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A B S T R A C T   

Fast temporal query on large EHR-derived data sources presents an emerging big data challenge, as this query 
modality is intractable using conventional strategies that have not focused on addressing Covid-19-related 
research needs at scale. We introduce a novel approach called Event-level Inverted Index (ELII) to optimize 
time trade-offs between one-time batch preprocessing and subsequent open-ended, user-specified temporal 
queries. An experimental temporal query engine has been implemented in a NoSQL database using our new ELII 
strategy. Near-real-time performance was achieved on a large Covid-19 EHR dataset, with 1.3 million unique 
patients and 3.76 billion records. We evaluated the performance of ELII on several types of queries: classical 
(non-temporal), absolute temporal, and relative temporal. Our experimental results indicate that ELII accom
plished these queries in seconds, achieving average speed accelerations of 26.8 times on relative temporal query, 
88.6 times on absolute temporal query, and 1037.6 times on classical query compared to a baseline approach 
without using ELII. Our study suggests that ELII is a promising approach supporting fast temporal query, an 
important mode of cohort development for Covid-19 studies.   

1. Introduction 

Covid-19 is an unfolding global pandemic calling for urgent and 
accelerated efforts in identifying appropriate treatment strategies, 
developing accurate and rapid testing methods, and producing effective 
vaccines. Due to this urgency, clinical trials for treatment and preven
tion of Covid-19 must be complemented by population-based ap
proaches. Clinical data about patients in electronic health records (EHR) 
provide an important source of information for Covid-19 research [1]. 
Benefits include those of traditional retrospective analyses such as 
identifying risk profiles, revealing health disparities, and understanding 
long-term health implications [2,3]. They also enable machine learning 
approaches for outcome predication, drug repurposing, and poly- 
pharmacy (combinational drug effects) investigation [4,5]. 

However, population-based Covid-19 study brings into sharp focus 
two unique query requirements in the context of EHR-derived big data. 
One is temporal query, particularly on medical events around a patient’s 
Covid-19 diagnosis. The second is interface for interactive cohort 
exploration, which requires near real-time responses to user-specified 
queries to facilitate study design and data access. 

1.1. Temporal query 

Covid-19 studies often involve temporal relationships on patient 
phenotype and healthcare events (e.g. diagnosis, medication, lab test 
and procedure) before and after Covid-19 diagnosis [6–8]. Here are 
some sample cohorts specifications that involve temporal relationships:  

1. All patients who received polymerase chain reaction (PCR) test in May 
2020;  

2. All patients who developed neurologic complications after extracorporeal 
membrane oxygenation (ECMO) for Covid;  

3. All patients who had stroke within a month after Covid diagnosis;  
4. All patients who did not have any cardiovascular condition before positive 

Covid diagnosis. 

Example 1 involves absolute temporal query, while the rest involves 
relative temporal queries. Example 1 is an instance of query with 
negation. 

Temporal query, an important query modality for population-based 
Covid-19 research, has not been a traditional focus of clinical query 
systems [9] which were mostly focused on patient-recruitment for 
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clinical trials [10,11]. Fast temporal query on large EHR-derived data
sets presents an emerging big data challenge, since temporal query is 
computationally expensive and takes too long to execute using a brute- 
force approach. Specifically, relative temporal query involves pairwise 
comparison of dates between clinical events, so a new data structure and 
query execution strategy is required to achieve a suitable level of 
response speed. Near real-time interface response is a critical factor to 
achieve a sense of “interactivity” for cohort exploration. 

1.2. Interactive cohort exploration 

Two general types of data processing pipeline for population-based 
studies exist. One is ad-hoc data processing, which involves the devel
opment of study-specific data extraction programming scripts to run 
directly on source data to obtain specific patient cohorts of interest [12]. 
The second is cohort discovery based on a clinical query interface, 
allowing an investigator to interactively explore and formulate patient 
cohorts of interest [13–15]. Such interfaces are often built on top of 
databases constructed using common data models such as those popu
lated through i2b2 [16], PCORnet [17], and OHDSI/MOP [18]. 

As pointed out in [15], the main distinction between the two pipe
lines can be seen in Fig. 1. The ad-hoc approach (Fig. 1, left) requires an 
investigator to communicate data request to a data analyst (1), who in 
turn implements the request as a data extraction script to run on the data 
source (which can be in database or file-based format) (2), and then 
obtains requested data and finally returns results for further analysis (3). 
The time span between steps 1 and 3 can be weeks if not months, and 
steps 1–3 often need to be iterated as study criteria are refined. The 
second approach (Fig. 1: right) supports a paradigm which allows in
vestigators and data analysts (1–2) to construct and issue query directly 
through a web interface without requiring the knowledge about how the 
backend data are structured and stored, whereby shortening the data- 
access life-cycle and facilitate collaborative data exploration (Fig. 1, 
right). 

Many existing EHR data warehouses require the use of a command- 
line query language to extract data. Even for those that are equipped 
with a graphical user interface, there is a general lack of systematic and 
dedicated support for temporal queries in both the query language and 
the user interface [19]. Near real-time response to temporal query is one 
of the most computationally challenging aspects for interactive cohort 
exploration [20]. Methods for exploring, querying and interacting with 
data need to be improved to cope with the size and complexity of data. 
Indeed, an estimated 40% of study respondents reported that they 
sometimes gave up because the task was too time-consuming [19]. This 
query response latency challenge is amplified when using larger Covid- 
19 EHR dataset for population-based research. 

To address these challenges, we introduce a novel approach called 
Event-level Inverted Index (ELII) to optimize time trade-offs between 
one-time batch preprocessing and open-ended, user-specified temporal 
queries. To demonstrate the feasibility of ELII, we developed an exper
imental query engine in a NoSQL (not only SQL) database using the ELII 
strategy to support the temporal query modality. Near-real-time per
formance was achieved on a large Covid-19 EHR dataset, with 1.3 

million unique patients and 3.76 billion records. We evaluated the 
performance of ELII on five types of queries: non-temporal (classical), 
absolute temporal, relative temporal, query with negation, and patient- 
level event sequence look-up. Our experimental results show that ELII 
handled all five types of queries in seconds, achieving average speed 
accelerations of 26.8 times on relative temporal query, 88.6 times on 
absolute temporal query, and 1037.6 times on classical query compared 
to a baseline approach without using ELII. To summarize, our main 
contributions are:  

• A novel inverted index, ELII, to support fast temporal query on 
clinical events;  

• A data preprocessing pipeline for a document-based data model for 
ELII implementation;  

• An experimental query engine to support common queries and 
related evaluation using a real-world, large Covid-19 EHR dataset to 
demonstrate the enhanced performance using ELII. 

2. Background 

2.1. Database structure 

Relational data store. Relational data store is a commonly used 
method for storing and managing clinical data [21]. EHR data is rep
resented as tables, where each row in a table represents a record, and 
each column represents an attribute. Table 1 illustrates a clip of Lab 
table from an EHR dataset, where the first column captures patient 
identifier (ID). 

