These include
those reported in publications such as “MEDCIS’ [42], “X-search” [13],
as well as “DataSphere” [28]. Fig. 8 shows the query builder interface
layout with three areas annotated. In Fig. 8 area 1, a user may select an
attribute type among “query terms,” such as diagnosis code or test name,
to construct classic and absolute temporal queries. In Fig. 8 area 2, a
query template for relative temporal query is provided, where a user
may select different settings within four components: i) time period (the
start date and the end date), ii) events that include attribute type and
attribute value (i.e., event A and event B), iii) temporal relation between
two events (BEFORE or AFTER), and iv) operator mode for the temporal

relation as specified in Table 6. The example shown in Fig. 8 area 2
represents a query to find all patients who have ALL diagnosis code: I63
AFTER diagnosis code: U071 between Feb. 1, 2020 and Aug. 1, 2020. By
clicking the “QUERY” button, the query engine will translate the user
input into a backend query statement and obtain the corresponding list
of patient identifiers. Query result information is displayed in area 3 of
Fig. 8, which includes the number of patients meeting the query criteria.
A user may download the resulting list of patients with demographics
information in comma separated value format by clicking “EXPORT
DATA.”

Our experimental Covid-19 EHR database was implemented using
MongoDB 4.4 Community Edition on MacOS. The query library for
performance evaluation was written in Python (version 3.8.3). The ELII
query engine was built and evaluated on a Mac Pro 2019 with 2.7 GHz
24-Core Intel Xeon processor and 768 GB 2933 MHz DDR4 memory.

5. Discussion

5.1. Preprocessing effort

We developed ELII to enhance query performance and demonstrate
this for a large Covid-19 EHR dataset. To achieve this goal, we needed to
pre-compute ELII indices as part of data conversion to MongoDB data.
Our approach for building ELII involved two steps: (1) building a hash
map in such a way that the hash key is an existing event and the hash
value is a list of patient IDs with the associated records containing the
corresponding event. The time complexity for this step is O(n), where n
is the total number of data elements in the dataset. (2) sorting the events
associated with each patient, which has time complexity

∑m
i=1lilogli,

where m is the total number of events in the database and li is the total
number of records that contain the i − th event. Additional preprocess
ing time of 22 h was spent in building all single-attribute tiII of the 360
GB text files. This one time, preprocessing can be speeded up by using
parallel computing.

Although our experiments were carried out in a typical high-end
desktop machine, the query engine can also be hosted in a more
powerful environment, such as a computer cluster. One of our contri
butions is that, using commonly available computer hardware configu
rations, ELII can already achieve near-realtime query performance for a
large OPTUM® Covid-19 EHR dataset.

5.2. MongoDB Cold-start

MongoDB uses Memory Mapped Storage Engine (MMAP) which
maps files in the disk to memory for faster process. If the documents of a

Fig. 8. Layout of our temporal query interface.

Y. Huang et al.

Journal of Biomedical Informatics 117 (2021) 103744

11

query are not in memory, MongoDB will perform the mapping first and
then execute the query, which is called a cold-start. Experiments for this
study were performed with warm-start by making sure data was already
loaded in memory, in order for the results to only reflect the execution
time for queries. Even with cold-start, the ELII approach remains speedy
because it covers most queries without prompting MongoDB to load all
documents in memory.

5.3. MongoDB limit on document size

The maximum document size for MongoDB is 16 megabytes. This
restriction was intended for managing RAM and I/O bandwidth. In
extreme cases of the Covid-19 EHR dataset, a patient may have an
extremely large number of events or an event may have taken place for
an extremely large number of patients. If the corresponding document is
larger than the allowable size, such a document can be split into several.
Splitting will reduce query performance, but only for queries that trig
gered the splitting scenario. For example, {“diagnosis code”:“I10”}(D9
in Table 10) had 12,954,359 records that were split into 34 documents
using our automated script. As a consequence, this absolute temporal
query (D9) took much longer than other events involving fewer patients.

