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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• The corona lockdown in spring 2020 
reduced emissions of air pollutants. 

• In the Netherlands, this period coin
cided with unusual meteorological 
conditions. 

• Observed concentrations were reduced 
by 18–30% for NO2 and 20% for PM2.5. 

• Model simulations with emission sce
narios yield slightly smaller reductions. 

• Observations show that NO2 traffic 
contributions are reduced by about 
35%.  
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A B S T R A C T   

The lockdown measures in response to the SARS-CoV-2 virus outbreak in 2020 have resulted in reductions in 
emissions of air pollutants and corresponding ambient concentrations. In the Netherlands, the most stringent 
lockdown measures were in effect from March to May 2020. These measures coincided with a period of unusual 
meteorological conditions with wind from the north-east and clear-sky conditions, which complicates the 
quantification of the effect of the lockdown measures on the air quality. Here we quantify the lockdown effects 
on the concentrations of nitrogen oxides (NOx and NO2), particulate matter (PM10 and PM2.5) and ozone (O3) in 
the Netherlands, by analyzing observations and simulations with the atmospheric chemistry-transport model 
EMEP/MSC-W in its EMEP4NL configuration, after eliminating the effects of meteorological conditions during 
the lockdown. Based on statistical analyses with a Random Forest method, we estimate that the lockdown 
reduced observed NO2 concentrations by 30% (95% confidence interval 25–35%), 26% (21–32%), and 18% 
(10–25%) for traffic, urban, and rural background locations, respectively. Slightly smaller reductions of 8–28% 
are found with the EMEP4NL simulations for urban and regional background locations based on estimates in 
reductions in economic activity and emissions of traffic and industry in the Netherlands and other European 
countries. Reductions in observed PM2.5 concentrations of about 20% (10–25%) are found for all locations, which 
is somewhat larger than the estimates of 5–16% based on the model simulations. A comparison of the calculated 
NO2 traffic contributions with observations shows a substantial drop of about 35% in traffic contributions during 
the lockdown period, which is similar to the estimated reductions in mobility data as reported by Apple and 
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Google. Since the largest health effects related to air pollution in the Netherlands are associated with exposure to 
PM10 and PM2.5, the lockdown measures in spring of 2020 have temporarily improved the air quality in the 
Netherlands. The concentrations of the most health relevant compounds have only been reduced by about 
10–25%.   

1. Introduction 

Concentrations of most air pollutants have decreased significantly in 
the past decades in most countries in Europe as a result of various policy 
measures, but current levels are still responsible for significant adverse 
health effects (EEA, 2019; Velders et al., 2020). The lockdown measures 
in Europe in response to the corona SARS-CoV-2 virus outbreak, causing 
COVID-19 disease, have significantly reduced traffic volumes and in
dustrial activities in 2020. As a direct result, emissions of various air 
pollutants from these sectors have also been reduced, although the 
magnitude of the reductions has not been assessed yet. Satellite obser
vations of nitrogen dioxide (NO2) of China, Northern Italy, and the USA 
have shown reductions in column densities in spring of 2020 which are 
attributed to the corona lockdown measures in these countries (Bauwens 
et al., 2020; Liu et al., 2020). Shi and Brasseur (2020) analysed more 
than 800 monitoring sites in northern China and derived decreases in 
PM2.5 and NO2 surface concentrations of 35% and 60%, respectively, 
during the lockdown. Cole et al. (2020) applied a machine learning 
technique to observations in Wuhan (China) to remove the effects of 
weather patterns and an augmented synthetic control approach to 
compare cities with and without a lockdown. They found a reduction in 
concentrations of about 60% for both NO2 and PM10 in Wuhan. Giani 
et al. (2020) combined observational data with simulations with a 
chemistry-transport model and reported reduced PM2.5 concentrations 
in China and Europe and the averted short- and long-term mortality 
from air pollution due to the lockdown. 

Quantifying the effects of the lockdown measures in terms of re
ductions in concentrations, e.g., of NO2 and particulate matter (PM10, 
PM2.5), is not trivial and requires a separation of these effects with those 
from natural variability driven mostly by meteorological conditions. The 
Netherlands experienced unusual meteorological conditions in spring 
2020 starting at about the same time as the corona lockdown measures; 
from the middle of March till the beginning of May 2020 there was more 
sunshine than the long-term average, as well as dry conditions and a 
long period with a sustained wind from the east and north-east bringing 
in air from Germany and eastern Europe to the Netherlands. These un
usual meteorological conditions affect the concentrations of air pollut
ants and make it challenging to identify and quantify the effects of the 
lockdown measures on the concentrations. 