Entity-attribute-value (EAV) data store. One limitation of the relational 
data store is the inflexible of attributes [22]. An attribute may have 
different types of data and some records may have missing data or 
without applicable attributes. EVA data model is an alternative row- 
based design. In general, an EAV table stores the attribute-value pairs 
of an entity. An entity may have multiple tables separated by data types. 
In Table 2, for instance, a Lab record may have text, numeric and date- 
time data, and they are stored in three different EAV tables. In each 
table, the “ID” (Table 2, first column) is the lab record ID which serves as 
a linkage between the EVA tables. i2b2, a popular clinical query engine, 
uses EAV data store in the so-called “star-schema” design [16,10]. 

2.2. Document-oriented data store and MongoDB 

Document-oriented data store. Document-oriented data store, or 
document-oriented database, is a type of NoSQL database [23]. Different 
from traditional relational databases, document-oriented databases are 
designed to store, retrieve and manage information [24] represented as 
a collection of “documents” in JSON (JavaScript Object Notation) or 
XML (Extensible Markup Language) format [25]. A document can be 
large, complex, and semi-structured. It serves as the basic unit of data 
processing and conceptually is equivalent to a record in a relational data 
table. MongoDB is a document-oriented database system using JSON- 
type documents with optional schemas [26]. A group of documents in 

Fig. 1. Typical data processing pipelines for population-based studies (adapted 
from [15]). Left: ad-hoc scripting. Right: data exploration using a web- 
based interface. 

Table 1 
Lab test in EHR represented as a conventional relational data table.  

ID CODE NAME TYPE RES UNIT DATE 

PT001 26464- 
8 

White blood 
cell 

HEMAT 9.4 × 103/

ul  
2018- 
06-04 

PT001 59408- 
5 

Oxygen 
saturation 

BLOOD 
GAS 

99.0 %  2019- 
08-05 

PT001 N/A Covid19 pcr N/A negative N/A 2020- 
05-21 

PT002 59408- 
5 

Oxygen 
saturation 

BLOOD 
GAS 

96.0 %  2019- 
08-05 

PT002 N/A Covid19 pcr N/A positive N/A 2020- 
06-23  
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MongoDB is called a “collection.” Each element or entry in a document is 
represented as a key-value pair. Key-value pairs can be nested to provide 
tremendous expressive power for capturing complex information. 
MongoDB’s collections do not enforce document structure; therefore, it 
is “schema-less,” providing flexibility for data type and data-modeling 
choices to match application requirements. Table 3 shows three lab- 
related documents for the same patient (PT001) in previous examples 
using a document-oriented data store. 

For this study, we use document-oriented data store implemented in 
MongoDB for the following reasons: 

1. Rapid response to the Covid-19 pandemic requires data from mul
tiple sites and sources to be pooled together in a short timeframe. 
This entails that not all source data can be mandated to follow the 
same data model, data format, or coding standard [27]. Document- 
oriented data store provides the flexibility for managing data 
format and coding variability.  

2. MongoDB provides querying facility which can take advantage of 
customized indices, nested/embedded objects and arrays, and sup
port for on-the-fly regular expression processing during query. 
MongoDB is also scalable in database size, with a built-in constraint 
that the maximum BSON (a binary representation of MongoDB’s 
JSON document data records) document size is 16 MB. The number 
of levels of nesting for BSON documents is limited at 100. These 
generous constraints provide enough flexibility for most applications 
(but see Discussion on document size).  

3. We have had prior successful experiences using MongoDB [28], so 
this database environment is familiar to our team, which can help 

facilitate rapid development through code reuse and software ar
chitecture repurposing. 

Column-oriented data store. Column-oriented data store is an alter
native data structure used for NoSQL databases. In a column-oriented 
database, each column is stored in a single table. Table 4 is an 
example of five lab records in the column-oriented data store. Two of the 
five records do not have “TYPE” data so only other three records were 
stored in the colum “TYPE.” For a query on “TYPE,” three records with 
“TYPE” column will be fetched instead of all five records with entire 
columns. Such flexibility can help accelerate query execution on sparse 
dataset, or when not all the columns are involved in the execution of a 
query. 

Though not used in this study, we mention graph-based data store for 
completeness. Graph-based data store is used in graph databases (GDB), 
which uses graph structure for semantic query and uses nodes, edges and 
attributes to represent and store data [29]. A node in the GDB represent 
an instance, similar to a record or a row in a relational database (or a 
document in a document-store database), such as person, business, and 
account. An edge represent a relationship connecting two nodes, an 
abstraction not directly implemented in a relational model or a 
document-store model. Resource Description Framework (RDF) is spe
cial type of GDB that uses XML syntax to describe the characteristics of 
web resources and the relationship between resources [30]. The main 
idea of RDF is to create statements about resources (in particular web 
resources) in expressions of the form (subject, predicate, object), known 
as triples [31]. This model provides an infrastructure for metadata of 
different web applications [32]. A collection of RDF statements intrin
sically represents a labeled, directed multi-graph, and this makes an RDF 
data model better suited to certain types of knowledge representation 
[33,34]. 

2.3. Inverted index 

Originating from the field of information retrieval, a forward index, 
D→, associates each document D (or its identifier-ID) to the list of words 
that the document contains. For example, to answer the query “Which 
documents contain word X,” the forward index requires exhaustive 
iteration through each document and each word to locate a hit. 

Inverted index, D
←

, is a common technique used for enhancing query 
performance. For text-based search, an inverted index consists of a list of 
all the unique words appearing in a document collection, and for each 
word, a list of identifiers for those documents that contain the word. An 
inverted index is usually implemented as a hash map: the key is the word 

Table 2 
Lab test in EHR represented as EAV data tables. ID - lab record ID; A - Attribute; V - Value.  

Value type: text Value type: numeric Value type: date 

ID A V ID A V ID A V 

PT001-1 TEST CODE 26464-8 PT001-1 TEST RESULT 9.4 PT001-1 TEST DATE 2018-06-04 
PT001-1 TEST NAME White blood cell PT001-2 TEST RESULT 99.0 PT001-2 TEST DATE 2019-08-05 
PT001-1 TEST TYPE HEMAT PT002-1 TEST RESULT 96.0 PT001-3 TEST DATE 2020-05-21 
PT001-1 TEST UNIT × 103/ul     PT002-1 TEST DATE 2019-08-05  

Table 3 
Lab test in EHR represented as a document-based data store.  

{“DOCUMENT ID”:“1” {“DOCUMENT ID”:“2” {“DOCUMENT 
ID”:“3” 

“PATIENT ID”: “PT001” “PATIENT ID”: “PT001” “PATIENT ID”: 
“PT001” 

“TEST CODE”: “26464-8” “TEST CODE”: “59408-5” “TEST NAME”: 
“Covid19 pcr” 

“TEST NAME”: “White blood 
cell” 

“TEST NAME”: “Oxygen 
saturation” 

“TEST RESULT”: 
“negative” 

“TEST 
TYPE”:“HEMATOLOGY” 

“TEST TYPE”:“BLOOD 
GAS” 

“TEST DATE”: 2020- 
05-21} 

“TEST RESULT”: 9.4 “TEST RESULT”: 99.0  
“TEST UNIT”: “× 103/ul”  “TEST UNIT”: “%”   

“TEST DATE”: 2018-06-04} “TEST DATE”: 2019-08- 
05}   

Table 4 
Lab test in EHR represented as column-oriented data tables. ID - Lab record ID.  