5.4. Patient timeline export

Query result consists of a list of patient IDs. A users can retrieve all
the records from any individual patient in the result immediately after a
query. The export function helps users to not only validate whether
patients match their search criteria, but also inspect and make sense of
the clinical event sequence in the specific cohort.

5.5. Time complexity estimation

MongoDB used B+ Tree for indexing, so a “find” statement is
O(log x) in time complexity, where x is the number of records in a
document. Let n be the total number of patients, and m be the total
number of unique events. Then the time complexity for classical and
absolute temporal query is O(log m), and the time complexity of indi
vidual patient timeline lookup is O(log n). Relative temporal query is
O(xy(log n)), where x is the number of resulting patients, and y is the
maximum number of an individual patient’s events.

5.6. General applicability

Although we primarily designed ELII for Covid-19 EHR data to
improve the performance of temporal query, our approach can be
applied to other standard and typical EHR data for chronic diseases and
conditions, with or without temporal query. In fact, our earlier work
[28] demonstrated that a NoSQL (e.g., MongoDB) approach can cut
query construction time by half while improving the speed of repre
sentative queries by a magnitude.

ELII also is applicable to other data models such as those for i2b2,
PCORNet, and OMOP. Query engines built for these widely used data
models have not provided sufficient support for temporal query. ELII
offers a pathway to creating MongoDB-like query engines for databases
using i2b2, PCORNet, and OMOP data models. The general steps
involved would consist of exporting data from i2b2, PCORNet, and
OMOP into text files for patient demographics, diagnosis, medication,
and labs, with appropriately linkable identifies for each record line in
the file. Then these source text files can be processed using our pre-
processing and ELII-construction scripts, and imported into a Mon
goDB environment, with a CovidSphere-like query interface. Limitations
and topics for further study include the need to reduce pre-processing
time using parallel computing, incremental database updates without
the need for full database reconstruction when updated source data
become available, and inefficiency in space utilization that is typically
associated with a document-oriented data store.

5.7. User interface usability evaluation

This is a substantial topic beyond the scope of the current paper.
However, the design of our CovidSphere user interface followed the best
practice from our previous established query interface design experi
ences. These include interfaces reported in publications such as MEDCIS
[42], X-search [13], as well as DataSphere [28], and we expect to have
similar outcomes. We recognize that some additional query functional
ities would be desirable, such as a query manager to save and share
queries, interfaces supporting case-control design and exploration, built-
in tools for visualization, and more flexibility for customized data
export. Using a similar strategy as our previously developed cohort
query and exploration tools, we plan to develop a comprehensive
interactive cohort exploration interface based on this new ELII data
model and our preliminary CovidSphere interface for OPTUM® Covid-
19 data. We plan to report the design, implementation, and user eval
uation of the system in a separate future paper.

5.8. Research utility

We have not performed a formal research utility assessment to pro
vide publishable evidence supporting our original design motivation in
enabling population-based Covid-19 research. However, the temporal
query functionality in CovidSphere using ELII is already benefiting
several ongoing studies locally on the impact and consequence of Covid-
19 on topics such as outcome differences between sex groups, and long-
term neurological impacts. Our approach provided an intuitive way to
communicate and refine study requirements for clinical investigators. It
provided live feedback on “what if” questions. Results on such topics
will be reported in disease-specific venues.

6. Conclusion

To better leveraging large EHR data for Covid-19 research, we
developed an innovative inverted index system to support fast temporal
query. Experimental results showed that a set of temporal queries tested
on 1.3 million patients resulted in average execution time of seconds or
less. Our study suggests that ELII is a promising approach supporting fast
temporal query, an important mode of cohort development for Covid-19
and other population-based research.

Contributors

GQZ developed the ELII concept. YH and XJL designed and refined
the ELII system and evaluation. YH wrote code for data preprocessing
and ELII backend. XJL implemented the ELII interface. All authors
contributed to writing and editing the manuscript.

Dataset availability

The dataset used for experiments in this study is provided by
OPTUM®, a third-party vendor. The University of Texas Health Science
Center at Houston licensed this dataset.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

We sincerely thank our colleagues Shiqiang Tao and Licong Cui for
valuable technical discussions. We also thank colleague Wei-Chun Chou
for her assistance in enhancing the rendering of the diagrams used in this
paper.