Three methods are employed here to quantify the effects of the 
lockdown measures on the concentrations of NO2, NOx, PM10, and 
PM2.5, and O3 in the Netherlands. First, we report on the observed trends 
in surface concentrations from various measurement stations in the 
Netherlands from January till May 2020 and use a machine learning 
algorithm (Random Forest method (Breiman, 2001; Tong et al., 2003)) 
to estimate what the concentrations in spring 2020 would have been 
without the lockdown measures. Second, we performed simulations 
with the atmospheric chemistry-transport model EMEP/MSC-W (Simp
son et al., 2012) in its EMEP4NL configuration (Van der Swaluw et al., 
2020) using a reference scenario and scenarios with estimates of emis
sion reductions to disentangle the effects of the corona lockdown mea
sures on concentrations from those caused by meteorological variability. 
Third, reductions in the traffic NO2 contribution are determined by 
comparing observed concentrations in streets with reported traffic data. 

The following sections present the measurement networks, the sta
tistical method employed, a concise description of the EMEP4NL simu
lations, the trends in observed trends in NOx, NO2, PM10, PM2.5 and O3, 
the results of the model simulations, and a discussion and conclusions. 

2. Methods 

2.1. Air quality measurement networks 

Air quality measurements in the Netherlands are performed by the 
National Air Quality Monitoring Network (LML, 2020) of the National 
Institute for Public Health and the Environment (RIVM), the DCMR 
Environmental Protection Agency (DCMR, 2020), and the Public health 
department of Amsterdam (GGD, 2020). Measurements have been used 
of the hourly average NOx, NO2, PM10, PM2.5, and O3 concentrations at 
rural backgrounds, urban backgrounds, and in city streets (traffic loca
tions), in the Netherlands. Data from continuous measurements from 
January 2017 through May 2020 with high data coverage have been 
used of NOx and NO2 from 34 stations, PM10 from 29 stations, PM2.5 
from 26 stations, and O3 from 23 stations. Stations were selected across 
the country, were several compounds are measured simultaneously and 
were traffic and urban background stations are at close proximity. This 
set consists of 9 rural background stations, 11 urban background sta
tions, and 14 traffic stations (see Fig. 1 and Appendix A; Tables A1 to 
A5). 

2.2. Back trajectories 

The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYS
PLIT) model was used to calculate hourly back-trajectories of air parcels 
during the lockdown period (Draxler and Hess, 1998). Using the HYS
PLIT model, a single air parcel is followed originating from the receptor 
site backwards in time for 24 h. Backward trajectories have been 
calculated for every hour in the lockdown period. These trajectories 
provide information about the origin of an air parcel during a specified 
period. Meteorology from the Global Data Assimilation System at a 
resolution of 1 × 1 degree (GDAS1) is used with a starting height of 10 m 
above ground level at the receptor site. The time interval was 1 h, and 
the model height, setting the vertical limit of HYSPLIT model calcula
tions, was set to 10 km. A simple approach was used to determine the 
prevalent wind sectors for the lockdown period. This approach consisted 
of calculating the proportion of the time a particular air parcel (i.e., 
trajectory) resided in various wind sectors (Carslaw and Ropkins, 2012). 
A wind sector was assigned to each of the hourly back trajectories if the 
air parcel spends at least 13 of the 24 h in that sector. The same method 
was also used for the defined period in 2017, 2018, and 2019. 