Column: NAME Column: TYPE Column: DATE 

ID NAME ID TYPE ID DATE 

PT001-1 White blood cell PT001-1 HEMATOLOGY PT001-1 2018-06-04 
PT001-2 Oxygen saturation PT001-2 BLOOD GAS PT001-2 2019-08-05 
PT001-3 Covid19 pcr PT002-1 BLOOD GAS PT001-3 2020-05-21 
PT002-1 Oxygen saturation   PT002-1 2019-08-05 
PT002-2 Covid19 pcr   PT002-2 2020-06-23  
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and the value is an array of document identifiers. If the array only 
contains the document identifiers, it is called a “record-level inverted 
index.” If the array also contains the location of each word, then it is 
called a “word-level inverted index” [35]. 

In the context of document-oriented EHR dataset, document identi
fiers can be patient IDs and document content can be a list of records for 
each patient. Inverted index for lab test consists of, for each lab test, a list 
of patients (IDs) who had the corresponding lab test. For example, if 
patients PT001,PT002,PT003 had Covid-19 PCR test, then this would 
be captured in the inverted index as a corresponding entry: 

(Covid-19 PCR : [PT001, PT002, PT003]).

This comes handy when querying for patients who had Covid-19 PCR 
test: it is merely a lookup (for Covid-19 PCR) to retrieve the patient list. 
In contrast, forward index requires searching the entire patient list, as 
well as each patient’s lab records to look for Covid-19 PCR test, which 
becomes extremely time-consuming for large EHR dataset. 

2.4. Temporal information in EHR data 

There are two conceptual types of temporal information in EHR. The 
first is event-type, where each occurrence is associated with a single 
timestamp. Multiple events can be aligned in a one dimensional timeline 
[36]. In an EHR dataset, lab test and medication are event-type data. The 
second is interval-type, where each occurrence is associated with a start 
timestamp and an end timestamp. Basic interval relations are often 
captured in Allen’s interval algebra [37]. Encounters are typical 
interval-type occurrences in a patient’s medical record. For this study, 
we are interested in the representation and query of event-type infor
mation in EHR dataset. 

A challenge of temporal query using the conventional data model 
involves comparison of timestamps between two events with a specified 
temporal relation. Such a query involves quadratic time complexity of 
O(n2), where n is the number of events for a single patient. In extreme 
cases, a patient may have thousands of records, and the number of 
comparison will be millions. For millions of patients, this operation 
quickly becomes intractable. Therefore, optimization is necessary for 
temporal query on large datasets. Indexing time (on the timestamp 
column) is the most commonly used strategy to speed up temporal query 
[38]. Preprocessing query before execution is another approach to 
reduce condition evaluation effort [39]. Approach also has been pro
posed [40] to optimize the data model by pre-computing the relation 
between two events and cache such information for future use. Another 
study [41] demonstrated that complete in-memory processing can 
improve query execution time on a dataset with millions of rows, 
although memory remains a relatively expensive commodity today. Our 
ELII approach is different from those proposed in such studies in that we 
address the temporal query performance challenge using an innovative 
collection of forward and inverted indices specifically designed to 
handle EHR data and clinical events (see Discussion for general 
applicability). 

3. Methods 

Typical EHR data contain four types of source files about a patient: 
demographics (I), diagnosis (D), medication (M), and lab test (L). We use 
such file types to introduce our concept of event-level inverted index. 

3.1. Event-level inverted index 

An event-level inverted index consists of four main components:  

1. Patient Timeline, which contains all the clinical events and related 
information (e.g., date and time) for each patient;  

2. Conventional Inverted Index, which includes the inverted indices of 
time-invariant variables, especially for demographic data, such as 
“gender” and “race;”  

3. Timeline Inverted Index (tiII), which consists of inverted indices of 
time-dependent variables (i.e., event labels with timestamps), such 
as “diagnosis code” and “lab test;” and  

4. Global Lookup Table, which is a forward index of all variables and 
associated inverted indices. 

Patient Timeline Pt. We use multi-level nested documents (supported 
by MongoDB) to store patients’ events where “Patient ID” serves as the 
“primary key” of documents. Each timeline document consists of all 
clinical events of a patient. Each patient may have multiple events and 
each event may have multiple attributes. The result follows a structure 
of JSON-like nested key-value (a, v) pairs: 

Patient ID i : [(Event ID x : [(xa1, xv1), (xa2, xv2), …] ),

(Event ID y : [(ya1, yv1), (ya2, yv2), … ] ),

(Event ID z : [(za1, zv1), (za2, zv2), … ] ),

⋯ ⋯]

Fig. 2 illustrates the conversion to Patient Timeline document from a 
lab test file L and a diagnosis file D. Each record in the source file with 
the same “Patient ID” (PT002 in this example) is stored in the same 
document. For each table on left of Fig. 2, we selected the values of a 
column (marked in blue, “TEST NAME” for lab test table in Fig. 2 and 
“DIAGNOSIS CODE” for diagnosis table in Fig. 2) as the event keys. The 
rest of the columns (in green) in the source file are the attributes for the 
events. In Patient Timeline, the record values of each attribute are sorted 
by record date in the structure of array. The length of the array repre
sents the number of occurrence of a certain type of events for a patient. 

We use a column-oriented store for the values of each event attribute. 
In Patient Timeline for PT002 (Fig. 2), for example, the “TEST RESULT” 
field of “Covid-19 pcr” only contains the value in the column “TEST 
RESULT” with “Patient ID” equals to “PT002.” Query performance will 
benefit from a column-oriented data store because we only need to ac
cess the values of the query attributes instead of loading the entire 
document for event-specific queries. 

For time-related event, we sorted the “Date” attribute for each event, 
which is another key idea for speeding up temporal query. In Fig. 2, for 
example, “TEST DATE” field of “Covid-19 pcr” is sorted from the oldest 
to the latest, and the values of “TEST RESULT” are sorted with the same 
order of “TEST DATE.” Some temporal queries only involve the first or 
the latest event, which can be retrieved in constant time. Using sorted 
array, searching for a specific date has worst time-complexity O(log n), 
where n is the number of elements in the array. 

Conventional Inverted Index. Conventional inverted indices are used 
for time-invariant variables, such as those involved in file type I. In the 
demographic source file (Table 5), each column represents a different 
demographic variable as an attribute, such as gender and race, and each 
row represents a patient. This inverted index has a key-value pair 
structure: {attribute value : patient ID list}, which the key 
(attribute value) is the value of attribute and value (patient ID list) is the 
list of patient IDs. For Table 5, the corresponding inverted indices for 
“GENDER” looks like: 

G
← 

= [(male: [PT001, PT004]), (female: [PT002, PT003]), (other: 
[PT005])]. 

Timeline Inverted Index (tiII). There are two types of tiII: 1) single- 
attribute tiII; and 2) multi-attribute tiII. 