Y. Huang et al.

Journal of Biomedical Informatics 117 (2021) 103744

12

Appendix A. Pseudocode for temporal query

Algorithm 1. No temporal constraints

Procedure [patentIDList] = EventQuery(invertedIndexCollection, event)
Input invertedIndexCollection: The client for accessing ELII collection in MongoDB

event: The query event
Output patentIDList: The list of patient IDs after query

1: queryDocuments = invertedIndexCollection.find(“$or” : event);
2: patentIDList = [];
3: for document in queryDocuments do
4: patentIDList.add(document.Patient list);
5: end for
6: patentIDList = Unique(patentIDList);
7: return patentIDList

Algorithm 2. Absolute temporal condition

Procedure [patentIDList] = AbsoluteTemporalEventQuery(invertedIndexCollection, event,period)
Input invertedIndexCollection: The client for accessing ELII collection in MongoDB

event: The query event
period: The query period

Output patentIDList: The list of patient IDs after query
1: queryDocuments = invertedIndexCollection.find(“$or” : event);
2: patentIDList = [];
3: for document in queryDocuments do
4: firstRecordTime = document.First record date;
5: lastRecordTime = document.Last record date;
6: startIndex = 0
7: endIndex = Length(document.Patient list)
8: if period.start date is not None then
9: startIndex = period.start date − firstRecordTime;
10: if startIndex < 0 then
11: startIndex = 0
12: end if
13: end if
14: if period.end date is not None then
15: endIndex = period.end date − firstRecordTime;
16: if endIndex > Length(document.Patient list) then
17: endIndex = Length(document.Patient list)
18: end if
19: end if
20: patentIDList.add(document.Patient list[startIndex : endIndex]);
21: end for
22: patentIDList = Unique(patentIDList);
23: return patentIDList

Algorithm 3. Relative temporal condition

Procedure [patentIDList] = RelativeTemporalEventQuery(invertedIndex,patientTimeline, eventA,
eventB,period, cond,op)

Input invertedIndex: The client for accessing inverted index collection in MongoDB
patientTimeline: The client for accessing patient timeline collection in MongoDB
eventA: The first event A
eventB: The second event B
period: The query period
cond: The relation between event A and event B, as shown in Table 6
op: The operator of temporal query, as shown in Table 6

Output patentIDList: The list of patient IDs after query
1: if period is None then
2: patientListA = EventQuery(invertedIndex, eventA);
3: patientListB = EventQuery(invertedIndex, eventB);
4: else

(continued on next page)

Y. Huang et al.

Journal of Biomedical Informatics 117 (2021) 103744

13

(continued)

5: patientListA = AbsoluteTemporalEventQuery(invertedIndex, eventA,period);
6: patientListB = AbsoluteTemporalEventQuery(invertedIndex, eventB,period);
7: end if
8: patientListAandB = Intersection(patientListA,patientListB);
9: dateofEventA = patientTimeline.find(patientListAandB, eventA).sort().groupBy(“Patient ID”);
10: dateofEventB = patientTimeline.find(patientListAandB, eventB).sort().groupBy(“Patient ID”);
11: patentIDList = [];
12: for patientID in patientListAandB do
13: if (dateofEventA[“patientID”] is None) or (dateofEventB[“patientID”] is None) then
14: Continue;
15: end if
16: dateListA = dateofEventA[“patientID”];
17: dateListB = dateofEventB[“patientID”];
18: if cond is “Before” then
19: switch op do
20: case “All”
21: if dateListA.last() < dateListB.first() then
22: patentIDList.add(patientID);
23: end if
24: case “Any”
25: if dateListA.first() < dateListB.last() then
26: patentIDList.add(patientID);
27: end if
28: case “First”
29: if dateListA.first() < dateListB.first() then
30: patentIDList.add(patientID);
31: end if
32: case “Last”
33: if dateListA.last() < dateListB.last() then
34: patentIDList.add(patientID);
35: end if
36: else if cond is “Meet” then
37: switch op do
38: case “All”
39: if dateListA == dateListB then
40: patentIDList.add(patientID);
41: end if
42: case “Any”
43: if Length(Intersection(dateListA, dateListB)) > 0 then
44: patentIDList.add(patientID);
45: end if
46: end if
47: end for
48: patentIDList = Unique(patentIDList);
49: return patentIDList

References

[1] National covid cohort collaborative (N3C), https://ncats.nih.gov/n3c (accessed:
Oct 12, 2020).