2.3. Statistical analyses of the air quality data with Random Forest 

Machine learning algorithms are being used increasingly to forecast 
atmospheric concentrations (Alimissis et al., 2018; Feng et al., 2018; 
Lautenschlager et al., 2020). Here the Random Forest machine learning 
algorithm (Breiman, 2001; Tong et al., 2003) is used to separate the 
effects of the meteorological variability on the air pollutant concentra
tions from that of the lockdown measures. A Random Forest method can 
handle the nonlinear relationship between various parameters and 
concentrations (Grange and Carslaw, 2019). The R software package 
“rmweather” (Grange, 2018) was used for the Random Forest method. 
First, a Random Forest model is constructed with the following 
explanatory variables: day of the year, day of the week, hour of the day, 
local temperature, precipitation, wind direction, wind speed, air pres
sure, humidity, global radiation, and cloud cover. For the meteorolog
ical parameters, data from the Royal Netherlands Meteorological 
Institute (KNMI, 2020) was used. Continuous measurements of various 
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meteorological variables are collected from approximately 45 automatic 
weather stations in the Netherlands. Not all selected parameters are 
measured at each weather station. Hence, each meteorological param
eter was attached independently based on proximity, choosing mea
surements from the nearest available weather station with the highest 
data capture. Second, the Random Forest explanatory variables are 
determined using a training dataset consisting of all hourly observations 
from January 1, 2017 to February 29, 2020. This is performed for each 
measurement station and compound separately. Third, the method is 
then used to estimate expected hourly pollutant concentrations based on 
the meteorological circumstances and other explanatory variables under 
the assumption that emissions are as business-as-usual, i.e., there was no 
lockdown. This is performed for each measurement location before and 
during the lockdown period, until the end of May 2020. Fourth, the 
concentrations that are measured before and during the lockdown 
period are compared with the “expected” concentrations during this 
period. The difference between observed and expected concentrations 
are ascribed to the lockdown measures. Finally, the station-specific 
mean differences between daily observed and expected concentrations 
during the lockdown period, and their corresponding confidence in
tervals, are pooled using a random-effects meta-analysis per station type 
(traffic location, urban background, or rural background) using the R 
metafor package (Viechtbauer, 2010). The results from the individual 
stations are combined per station type. Because of differences between 

the measurement stations (e.g., location, local contribution of emission 
sources, equipment) we assume variability (heterogeneity) among the 
individual results. In a random-effects model this heterogeneity is 
treated as purely random. The variance between stations is estimated 
from the data and used to modify the weights in the calculation of the 
random-effects summary estimate (DerSimonian and Laird, 1986). Here, 
the summary estimate is calculated as an overall mean difference be
tween the observed and expected concentrations, and therefore an 
indication of the nationwide effect of the lockdown measures on 
concentrations. 

2.4. EMEP4NL model and scenarios 

Model simulations are performed using scenarios of emission re
ductions from the lockdown measures and the Eulerian grid model 
EMEP/MSC-W (Simpson et al., 2012) for the Netherlands in its 
EMEP4NL configuration (Van der Swaluw et al., 2020) to estimate the 
effects of the lockdown on the concentrations in the Netherlands. The 
EMEP model has been extensively validated for Europe (EMEP, 2020) 
and for individual countries such as the Netherlands (EMEP/MSC-W, 
2020). The EMEP model (version rv4.33) is used with nested grids to 
obtain a resolution of 1.3 × 2.1 km over the Netherlands. The model is 
run offline with the meteorological data from the Weather Research 
Forecast (WRF, NCAR (2020)) model (version 3.8). The official 2014 

Fig. 1. Location of the monitoring stations used in this study (Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL).  
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EMEP emissions, gridded with the TNO-MACC III spatial distribution 
(Kuenen et al., 2014; MACC, 2016), is scaled with emissions from the 
European Centre on Emission Inventories and Projections (CEIP, 2020) 
for the different countries and 10 SNAP (Selected Nomenclature for Air 
Pollution) sectors to represent emission for the year 2016. Detailed 
Dutch emissions (see, e.g., Hoogerbrugge et al. (2019)) are used for the 
same reference year for the highest grid-level over the Netherlands. 

Two sets of model simulations are performed: 1) simulations with 
three lockdown scenarios, with reduced emissions corresponding to the 
lockdown measures, and meteorology from January to May 2020, 2) 
simulations with a reference scenario with emissions corresponding to 
the year 2016 and meteorology from January to May of 2017, 2018, 
2019, and 2020 to study the effects of the meteorology on the pollutants 
concentrations. Since we are interested in concentration differences 
between the scenarios, the absolute values of the emissions, i.e., for the 
year 2016, used in the simulations are not so important. 