For each event, the single-attribute tiII is structured as an attribute 
column (e.g., “TEST NAME” or “DIAGNOSIS CODE”), stored as key- 
value based documents. Each document consists of event name, the 
first date of event for all patients, and the last date of event for all pa
tients. A 2-dimensional array (named Temporal patient list) is used to 
capture all patients who have had this event. This 2-dimensional array 
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divides and sorts patient by event date chronologically: 

Temporal patient list =
[[

pt list date0
]
,
[
pt list date1

]
,…,

[
pt list daten

]]
,

where [pt list datei] is an array consisting of patients (IDs) who had this 
event i-number of days since the first date. For example, [pt list date0]

represents patients who had this event on the first date of event and 

[pt list daten] represents patients who had this event on the last date of 
event. This way, one can query and access the data by date in constant 
time by looking up the array-index of the date instead of executing an 
iteration of temporal comparisons between event time and query- 
specified time. 

Multi-attribute tiII has a similar data structure to that of single- 
attribute tiII. The difference is that it handles combinations of events, 
such as 

[“TEST NAME” and “TEST RESULT’] 

or 

[“DIAGNOSIS CODE” and “DIAGNOSIS STATUS”]. 

Therefore, multi-attribute tiII has additional fields for multiple event 
labels. Multi-attribute tiII provides a mechanism for pre-computed 
multi-event join using inverted index. 

Fig. 2. Illustrative conversion of row-oriented document data to Patient Timeline.  

Table 5 
Demographics data in table format.  

ID GENDER RACE AGE 

PT001 male Caucasian 35 
PT002 female Asian 62 
PT003 female Caucasian 19 
PT004 male African American 47 
PT005 unknown other 35  

Fig. 3. Construct Multi-attribute tiII based on the Patient Timeline.  
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Fig. 3 shows an example of multi-attribute tiII for “Covid-19 pcr” test 
combined with test result (“positive” or “negative”). The dotted box on 
top is an example of Patient Timeline containing three patients who had 
“Covid-19 pcr” test. The sample event has “TEST NAME” being “Covid- 
19 pcr” and “TEST RESULT” being “positive,” with the corresponding 
multi-attribute tiII in the second dotted box. Temporal patient list is 
shown in the last dotted box, which represents consecutive dates of all 
occurrences from the first date of the event to the last date of the event. 
In this example, Temporal patient list with id = 1 (Fig. 3, below) stores 
the identifiers of patients who had “positive” in “Covid-19 pcr” test from 
“2020-05-21” to “2020-06-30.” Each item of the array is a list, which 
stores the identifiers of all patients who had the event on this particular 
date. For example, the 34th item of the array indicates PT002 and PT003 
were tested “positive” for “Covid-19 pcr” in 2020-06-23 (34 days after 
2020-05-21). If there is no event record of any patient on a specific day, 
this array item will be empty (a place holder). 

Global Lookup Table. This is a global forward index designed for 
inverted index management. This global forward index makes it 
straightforward to look up and access all inverted indices using all the 
original variable in the EHR data. For example, the documents for 
inverted index of “gender” can be looked up in the collection of de
mographic inverted indices. 

3.2. Query execution 

The template for temporal query can be structured as: 

“Find patients who had [events] with [temporal constraints].” 

User input parameters are “events” and “temporal constraints” 
(optional). “Events” is one or multiple attributes and value pairs such as 
diagnosis code: U071, diagnosis status: diagnosis of. 

“Temporal constraints” provide the specification for the time interval 
in which the events take place. For example, a temporal constraint can 
be a period or temporal relations of two events such as “any stroke 
diagnosis AFTER first Covid-19 diagnosis BETWEEN 2020-02-01 and 
2020-05-01.” 

Fig. 4 presents the architecture of our query engine. For database 
content (Fig. 4, right), a NoSQL database with ELII is constructed from a 
collection of EHR source files. On the frontend (Fig. 4, left), a user builds 
a query using a web-based graphic interface. The query engine translates 
a user’s query as a group of database statements for the “Query Back
end.” The Query Backend then executes the database statements ac
cording to statement type by consulting the Global Lookup Table and 
combines the results according to query logic. The final result is then 

presented back to the user in the web-interface. Query results can be 
exported and downloaded for further analysis. Three basic types of 
query are available:  

1. Classical (non-temporal),  
2. Absolute temporal, and  
3. Relative temporal. 

Classical. Classical query involves only non-temporal attributes, such 
as demographics and clinical events without time constraint. Conven
tional inverted index are used to support this kind of query. Pseudocode 
for classical query appears in Appendix A, Algorithm 1. Fig. 5 demon
strates the main steps involved in executing the classical query “Find 
patients who tested positive in any Covid-19 pcr test.” These steps are 
instantiated in the following statements in Algorithm 1:  

1. Look up L
←
(TEST NAME : Covid − 19 pcr,TEST RESULT : positive)

⧹⧹Algorithm 1 line 1  
2. Merge resulting patient IDs ⧹⧹Algorithm 1 line 2–5  
3. Find unique patient IDs ⧹⧹Algorithm 1 line 6  
4. Return results ⧹⧹Algorithm 1 line 7 

Absolute temporal. Absolute temporal query contains input parame
ters that restrict the times for events, executable using tiII. The pseu
docode for absolute temporal query execution appears as Appendix A, 
Algorithm 2. Fig. 6 demonstrates the main steps involved in executing 
absolute temporal query “Find patients who tested positive in any Covid- 
19 pcr test between 2020-06-01 and 2020-06-30.” These steps are 
instantiated in the following statements in Algorithm 2: 

Fig. 4. Query engine architecture.  

Fig. 5. Query without temporal constraints.  
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1. Look up L
←
(TEST NAME :Covid − 19 pcr, TEST RESULT : positive)

within interval (2020 − 06 − 01,2020 − 06 − 30) ⧹⧹Algorithm 2 line 
1–19  

2. Merge resulting patient IDs ⧹⧹Algorithm 2 line 20  
3. Find unique patient IDs ⧹⧹Algorithm 2 line 22  
4. Return results ⧹⧹Algorithm 2 line 23 

Relative temporal. A relative temporal query contains two events: A 
and B, instead of a single event in the previous two query types. The 
query also specifies a temporal relation between A and B. In EHR, events 
of the same type may have multiple occurrences. Therefore, further 
elaboration of the temporal relation, as shown in Table 6, is needed. In 
total, there are six possible relations between two clinical events with 
multiple occurrences (and corresponding timestamps). 

The pseudocode for query with relative temporal constraints appears 

as Appendix A, Algorithm 3. Fig. 7 shows the main steps involved in 
executing relative temporal query “Find patients with any diagnosis 
U071 (Covid-19) before diagnosis I63 (stroke).” These steps are 
instantiated in the following statements in Algorithm 3:  

1. X = D
←
(DIAGNOSIS CODE : U071) ⧹⧹Algorithm 3 line 5  

2. Y = D
←
(DIAGNOSIS CODE : I63) ⧹⧹Algorithm 3 line 6  

3. U = unique IDs in X ∩ Y ⧹⧹Algorithm 3 line 8  
4. Find Pt

̅→
(Patient ID ∈ U) with x < y, where 

x = first date for U071 and y = last date for I63 ⧹⧹Algorithm 3 line 
9–49 

In addition to these basic types of query, the query engine also 
supports full boolean queries and individual patient Pt lookup. 