[2] J.H. Moore, I. Barnett, M.R. Boland, Y. Chen, G. Demiris, G. Gonzalez-Hernandez,
D.S. Herman, B.E. Himes, R.A. Hubbard, D. Kim, et al., Ideas for how
informaticians can get involved with Covid-19 research, 2020.

[3] J. Wang, H. Anh, F. Manion, M. Rouhizadeh, Y. Zhang, Covid-19 signsym–a fast
adaptation of general clinical nlp tools to identify and normalize Covid-19 signs
and symptoms to omop common data model, ArXiv.

[4] G.S. Randhawa, M.P. Soltysiak, H. El Roz, C.P. de Souza, K.A. Hill, L. Kari, Machine
learning using intrinsic genomic signatures for rapid classification of novel
pathogens: Covid-19 case study, Plos One 15 (4) (2020) e0232391.

[5] A. Alimadadi, S. Aryal, I. Manandhar, P.B. Munroe, B. Joe, X. Cheng, Artificial
intelligence and machine learning to fight Covid-19, 2020.

[6] J. Toubiana, C. Poirault, A. Corsia, F. Bajolle, J. Fourgeaud, F. Angoulvant, A.
Debray, R. Basmaci, E. Salvador, S. Biscardi, et al., Kawasaki-like multisystem
inflammatory syndrome in children during the Covid-19 pandemic in paris, France:
prospective observational study, bmj 369.

[7] W. Guo, M. Li, Y. Dong, H. Zhou, Z. Zhang, C. Tian, R. Qin, H. Wang, Y. Shen, K.
Du, et al., Diabetes is a risk factor for the progression and prognosis of Covid-19,
Diabetes/metabolism research and reviews (2020) e3319.

[8] P. Luo, Y. Liu, L. Qiu, X. Liu, D. Liu, J. Li, Tocilizumab treatment in Covid-19: A
single center experience, J. Med. Virol. 92 (7) (2020) 814–818.

[9] T. Ganslandt, S. Mate, K. Helbing, U. Sax, H. Prokosch, Unlocking data for clinical
research–the German i2b2 experience, Appl. Clin. Informatics 2 (1) (2011) 116.

[10] C. Maier, J. Christoph, D. Schmidt, T. Ganslandt, H. Prokosch, S. Kraus,
M. Sedlmayr, Experiences of transforming a complex nephrologic care and research
database into i2b2 using the idrt tools, J. Healthcare Eng. (2019).

[11] V.G. Deshmukh, S.M. Meystre, J.A. Mitchell, Evaluating the informatics for
integrating biology and the bedside system for clinical research, BMC Med. Res.
Methodol. 9 (1) (2009) 70.

[12] J. Iavindrasana, G. Cohen, A. Depeursinge, H. Müller, R. Meyer, A. Geissbuhler,
Clinical data mining: a review, Yearbook Med. Informatics 18 (01) (2009)
121–133.

[13] L. Cui, N. Zeng, M. Kim, R. Mueller, E.R. Hankosky, S. Redline, G.-Q. Zhang, X-
search: an open access interface for cross-cohort exploration of the national sleep
research resource, BMC Med. Informatics Decision Making 18 (1) (2018) 99.

[14] N.J. Dobbins, C.H. Spital, R.A. Black, J.M. Morrison, B. de Veer, E. Zampino, R.
D. Harrington, B.D. Britt, K.A. Stephens, A.B. Wilcox, et al., Leaf: an open-source,
model-agnostic, data-driven web application for cohort discovery and translational
biomedical research, J. Am. Med. Inform. Assoc. 27 (1) (2020) 109–118.