The magnitude of the emission reductions caused by the lockdown 
has not been assessed yet by the national reporting organizations, such 
as the Dutch Pollutant Release and Transfer Register (PRTR, 2020) and 
CEIP (2020). The lockdown scenario, therefore, consists of a low and 
high scenario with estimated reductions in emissions in the 10 SNAP 
sectors for each country in Europe (Table 1). Reductions are estimated 
for the transport sector, mainly passenger cars, and for industrial sectors. 
The reductions are not the same for all countries. We assumed a some
what smaller reduction for countries with a partial lockdown, such as 
the Netherlands, Belgium, and Germany, and larger reductions for 
countries with a more stringent lockdown, such as France, Italy, Spain, 

and the United Kingdom. A third scenario, called extended lockdown 
scenario, is defined with reductions in emissions larger than estimated 
based on reported reductions in economic activities. Since the reported 
reductions in economic activities are based on a limit number studies 
and proxy data for activities of specific sectors, the extended lockdown 
scenario is probably an upper limit, but still possible scenario. 

The reductions from Table 1 are applied to all the emissions of a 
sector in a country; no spatial differentiation in the reductions in a 
country is applied. No reductions are assumed for the emissions from 
buildings, waste disposal and treatment, and agriculture. There are no 
indications that the number of animals on farms changed during the 
lockdown and therefore the agricultural emissions are assumed not to be 
affected by the lockdown. 

2.5. Model calculations local traffic contributions 

As part of the air quality monitoring in the Netherlands, detailed 
hourly maps of NO2 and PM10 concentrations are calculated by RIVM 
(2020). These maps are based on estimated real-time hourly background 
concentrations calculated using the RIO model (Residual Interpolation 
optimised for Ozone (Janssen et al., 2008)). A Gaussian dispersion 
model is used to add local traffic contributions for locations within a 
radius of 5 km from all significant roads and highways in the 
Netherlands. These calculations use observed meteorological conditions 
and estimated traffic emissions, specific for the hour and day of the week 
(Wesseling and Van Velze, 2014). 

The calculated hourly concentrations are combined with the avail
able NO2 and PM10 measurements in the Netherlands (see section 2.1) to 
calculate the difference (bias) between the maps and measurements at 
background locations. Furthermore, the calculated and measured con
centrations near roads are used to estimate a scaling factor for the 
assumed traffic emissions. Under normal conditions, the bias is, on 
average, zero and the scaling factor of the traffic emissions is approxi
mately 1. During periods with reduced traffic, such as during the lock
down period, the scaling factor of the traffic emissions drops below 1. In 
2020, the observed prolonged period with scaling factors below 1 
(indicating lower traffic emissions than usual) is attributed to the effects 
of the lockdown measures, although other factors can play a role as well. 

The scaling factors are compared with the data provided by Apple 
(2020) and Google (2020). The Apple data is based on “a relative volume 
of directions requests per country/region, sub-region or city compared 
to a baseline volume on 13 January 2020”. We have used the average 
value of the categories “driving” and “transit”. Google provides, among 
others, the categories “Mobility trends for places like public transport 
hubs such as subway, bus, and train stations” and “Mobility trends for 
places of work”. The average of these categories is used here. 

3. Results 

The lockdown period is not precisely defined and varies for different 
countries. Traffic data from Apple (2020) and Google (2020) show a 
considerable reduction in traffic intensity, starting mid-March in most 
countries in Europe after which the intensity gradually increased and 
returned to close to ‘normal’ values by mid-June. For the present study, 
the lockdown period is defined as a period of eight weeks starting at 
March 16, 2020, when the schools in the Netherlands closed and people 
were asked to work from home, and ending May 10, 2020, when the 
primary schools opened again. For this period, the reductions in 
observed concentrations (sections 3.3) are determined as well as in 
modelled concentrations (section 3.4). First, the meteorology in the 
Netherlands during the lockdown period is discussed (section 3.1) and 
the trends in observed concentrations (section 3.2). The reduction in 
traffic intensity is estimated in section 3.5. 

Table 1 
Reductions in emission applied to the various sectors in the low, high, and 
extended lockdown scenarios.  