Boolean query. Boolean query involves a combination of multiple 
sub-queries using logical operators (AND and OR). Sub-queries are 
executed independently first. Then, set intersection is performed on the 
resulting patient identifiers resulting from sub-queries for AND and set 
union (with unique patient identifiers) is performed on the resulting 
patient identifiers resulting from sub-queries for OR. For example, result 
for the following OR query 

“Find patients who had a Covid-19 diagnosis OR a Covid-19 test with 
a positive result” 

Fig. 6. Query with absolute temporal condition.  

Table 6 
Possible relations between two clinical events with multiple timestamps.  

Relation Operator Interpretation 

A takes place before B All Last A occurs before first B 
A takes place before B Any First A occurs before last B 
A takes place before B First First A occurs before first B 
A takes place before B Last Last A occurs before last B 
A meets B All Every A occurs on the same day that B occurs 
A meets B Any At least one A occurs on the same day that B occurs  

Fig. 7. Query with relative temporal condition.  
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will be the union of patient identifiers from sub-queries “patients 
with any Covid-19 diagnosis” and “patients with any positive Covid-19 
test.” 

Negation. Negation is a useful operation for clinical studies to find 
patients without certain conditions. For EHR data, negation is handled 
by appropriately interpreting “lack of data or information.” Three 
typical scenarios are possible with the lack of information: 1. using 
“Closed-World Assumption,” lack of information entails negation. For 
example, if a patient did not have cancer diagnosis in medical record, it 
is safe to infer that the patient did not have cancer. 2. No information. 
For example, if a patient did not have HIV test, we have no way of 
knowing if the person has HIV or not. 3. No available result. For 
example, a patient may be coded as a smoker, but we have no “packs per 
day” information at all. 

With these possible interpretations in mind, “lack of data or infor
mation” query can be executed by forming two groups of patients: a 
group Z of patients to exclude, and the group of all patients U. For 
example, the query “Find patients who did NOT have any diagnosis 
U071 (Covid-19) before diagnosis I63 (stroke)” can be performed by 
following these steps:  

1. Z = patients with any diagnosis U071 before diagnosis I63  
2. U = all patients in the database  
3. R = U⧹Z 

Individual patient data look up. ELII is also designed for fast individual 
patient history data retrieval, another important query modality. It uses 
the Patient Timeline forward index Pt

̅→. The query input is a patient ID, 
with other options including specific events the user wants to show in 
the output, and a period of time the events fall within. 

3.3. Evaluation method 

Data source. We used OPTUM® de-identified Covid-19 EHR dataset 
with Aug 6, 2020 release date. This dataset consisted 1.3 million patients 
who had either Covid-19 related diagnoses (U071, U072 and U073) or 
had Covid-19 specific lab tests (positive or negative). 16 individual 
source files were contained in the release, for different types of EHR 
records, such as patient demographics, diagnosis, medication, and lab. 
Each source file comes with several types of attributes (i.e., the “col
umns”). For instance, the PATIENT source file contains demographic 
attributes such as gender, age, and race. The DIAGNOSIS source file 
contains attributes such as diagnosis code, diagnosis code type, and 
diagnosis status. The MED ADMINISTRATIONS source file contains at
tributes such as drug name, National Drug Code (NDC), quantity of dose, 
and dose frequency. Definition of these attribute types are given in the 
accompanying data dictionary provided by OPTUM®. In total, 132 such 

attribute types are suitable for query construction. Table 7 lists the 
numbers of attributes and lines of records in the main source files, status 
of relevant date fields, and file size. 

Query performance was evaluated using MongoDB with the entire 
dataset imported (1.3 million total patients). To test the performance of 
ELII’s four components (patient timeline, inverted index, timeline 
inverted index and global lookup table), three types of query (described 
in Section 3.2) were tested:  

1. Classical: Find patients who diagnosed/tested with [xxx];  
2. Absolute temporal: Find patients who diagnosed/tested with [xxx] 

after 2020-02-20;  
3. Relative temporal: Find patients who diagnosed/tested with [xxx] 

after 2020-02-20 and before first Covid-19 diagnosis. 

For these three types of queries, we selected test events from Lab and 
Diagnosis for two reasons: 1) they are two commonly used record types 
for temporal query; 2) they are the top three largest record types in data 
size and the record number of the OPTUM® Covid-19 dataset version 
20200806. As listed in Table 7, “Lab” has the largest data size and the 
second largest record number, and the data size and record number of 
“Diagnosis” are both the third largest. 

The “[xxx]” in each test query template is the place holder for query 
parameter. Since the output of the temporal query is a list of patients, we 
selected 19 query parameters with different number of patient counts. 
We first picked 5 events with the number of patients ranging from 10 to 
100,000 in base 10 logarithmic scale. 

For events involving a number of patients greater than 100,000, we 
picked additional four events with a number of patients from 100,000 to 
500,000 in linear scale (every 100,000 patients). We also tested an 
extreme case of “Lab” records: “test name” = “Oxygen saturation 
(SpO2).pulse oximetry,” which has the largest number of patients in this 
data release. The last event is Covid-19 diagnosis (“diagnosis code” =
“U071”), used as Event B for relative temporal query testing. Summary 

Table 7 
OPTUM® Covid-19 dataset summary statistics.  

Table # 
Attribute 

# Record Temporal File Size 
(GB) 

PATIENT 18 1,317,565 No 0.15 
DIAGNOSIS 13 567,441,527 Yes 49.94 
MED 

ADMINISTRATIONS 
21 170,517,390 Yes 42.32 

PRESCRIPTIONS 
WRITTEN 

21 78,359,556 Yes 15.02 

PATIENT REPORTED 
MEDS 

15 115,972,976 Yes 13.60 

LAB 18 761,370,078 Yes 106.19 
Other 93 2,067,229,913 N/A 131.22 
Total 199 3,762,209,005 N/A 358.44  

Table 8 
19 events used for query evaluation.  