[15] G.-Q. Zhang, T. Siegler, P. Saxman, N. Sandberg, R. Mueller, N. Johnson,
D. Hunscher, S. Arabandi, Visage: a query interface for clinical research, Summit
Translat. Bioinformatics 2010 (2010) 76.

[16] L. González, D. Pérez-Rey, E. Alonso, G. Hernández, P. Serrano, M. Pedrera,
A. Gómez, K.D. Schepper, T. Crepain, B. Claerhout, Building an i2b2-based
population repository for clinical research, Digital Personalized Health and
Medicine: Proceedings of MIE 2020 (270) (2020) 78.

[17] C.B. Forrest, K.M. McTigue, A.F. Hernandez, L.W. Cohen, H. Cruz, K. Haynes, R.
Kaushal, A.N. Kho, K.A. Marsolo, V.P. Nair, et al., PCORnet 2020: Current state,
accomplishments, and future directions, J. Clin. Epidemiol.

[18] J.G. Klann, M.A. Joss, K. Embree, S.N. Murphy, Data model harmonization for the
all of us research program: Transforming i2b2 data into the OMOP common data
model, PloS One 14 (2) (2019) e0212463.

Y. Huang et al.

https://ncats.nih.gov/n3c
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0020
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0020
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0020
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0040
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0040
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0045
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0045
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0050
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0050
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0050
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0055
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0055
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0055
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0060
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0060
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0060
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0065
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0065
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0065
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0070
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0070
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0070
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0070
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0075
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0075
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0075
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0080
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0080
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0080
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0080
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0090
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0090
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0090

Journal of Biomedical Informatics 117 (2021) 103744

14

[19] A. Rind, T.D. Wang, W. Aigner, S. Miksch, K. Wongsuphasawat, C. Plaisant,
B. Shneiderman, Interactive information visualization to explore and query
electronic health records, Found. Trends Human-Comput. Interact. 5 (3) (2013)
207–298.

[20] C. Binnig, F. Basık, B. Buratti, U. Cetintemel, Y. Chung, A. Crotty, C. Cousins,
D. Ebert, P. Eichmann, A. Galakatos, B. Hättasch, Towards interactive data
exploration, in: Real-Time Business Intelligence and Analytics 2015 Aug 31,
Springer, Cham, 2015, pp. 177–190.

[21] C. Friedman, G. Hripcsak, S.B. Johnson, J.J. Cimino, P.D. Clayton, A generalized
relational schema for an integrated clinical patient database, in: Proceedings of the
Annual Symposium on Computer Application in Medical Care, American Medical
Informatics Association, 1990, p. 335.

[22] V. Dinu, P. Nadkarni, Guidelines for the effective use of entity–attribute–value
modeling for biomedical databases, Int. J. Med. Informatics 76 (11–12) (2007)
769–779.

[23] J. Han, E. Haihong, G. Le, J. Du, Survey on nosql database, in: 2011 6th
international conference on pervasive computing and applications, IEEE, 2011, pp.
363–366.

[24] O. Tezer, A comparison of nosql database management systems and models,
DigitalOcean. Np 21.

[25] H. Vera, W. Boaventura, M. Holanda, V. Guimaraes, F. Hondo, Data modeling for
nosql document-oriented databases, in: CEUR Workshop Proceedings, vol. 1478,
2015, pp. 129–135.

[26] K. Banker, MongoDB in action, Manning Publications Co., 2011.
[27] X. Dong, J. Li, E. Soysal, J. Bian, et al., Covid-19 TestNorm: A tool to normalize

Covid-19 testing names to LOINC codes, J. Am. Med. Informat. Assoc. 27 (9)
(2020) 1437–1442.

[28] S. Tao, L. Cui, X. Wu, G.-Q. Zhang. Facilitating cohort discovery by enhancing
ontology exploration, query management and query sharing for large clinical data
repositories, in: InAMIA Annual Symposium Proceedings 2017, vol. 2017,
American Medical Informatics Association, p. 1685.