Industrial sector (SNAP codes) Netherlands, 
Belgium, Germanya 

France, Italy, Spain, 
UKb  

low high extf Low high extf 

1. Combustion energy industriesc 5% 15% 25% 20% 30% 40% 
2. Non-industrial combustion – – – – – – 
3-6. Industrial combustion and 

production processesd 
5% 15% 25% 20% 30% 40% 

7. Road transporte 20% 40% 60% 30% 50% 70% 
8. Other mobile sources and 

machineryd 
5% 15% 25% 20% 30% 40% 

9. Waste treatment and disposal – – – – – – 
10. Agriculture – – – – – –  

a Countries with a partial lockdown include the Netherlands, Austria, 
Belgium, Denmark, Finland, Germany, Luxembourg, Norway, Sweden, and 
Switzerland. 

b Countries with a stringent lockdown include, France, Ireland, Italy, Spain, 
and the United Kingdom. 

c A reduction in electricity production of 5–10% is reported for the 
Netherlands (PBL, 2020; Tennet, 2020). IEA (2020) reported a reduction in 
electricity demand of 10% for Germany. Larger reductions are reported for 
countries with a stricter lockdown, i.e., 20% for France and Spain, 16% for the 
United Kingdom and 37% for Italy (IEA, 2020). 

d For the Netherlands, the daily industrial production was reported to be 11% 
lower in April 2020 than in April 2019 (CBS, 2020). A larger reduction is 
assumed for countries with a stringent lockdown in line with the reductions in 
electricity demand (note c). The same reductions are applied to SNAP 8 (Other 
mobile sources). 

e KIM (2020a) reported reductions in total traffic of 39% on highways and 
32% on other roads, while reductions of only 7–8% are reported for heavy duty 
transport. NDW (2020) measurements of traffic volumes on highways in the 
Netherlands show reductions of 40–60% for passenger cars and much smaller 
reductions for heavy duty transport. Based on this we assume for the low and 
high scenarios an average reduction in emissions for all traffic (passenger cars, 
light and heavy-duty transport) on motorways and other roads of 20–40% for the 
Netherlands countries with a similar lockdown and 30–50% for other countries. 

f For the extended lockdown scenario larger reductions in emissions are 
assumed than based on the reported reductions in economic activities. 
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3.1. Meteorology during the lockdown 

The meteorology during the lockdown has a significant effect on 
concentrations, especially wind direction and precipitation. The pre
vailing wind directions from 2017 to 2020 have been calculated using 
hourly air mass back trajectories for the entire lockdown period for 
station Breukelen (see section 2.2). This air quality station is situated in 
a mostly rural area in the centre of the Netherlands, near a major 
highway between Amsterdam and Utrecht. In Fig. 2 (and Appendix A, 
Fig. A.1) the prevalent wind sectors for Breukelen in 2020 during the 
lockdown period are compared with the prevalent wind sectors from 
previous years. During the lockdown period, the back trajectory analysis 
shows that the wind in the Netherlands came predominantly from the 
east and north-east. In contrast, in preceding years the winds came more 
from the west during the corresponding period of each year. Wind from 
especially the south-east generally lead to higher concentrations of air 
pollutants in the Netherlands, often because of stable and dry meteo
rological conditions and long-range transport of pollutants from Eastern 
Europe to the Netherlands. 

Furthermore, the lockdown period was dry and sunny, with only 24 
mm of precipitation versus 97 mm as climatological average and 513 h 
of sunshine versus 304 normal in the centre of the Netherlands (weather 
station De Bilt (KNMI, 2020)). The diurnal average temperature was 

close to normal (9.9 ◦C versus 9.0 ◦C climatologically). 

3.2. Trends in observed concentrations 

The concentrations of air pollutants show large variability on an 
hourly and daily basis, mostly as the result of meteorological variability. 
To easier compare the observed concentrations for different years, the 
variability is reduced by calculating weekly average concentrations. The 
trend in observed weekly average concentrations of NOx, NO2, PM10, 
PM2.5, and O3 are shown in Fig. 3 for the average of urban background 
locations. The 2020 data is compared with data for the same period in 
2017, 2018, and 2019. See Appendix A (Fig. A2 and Fig. A3) for the 
corresponding figures for rural background and traffic locations. The 
concentrations averaged over the whole lockdown period for 2017 to 
2020 are presented in Fig. 4. 