ID Attribute Orignial Table # Record # Patient 

D1 diagnosis code DIAGNOSIS 89 10 
D2 diagnosis code DIAGNOSIS 247 100 
D3 diagnosis code DIAGNOSIS 1,718 1,000 
D4 diagnosis code DIAGNOSIS 52,863 10,015 
D5 diagnosis code DIAGNOSIS 295,752 100,680 
D6 diagnosis code DIAGNOSIS 2,053,756 203,739 
D7 diagnosis code DIAGNOSIS 994,277 328,912 
D8 diagnosis code DIAGNOSIS 3,987,244 452,383 
D9 diagnosis code DIAGNOSIS 12,954,359 515,517  

L1 test name LAB 19 10 
L2 test name LAB 147 100 
L3 test name LAB 1,035 1,004 
L4 test name LAB 11,941 10,327 
L5 test name LAB 305,057 102,405 
L6 test name LAB 655,291 206,620 
L7 test name LAB 1,151,535 300,434 
L8 test name LAB 2,970,457 405,081 
L9 test name LAB 3,034,999 531,467 
L10 test name LAB 120,677,164 1,141,175 

Reference diagnosis code DIAGNOSIS 555,733 100,686 

Notes: D1: T25321S, D2: 236439005, D3: 3739, D4: I878, D5: 110033, D6: 
E559, D7: Z1159, D8: Z79899, D9: I10, L1: Urate, L2: angle, L3: rv psp, L4: 2019 
novel coronavirus naat, L5: Human chorionic gonadotropin (HCG).quantitative, 
L6: Iron binding capacity.total (TIBC), L7: Thyroxine.free (FT4), L8: Prothrom
bin time (PT), L9: Hemoglobin A1C, L10: Oxygen saturation (SpO2).pulse ox
imetry. The last query value “U071” was only used in relative temporal query as 
a reference event. 
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statistics for each event tested are shown in Table 8. For each event, we 
executed all three query testing templates and recorded the execution 
times for MongoDB statement translation, MongoDB running time, and 
result array conversion. All queries were repeated 10 times consecu
tively and the average time were reported. 

Baseline database. For baseline performance, we imported the 
OPTUM® Covid-19 EHR dataset into MongoDB and kept its original 
row-oriented data format. Each row in the source files is stored as a 
document (the document keys are contained in the first column of each 
source file). To optimize query performance for the baseline database, 
we use MongoDB’s standard built-in indexing for all query experiments 
for a fair comparison. In this setup, classical query shows how the 
conventional inverted index in ELII improves performance. Temporal 
query shows how “timeline inverted index” and “patient timeline” in 
ELII improves performance, at a different scale. 

4. Results 

4.1. Data preprocessing 

We developed an automated script for preprocessing OPTUM® 
Covid-19 EHR dataset version 20200806 into MongoDB. 3.76 billion 
records from 360 GB of text files were processed, creating event time
lines for 1.3 million patients. The global lookup table contained 132 
attribute types (diagnosis code, test code, test name, etc.), based on 
which we built single-attribute tiII for all 1.94 million attribute-value 
pairs. Single-attribute tiII is indexed for only one data field, and multi- 
attribute tiII is for multiple-field queries. For example, to query the 
patients with “Covid-19 pcr” test and “positive” result, we needed two- 
attribute tiII for the “TEST NAME” and the “TEST RESULT.” Creating 
multi-attribute tiII will increase the performance for multi-field queries 
but it requires extra pre-processing time. 

4.2. Query performance 

Table 9 shows the performance result for queries without temporal 
constraints. Conventional inverted index worked well: all queries were 
completed in less than 0.1 s for classical query. 

Table 10 shows the performance result for absolute temporal query. 
ELII performed an average 88 times faster than the baseline setup. It was 
not as dramatic as in the case of classical query because query execution 
time for the baseline setting is reduced by filtering out more records with 

Table 9 
Execution time (in seconds) for classical query “Find patients with [query 
event].”  

ID Baseline ELII Saved X-faster 

D1 0.001 0.0004 0.0006 2.5 
D2 0.0016 0.0003 0.0013 5.3 
D3 0.0078 0.0005 0.0073 15.6 
D4 0.2574 0.0009 0.2565 286.0 
D5 1.3608 0.0056 1.3552 243.0 
D6 8.0205 0.015 8.0055 534.7 
D7 4.3322 0.0611 4.2711 70.9 
D8 14.5332 0.0499 14.4833 291.2 
D9 36.1807 0.0607 36.12 596.1  

L1 0.0007 0.0003 0.0004 2.3 
L2 0.0013 0.0004 0.0009 3.3 
L3 0.0077 0.0005 0.0072 15.4 
L4 0.0883 0.0009 0.0874 98.1 
L5 1.8039 0.0057 1.7982 316.5 
L6 3.2602 0.0135 3.2467 241.5 
L7 5.4892 0.0215 5.4677 255.3 
L8 17.2616 0.0545 17.2071 316.7 
L9 16.8289 0.0481 16.7808 349.9 
L10 345.8775 0.099 345.7785 3493.7 
Avg 23.9639 0.0231 23.9408 1037.6356 

Notes: Baseline: baseline model using row-oriented data store, ELII: our method 
using document-oriented data store with ELII, Saved: ELII Time - Baseline Time, 
X-faster: Baseline Time ÷ ELII Time. 

Table 10 
Execution time (in seconds) for absolute temporal query “Find patients with 
[Query Event] after Feb 20, 2020.”  

ID Baseline ELII Saved X-faster 

D1 0.001 0.0008 0.0002 1.3 
D2 0.0014 0.0007 0.0007 2.0 
D3 0.0069 0.0009 0.006 7.7 
D4 0.2112 0.0024 0.2088 88.0 
D5 0.8956 0.0078 0.8878 114.8 
D6 5.4155 0.0702 5.3453 77.1 
D7 4.2298 0.3043 3.9255 13.9 
D8 10.5411 0.3058 10.2353 34.5 
D9 24.707 0.9459 23.7611 26.1  

L1 0.0007 0.0009 -0.0002 0.8 
L2 0.0014 0.001 0.0004 1.4 
L3 0.0063 0.0012 0.0051 5.3 
L4 0.0942 0.0036 0.0906 26.2 
L5 1.3034 0.1885 1.1149 6.9 
L6 2.3589 0.051 2.3079 46.3 
L7 4.3796 0.0694 4.3102 63.1 
L8 14.7904 0.2539 14.5365 58.3 
L9 14.9931 0.2764 14.7167 54.2 
L10 319.2168 2.0664 317.1504 154.5 
Avg 21.2186 0.2395 20.9791 88.5839 

Notes: Baseline: baseline model using row-oriented data store, ELII: our method 
using document-oriented data store with ELII, Saved: ELII Time - Baseline Time, 
X-faster: Baseline Time ÷ ELII Time. 

Table 11 
Execution time (in seconds) for relative temporal query “Find patients had any 
[Query Event A] before first Covid-19 diagnosis.”  

ID Baseline ELII Saved X-faster 

D1 2.652 0.1338 2.5182 19.8 
D2 2.6504 0.1325 2.5179 20.0 
D3 2.6716 0.1382 2.5334 19.3 
D4 2.9773 0.2031 2.7742 14.7 
D5 4.4099 0.7081 3.7018 6.2 
D6 11.9138 1.3572 10.5566 8.8 
D7 7.8546 1.2973 6.5573 6.1 
D8 17.8092 2.5436 15.2656 7.0 
D9 39.6454 3.2416 36.4038 12.2  

L1 2.4523 0.1175 2.3348 20.9 
L2 2.4235 0.0865 2.337 28.0 
L3 2.4848 0.0888 2.396 28.0 
L4 2.5785 0.1044 2.4741 24.7 
L5 4.5704 0.7681 3.8023 6.0 
L6 7.144 1.3152 5.8288 5.4 
L7 10.5915 1.6565 8.935 6.4 
L8 41.8886 2.4278 39.4608 17.3 
L9 38.694 3.2004 35.4936 12.1 
L10 493.3144 6.5753 486.7391 75.0 
Avg 36.7751 1.3735 35.4016 26.7747 

Notes: Baseline: baseline model using row-oriented data store, ELII: our method 
using document-oriented data store with ELII, Saved: ELII Time - Baseline Time, 
X-faster: Baseline Time ÷ ELII Time. 
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the time constraints. Meanwhile, query time for ELII was slightly 
increased since an additional step was involved to slice the patient list 
according to time period. 