[29] A. Silvescu, D. Caragea, A. Atramentov, Graph databases, Artificial Intelligence
Research Laboratory Department of Computer Science, Iowa State University.

[30] O. Lassila, R.R. Swick, et al., Resource description framework (rdf) model and
syntax specification.

[31] E. Miller, An introduction to the resource description framework, Bull. Am. Soc.
Inform. Sci. Technol. 25 (1) (1998) 15–19.

[32] T. Jevsikova, A. Berniukevicius, E. Kurilovas, Application of resource description
framework to personalise learning: Systematic review and methodology.,
Informatics, Education 16 (1) (2017) 61–82.

[33] G.E. Modoni, M. Sacco, W. Terkaj, A survey of rdf store solutions, in: 2014
International Conference on Engineering, Technology and Innovation (ICE), IEEE,
2014, pp. 1–7.

[34] S. Powers, Practical RDF: solving problems with the resource description
framework, O’Reilly Media, Inc, 2003.

[35] R. Baeza-Yates, B. Ribeiro-Neto, et al., Modern information retrieval, vol. 463,
ACM Press, New York, 1999.

[36] W.-N. Lee, A.K. Das, Local alignment tool for clinical history: temporal semantic
search of clinical databases, in: AMIA Annual Symposium Proceedings, vol. 2010,
American Medical Informatics Association, 2010, p. 437.

[37] J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26
(11) (1983) 832–843.

[38] T. Johnston, Bitemporal data: theory and practice, Newnes, 2014.
[39] M. Kvet, K. Matiasko, Temporal data performance optimization using

preprocessing layer, J. Inform. Syst. Eng. Manage. 3 (2) (2018) 13.
[40] S.H. El-Sappagh, S. El-Masri, A.M. Riad, M. Elmogy, Electronic health record data

model optimized for knowledge discovery, Int. J. Comput. Sci. Issues (IJCSI) 9 (5)
(2012) 329.

[41] S. Lam, Patternfinder in microsoft amalga: Temporal query formulation and result
visualization in action. unpublished, 2008. http://www.cs.umd.edu/hcil/patter
nFinderInAmalga/PatternFinderS-HonorsPaper.pdf.

[42] G.Q. Zhang, L. Cui, S. Lhatoo, S.U. Schuele, S.S. Sahoo, MEDCIS: multi-modality
epilepsy data capture and integration system, in: AMIA Annual Symposium
Proceedings 2014, vol. 2014, American Medical Informatics Association, p. 1248.

Y. Huang et al.

http://refhub.elsevier.com/S1532-0464(21)00073-3/h0095
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0095
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0095
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0095
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0100
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0100
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0100
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0100
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0110
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0110
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0110
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0130
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0135
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0135
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0135
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0155
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0155
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0160
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0160
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0160
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0165
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0165
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0165
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0170
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0170
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0185
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0185
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0190
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0195
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0195
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0200
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0200
http://refhub.elsevier.com/S1532-0464(21)00073-3/h0200
http://www.cs.umd.edu/hcil/patternFinderInAmalga/PatternFinderS-HonorsPaper.pdf
http://www.cs.umd.edu/hcil/patternFinderInAmalga/PatternFinderS-HonorsPaper.pdf

	ELII: A novel inverted index for fast temporal query, with application to a large Covid-19 EHR dataset
	1 Introduction
	1.1 Temporal query
	1.2 Interactive cohort exploration

	2 Background
	2.1 Database structure
	2.2 Document-oriented data store and MongoDB
	2.3 Inverted index
	2.4 Temporal information in EHR data

	3 Methods
	3.1 Event-level inverted index
	3.2 Query execution
	3.3 Evaluation method

	4 Results
	4.1 Data preprocessing
	4.2 Query performance
	4.3 Query interface

	5 Discussion
	5.1 Preprocessing effort
	5.2 MongoDB Cold-start
	5.3 MongoDB limit on document size
	5.4 Patient timeline export
	5.5 Time complexity estimation
	5.6 General applicability
	5.7 User interface usability evaluation
	5.8 Research utility

	6 Conclusion
	Contributors
	Dataset availability
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Pseudocode for temporal query
	References