The 2020 NOx and NO2 concentrations are mostly below the corre
sponding concentrations in 2017–2019 already before the lockdown 
period, at the rural and urban background and traffic locations. Low 
2020 concentrations are observed in February, before the lockdown, 
probably because of sustained winds and rain. The 2020 concentrations 
are more or less constant from the beginning of February till the end of 
May and do not show a decrease during the lockdown period. PM2.5 and 
PM10 show low concentrations in February and beginning of March, 

Fig. 2. Prevailing wind directions in the centre of the Netherlands (measurement station Breukelen) during the lockdown period (March 16 to May 10, 2020) and the 
winds in the corresponding period in 2017, 2018, and 2019. See Appendix A Fig. A1 for the wind directions averaged over two-week periods. 
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mostly lower than the corresponding values in 2017–2019. The 2020 
concentrations increased in the middle of March when the lockdown 
measures started. During the lockdown period, the average 2020 PM2.5 
and PM10 concentrations are somewhat lower than in the years 
2017–2019. Ozone concentrations show a different trend. They clearly 

increased towards spring and summer as ozone production increases as 
the amount of sunlight (UV-radiation) increases in combination with 
stable weather conditions. The 2020 O3 levels are mostly higher than the 
concentrations in the corresponding period in 2017–2019. 

Comparing the 2020 concentrations averaged over the lockdown 

Fig. 3. Observed weekly average urban background concentrations of NOx, NO2, PM10, PM2.5, and O3 for the period January to May for 2017 to 2020. The shared 
areas around the lines show the 95% confidence interval. The grey shaded region shows the lockdown period. The dates correspond to the start of the week. 
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period with those of the previous years (Fig. 4) shows that the 2020 
concentrations are for most compounds and station types not very 
different from the that in the previous years. The 2020 concentrations at 
the traffic stations show the largest difference with the previous years, 
but even for these the 95% confidence intervals mostly overlap. This 
shows that a direct comparison of the 2020 trends with those in the 
previous years is not sufficient to estimate the effect of the lockdown 
measures on the air quality. In section 3.3 we discuss the use of a ma
chine learning algorithm to separate and quantify the effects the lock
down measures on the concentrations from those of the meteorological 
variability. 

3.3. Lockdown effect on observed concentrations 

A Random Forest method (see section 2.3) is used to obtain expected 
concentrations of air pollutants, i.e., concentrations under the current 
meteorological conditions with business-as-usual emissions, at each 
measurement location (section 2.1) for the lockdown period in 2020. 
Fig. 5 shows an example of the expected concentrations of NO2 for a 
single measurement station together with the observed concentration. 
The difference between the observed and expected concentration is 
ascribed to the lockdown measures. The observed NO2 concentration at 
this station drops below the expected concentration at the beginning of 
March and stays there for the next months, although with considerable 
variability. Fig. 6 shows the average reduction in concentration for the 
different pollutants and different types of stations. In Fig. 8 and Fig. A4 
the reductions and confidence intervals for individual stations are 
shown. See Appendix A (Tables A1 to A5) for the average concentrations 
of all compounds during the lockdown period for all measurement lo
cations individually. 

The largest reductions during the lockdown period are found for the 
NOx concentrations at traffic locations, on average, 39%, with a 95% 
confidence interval (CI) of 31–47%. The reduction at urban background 
locations is 33% (95% CI 25–40%) and at rural background locations is 
20% (95% CI 11–29%). Slightly smaller reductions are found for NO2 
concentrations with on average 30% (95% CI 25–35%), 26% (95% CI 
21–32%), and 18% (95% CI 10–25%) for traffic, urban, and rural 
background locations, respectively. The large decreases in concentration 
at traffic locations indicate that the reductions in traffic volume and 
emissions play an important role. 

The reductions in PM2.5 concentrations during the lockdown period 
are smaller than those of NOx and NO2, and about the same at all types of 
measurement locations; on average about 20% (95% CI 10–25%). The 
reductions in PM10 are just statistically significant at all stations, with an 
overall reduction of about 5% (95% CI 0–10%). PM2.5 and PM10 show 
smaller spatial gradients in the Netherlands than nitrogen oxides since 
they originate from both primary and secondary emissions (see section 
3.4). 