Table 11 shows the performance result for relative temporal query. 
The baseline result shows relative temporal query was the most time- 
consuming in our experiments. ELII achieved even better performance 
than the other two query types. For the large scale query L10, it had a 
significantly improvement over the baseline, achieving an average 26 
times faster and reduced query execution time by 35 s on average. 

Our ELII-based query engine surpassed the baseline in almost every 
single testing query by execution time except for L1 (negligible difference 
for a small query). Our approach demonstrated more significant time 
reduction as the number of records became larger. The most time- 
consuming query was “test name” = “Oxygen saturation (SpO2).pulse 
oximetry,” which had 120 million records and 1.1 million patients. For all 
three tested query types, baseline setup for SpO2 took 345.9, 319.2, and 
493.3s respectively, while ELII reduced the time to 0.1, 2.1, and 6.6s, 
demonstrating dramatic performance improvements for larger queries. 

We performed validation of ELII result for query accuracy by 
comparing the results with the same query using the baseline setup. For 
all 57 tested queries (19 query events in Table 8 tested on three query 
types), the results of the two approaches are exactly the same in both 
number of patients and sets of patient IDs. We also randomly selected 
and manually validated query results using the patient timeline lookup 
function. By reviewing the records of a set of randomly selected patients, 
we were able to independently confirm that the query results met our 
query conditions. 

4.3. Query interface 

To demonstrate the feasibility of ELII for interactive cohort explo
ration, we developed a web-based user interface called CovidSphere 
with which to build temporal queries for cohort exploration. The main 
idea and design of CovidSphere followed the best practice of our pre
vious established query interface design experiences. These include 
those reported in publications such as “MEDCIS’ [42], “X-search” [13], 
as well as “DataSphere” [28]. Fig. 8 shows the query builder interface 
layout with three areas annotated. In Fig. 8 area 1, a user may select an 
attribute type among “query terms,” such as diagnosis code or test name, 
to construct classic and absolute temporal queries. In Fig. 8 area 2, a 
query template for relative temporal query is provided, where a user 
may select different settings within four components: i) time period (the 
start date and the end date), ii) events that include attribute type and 
attribute value (i.e., event A and event B), iii) temporal relation between 
two events (BEFORE or AFTER), and iv) operator mode for the temporal 

relation as specified in Table 6. The example shown in Fig. 8 area 2 
represents a query to find all patients who have ALL diagnosis code: I63 
AFTER diagnosis code: U071 between Feb. 1, 2020 and Aug. 1, 2020. By 
clicking the “QUERY” button, the query engine will translate the user 
input into a backend query statement and obtain the corresponding list 
of patient identifiers. Query result information is displayed in area 3 of 
Fig. 8, which includes the number of patients meeting the query criteria. 
A user may download the resulting list of patients with demographics 
information in comma separated value format by clicking “EXPORT 
DATA.” 

Our experimental Covid-19 EHR database was implemented using 
MongoDB 4.4 Community Edition on MacOS. The query library for 
performance evaluation was written in Python (version 3.8.3). The ELII 
query engine was built and evaluated on a Mac Pro 2019 with 2.7 GHz 
24-Core Intel Xeon processor and 768 GB 2933 MHz DDR4 memory. 

5. Discussion 

5.1. Preprocessing effort 

We developed ELII to enhance query performance and demonstrate 
this for a large Covid-19 EHR dataset. To achieve this goal, we needed to 
pre-compute ELII indices as part of data conversion to MongoDB data. 
Our approach for building ELII involved two steps: (1) building a hash 
map in such a way that the hash key is an existing event and the hash 
value is a list of patient IDs with the associated records containing the 
corresponding event. The time complexity for this step is O(n), where n 
is the total number of data elements in the dataset. (2) sorting the events 
associated with each patient, which has time complexity 

∑m
i=1lilogli, 

where m is the total number of events in the database and li is the total 
number of records that contain the i − th event. Additional preprocess
ing time of 22 h was spent in building all single-attribute tiII of the 360 
GB text files. This one time, preprocessing can be speeded up by using 
parallel computing. 

Although our experiments were carried out in a typical high-end 
desktop machine, the query engine can also be hosted in a more 
powerful environment, such as a computer cluster. One of our contri
butions is that, using commonly available computer hardware configu
rations, ELII can already achieve near-realtime query performance for a 
large OPTUM® Covid-19 EHR dataset. 

5.2. MongoDB Cold-start 

MongoDB uses Memory Mapped Storage Engine (MMAP) which 
maps files in the disk to memory for faster process. If the documents of a 

Fig. 8. Layout of our temporal query interface.  
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query are not in memory, MongoDB will perform the mapping first and 
then execute the query, which is called a cold-start. Experiments for this 
study were performed with warm-start by making sure data was already 
loaded in memory, in order for the results to only reflect the execution 
time for queries. Even with cold-start, the ELII approach remains speedy 
because it covers most queries without prompting MongoDB to load all 
documents in memory. 

5.3. MongoDB limit on document size 

The maximum document size for MongoDB is 16 megabytes. This 
restriction was intended for managing RAM and I/O bandwidth. In 
extreme cases of the Covid-19 EHR dataset, a patient may have an 
extremely large number of events or an event may have taken place for 
an extremely large number of patients. If the corresponding document is 
larger than the allowable size, such a document can be split into several. 
Splitting will reduce query performance, but only for queries that trig
gered the splitting scenario. For example, {“diagnosis code”:“I10”}(D9 
in Table 10) had 12,954,359 records that were split into 34 documents 
using our automated script. As a consequence, this absolute temporal 
query (D9) took much longer than other events involving fewer patients. 

5.4. Patient timeline export 

Query result consists of a list of patient IDs. A users can retrieve all 
the records from any individual patient in the result immediately after a 
query. The export function helps users to not only validate whether 
patients match their search criteria, but also inspect and make sense of 
the clinical event sequence in the specific cohort. 

5.5. Time complexity estimation 

MongoDB used B+ Tree for indexing, so a “find” statement is 
O(log x) in time complexity, where x is the number of records in a 
document. Let n be the total number of patients, and m be the total 
number of unique events. Then the time complexity for classical and 
absolute temporal query is O(log m), and the time complexity of indi
vidual patient timeline lookup is O(log n). Relative temporal query is 
O(xy(log n)), where x is the number of resulting patients, and y is the 
maximum number of an individual patient’s events. 

5.6. General applicability 

Although we primarily designed ELII for Covid-19 EHR data to 
improve the performance of temporal query, our approach can be 
applied to other standard and typical EHR data for chronic diseases and 
conditions, with or without temporal query. In fact, our earlier work 
[28] demonstrated that a NoSQL (e.g., MongoDB) approach can cut 
query construction time by half while improving the speed of repre
sentative queries by a magnitude. 