Statistically significant overall increases are found for O3 concen
trations for all station types, but especially for traffic locations. Increases 
in O3 are a direct result of decreases in NOx emissions and NO concen
trations through reduced ozone titration. On average, O3 increases by 
13% (95% CI 8–18%), 7% (95% CI 4–10%), and 7% (95% CI 4–9%) for 
traffic, urban, and rural background locations, respectively. 

3.4. Modelled effect of lockdown on concentrations 

Using the EMEP model in its EMEP4NL configuration, the effect of 
the lockdown is estimated by comparing model simulations using 
lockdown scenarios with a reference scenario, both using the actual 

Fig. 4. Statistics of the observed concentrations of NOx, NO2, PM10, PM2.5, and O3 during the lockdown period for 2017 to 2020. Shown are the median, 25 and 75 
percentiles and minimum and maximum concentrations. 
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2020 meteorology (see section 2.4). Fig. 7 shows the spatial distribution 
of the effect of the lockdown on the NO2 and PM2.5 concentrations. The 
largest effects are seen in the southern half of the country and for NO2, 
especially for the large cities and busy motorways. This coincides with 
the regions with the largest domestic emissions. For PM2.5 concentra
tions, the formation of secondary inorganic PM2.5 (nitrate, ammonium, 
and sulphate aerosols) and sources from abroad are responsible for a 
more homogeneous reduction in concentrations, which come on top of 
the reductions in domestic sources. 

The EMEP4NL simulated reductions are shown in Fig. 8 and Fig. A4 
for rural and urban background measurement locations. The effects are 
shown for the low, high and extended lockdown scenario. The re
ductions in concentrations at the various stations are similar in magni
tude for the PM10 and PM2.5 concentrations, consistent with the long- 
range character of particulate matter. The NOx, NO2, and O3 changes 
vary more in magnitude over the different stations. The average re
ductions for rural and urban background NO2 concentrations (Fig. 6) are 
about 8%, 18%, and 28%, for the low, high, and extended lockdown 
scenarios, respectively. Almost the same reductions are found in NOx 
concentrations. The reductions are smaller than found with the Random 
Forest analyses of the observations, especially for the urban background 
(see section 4). Only the reductions found with the extended lockdown 
scenario overlap partially with the uncertainty range of the Random 
Forest analyses. For two measurements stations, the modelled re
ductions deviate significantly from the Random Forest analyses, i.e., the 
Random Forest analyses show no significant decreases for the rural 
background station NL10934 and urban background station NL49014. 
Station NL10934 is in the far north of the Netherlands with no other 
stations nearby to verify the trend in the observed concentration. Station 
NL49014 is in downtown Amsterdam and the decreases in concentration 

for this station differ from the nearby station NL49003, probably 
because of local circumstances, such as local emissions, at the stations. 

Much smaller reductions are found for PM10 concentrations, with 
about 5%, 10%, and 16%, for the low, high, and extended lockdown 
scenarios, respectively. These smaller reductions are in line with the 
smaller reductions found with the analyses of the observed concentra
tions. Larger reductions are modelled for PM2.5 concentrations; about 
6%, 13%, and 20%, for the low, high, and extended lockdown scenarios, 
respectively. These reductions partially overlap with the Random Forest 
analyses. The observed decrease in PM2.5 concentrations shows a large 
variability with for some stations reductions of 45%, while for other 
stations reductions of less than 10%. The modelled reductions are 
similar in magnitude for all stations. 

Modelled O3 concentrations show small increases in both the 
modelled scenarios and analyses of the observations. The modelled in
creases are on average about 2%, 3%, and 5%, for the low, high, and 
extended lockdown scenarios, respectively. The modelled increases 
show considerable variability in magnitude for the various locations. 
These increases again partially overlap with the Random Forest 
analyses. 