ELII also is applicable to other data models such as those for i2b2, 
PCORNet, and OMOP. Query engines built for these widely used data 
models have not provided sufficient support for temporal query. ELII 
offers a pathway to creating MongoDB-like query engines for databases 
using i2b2, PCORNet, and OMOP data models. The general steps 
involved would consist of exporting data from i2b2, PCORNet, and 
OMOP into text files for patient demographics, diagnosis, medication, 
and labs, with appropriately linkable identifies for each record line in 
the file. Then these source text files can be processed using our pre- 
processing and ELII-construction scripts, and imported into a Mon
goDB environment, with a CovidSphere-like query interface. Limitations 
and topics for further study include the need to reduce pre-processing 
time using parallel computing, incremental database updates without 
the need for full database reconstruction when updated source data 
become available, and inefficiency in space utilization that is typically 
associated with a document-oriented data store. 

5.7. User interface usability evaluation 

This is a substantial topic beyond the scope of the current paper. 
However, the design of our CovidSphere user interface followed the best 
practice from our previous established query interface design experi
ences. These include interfaces reported in publications such as MEDCIS 
[42], X-search [13], as well as DataSphere [28], and we expect to have 
similar outcomes. We recognize that some additional query functional
ities would be desirable, such as a query manager to save and share 
queries, interfaces supporting case-control design and exploration, built- 
in tools for visualization, and more flexibility for customized data 
export. Using a similar strategy as our previously developed cohort 
query and exploration tools, we plan to develop a comprehensive 
interactive cohort exploration interface based on this new ELII data 
model and our preliminary CovidSphere interface for OPTUM® Covid- 
19 data. We plan to report the design, implementation, and user eval
uation of the system in a separate future paper. 

5.8. Research utility 

We have not performed a formal research utility assessment to pro
vide publishable evidence supporting our original design motivation in 
enabling population-based Covid-19 research. However, the temporal 
query functionality in CovidSphere using ELII is already benefiting 
several ongoing studies locally on the impact and consequence of Covid- 
19 on topics such as outcome differences between sex groups, and long- 
term neurological impacts. Our approach provided an intuitive way to 
communicate and refine study requirements for clinical investigators. It 
provided live feedback on “what if” questions. Results on such topics 
will be reported in disease-specific venues. 

6. Conclusion 

To better leveraging large EHR data for Covid-19 research, we 
developed an innovative inverted index system to support fast temporal 
query. Experimental results showed that a set of temporal queries tested 
on 1.3 million patients resulted in average execution time of seconds or 
less. Our study suggests that ELII is a promising approach supporting fast 
temporal query, an important mode of cohort development for Covid-19 
and other population-based research. 
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Appendix A. Pseudocode for temporal query 

Algorithm 1. No temporal constraints   

Procedure [patentIDList] = EventQuery(invertedIndexCollection, event)  
Input invertedIndexCollection: The client for accessing ELII collection in MongoDB 

event: The query event 
Output patentIDList: The list of patient IDs after query 

1: queryDocuments = invertedIndexCollection.find(“$or” : event);  
2: patentIDList = [];  
3: for document in queryDocuments do 
4: patentIDList.add(document.Patient list);  
5: end for 
6: patentIDList = Unique(patentIDList);  
7: return patentIDList   

Algorithm 2. Absolute temporal condition    

Procedure [patentIDList] = AbsoluteTemporalEventQuery(invertedIndexCollection, event,period)  
Input invertedIndexCollection: The client for accessing ELII collection in MongoDB 

event: The query event 
period: The query period 

Output patentIDList: The list of patient IDs after query 
1: queryDocuments = invertedIndexCollection.find(“$or” : event);  
2: patentIDList = [];  
3: for document in queryDocuments do 
4: firstRecordTime = document.First record date;  
5: lastRecordTime = document.Last record date;  
6: startIndex = 0  
7: endIndex = Length(document.Patient list)
8: if period.start date is not None then  
9: startIndex = period.start date − firstRecordTime;  
10: if startIndex < 0 then  
11: startIndex = 0  
12: end if 
13: end if 
14: if period.end date is not None then  
15: endIndex = period.end date − firstRecordTime;  
16: if endIndex > Length(document.Patient list) then  
17: endIndex = Length(document.Patient list)
18: end if 
19: end if 
20: patentIDList.add(document.Patient list[startIndex : endIndex]);  
21: end for 
22: patentIDList = Unique(patentIDList);  
23: return patentIDList   

Algorithm 3. Relative temporal condition    

Procedure [patentIDList] = RelativeTemporalEventQuery(invertedIndex,patientTimeline, eventA,  
eventB,period, cond,op)  

Input invertedIndex: The client for accessing inverted index collection in MongoDB 
patientTimeline: The client for accessing patient timeline collection in MongoDB 
eventA: The first event A 
eventB: The second event B 
period: The query period 
cond: The relation between event A and event B, as shown in Table 6 
op: The operator of temporal query, as shown in Table 6 

Output patentIDList: The list of patient IDs after query 
1: if period is None then 
2: patientListA = EventQuery(invertedIndex, eventA);  
3: patientListB = EventQuery(invertedIndex, eventB);  
4: else 

(continued on next page) 
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(continued ) 

5: patientListA = AbsoluteTemporalEventQuery(invertedIndex, eventA,period);  
6: patientListB = AbsoluteTemporalEventQuery(invertedIndex, eventB,period);  
7: end if 
8: patientListAandB = Intersection(patientListA,patientListB);  
9: dateofEventA = patientTimeline.find(patientListAandB, eventA).sort().groupBy(“Patient ID”);  
10: dateofEventB = patientTimeline.find(patientListAandB, eventB).sort().groupBy(“Patient ID”);  
11: patentIDList = [];  
12: for patientID in patientListAandB do 
13: if (dateofEventA[“patientID”] is None) or (dateofEventB[“patientID”] is None) then  
14: Continue; 
15: end if 
16: dateListA = dateofEventA[“patientID”];  
17: dateListB = dateofEventB[“patientID”];  
18: if cond is “Before” then  
19: switch op do 
20: case “All”  
21: if dateListA.last() < dateListB.first() then  
22: patentIDList.add(patientID);  
23: end if 
24: case “Any”  
25: if dateListA.first() < dateListB.last() then  
26: patentIDList.add(patientID);  
27: end if 
28: case “First”  
29: if dateListA.first() < dateListB.first() then  
30: patentIDList.add(patientID);  
31: end if 
32: case “Last”  
33: if dateListA.last() < dateListB.last() then  
34: patentIDList.add(patientID);  
35: end if 
36: else if cond is “Meet” then  
37: switch op do 
38: case “All”  
39: if dateListA == dateListB then  
40: patentIDList.add(patientID);  
41: end if 
42: case “Any”  
43: if Length(Intersection(dateListA, dateListB)) > 0 then  
44: patentIDList.add(patientID);  
45: end if 
46: end if 
47: end for 
48: patentIDList = Unique(patentIDList);  
49: return patentIDList   
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