The EMEP4NL model is also used to estimate the effects of the un
usual 2020 meteorology on the concentrations alone. This is performed 
by comparing the modelled concentrations during the lockdown period 
in 2020 with the average modelled concentrations using the meteo
rology from 2017 to 2019, with both using the using the reference 
emission scenario. It is found that the 2020 meteorology during the 
lockdown period had a small effect on the NOx, NO2 and O3 concen
trations. That is, the concentrations with 2020 meteorology are on 
average within 2% of the concentrations calculated with the meteo
rology of 2017–2019 (standard deviation (sd) of 13 percent point for 

Fig. 5. Daily average observed and expected NO2 concentration for February to May 2020 (top panel). The expected concentration is estimated using a Random 
Forest method and represents the concentrations corrected for meteorological variability. Also shown (bottom panel) is the difference between the observed and 
expected concentration, which is an indication of the effect of the lockdown measures on the concentration. 
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Fig. 6. Effect of the lockdown measures on the NOx, NO2, PM10, PM2.5 and O3 concentrations based on the Random Forest analyses (red lines, labelled ‘Observa
tions’) and EMEP4NL scenario calculations (blue bars, labelled ‘Model’). Shown are the effects for rural, urban, and traffic measurement locations, averaged over de 
lockdown period. The EMEP4NL results show the difference between the reference scenario and the three lockdown scenarios with low, high, and extended emissions 
reductions. Because of the spatial resolution of 1.3 × 2.1 km the EMEP4NL simulations are not suitable to calculate concentrations at traffic locations. The light blue 
band show the low to high scenario and the dark blue band the high to extended scenario. The Random Forest results show the difference between the expected 
concentrations, without lockdown measures, and the observed 2020 concentrations. The vertical lines are the 95% confidence intervals. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. Calculated effect of the lockdown measures on the NO2 (left panel) and PM2.5 (right panel) concentrations (in μg m− 3) at surface level in the Netherlands. The 
effect is calculated with the EMEP4NL model as the difference, over the lockdown period, between the high lockdown scenario and the reference scenario, at the 
lowest model layer. 
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NOx and NO2 and 4 percent point for O3). The unusual 2020 meteo
rology had a larger effect on the PM10 and PM2.5 concentrations. The 
2020 meteorology resulted in on average 8% lower PM10 concentrations 
(sd of 8 percent point) than the concentrations calculated with the 
meteorology of 2017–2019 and 10% lower PM2.5 concentrations (sd of 
11 percent point). So, the observed PM concentrations are reduced by 
the lockdown measures and by the unusual meteorology during the 
lockdown period in the Netherlands. 

3.5. Reductions in traffic contributions 

As described in section 2.5, RIVM produces hourly NO2 maps for the 
Netherlands which are calibrated using observations. One of the steps in 
the calibration is a scaling of the calculated NO2 traffic contributions 

using measurements at traffic locations that are influenced by traffic on 
roads in cities and highways. Fig. 9 shows the weekly average scaling 
factors in the calibration obtained for the months of January–May 2020. 
From week 12, a substantial drop in NO2 traffic concentration contri
butions is observed. Apart from week 14, the estimated NO2 contribu
tions from traffic are about 65% of those in weeks 1–12, implying an 
average reduction of the concentration contributions from road traffic 
by about 35%. 

Mobility data provided by Apple (2020) and Google (2020) is also 
shown in Fig. 9. The trend shown in the mobility data of Apple and 
Google is quite similar to that estimated from the reduction in traffic 
contributions, although the drop in the latter is less pronounced. 

The Netherlands Institute for Transport Policy Analysis reported in 
April 2020 that the number of transport movements in the Netherlands 

Fig. 8. Effect of the lockdown measures on the NO2 and PM2.5 concentrations based on the Random Forest analyses (red lines, labelled ‘Observations’) and EMEP4NL 
scenario calculations (blue bars, labelled ‘Model’). The bars show the difference between the lockdown scenarios and the reference scenario, averaged over March 16 
to May 10, 2020. The light blue band show the low to high scenario and the dark blue band the high to extended scenario. The Random Forest results show the 
difference between the expected concentrations, without lockdown measures, and the observed 2020 concentrations. The vertical lines are the 95% confidence 
intervals. The stations on the left (9 for NO2 and 6 for PM2.5) are rural background stations and those on the right (11 for NO2 and 9 for PM2.5) are urban background 
stations. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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was reduced by some 55% due to the lockdown (KIM, 2020b). Some 
39% of the people started working entirely from home, resulting in a 
significant reduction of traffic-related emissions. Using real-time infor
mation provided by the Netherlands National Data Warehouse for 
Traffic Information (NDW, 2020) we have estimated the change in 
traffic intensities and composition around the onset of the lockdown on 
three main highways in the Netherlands (the highways A1, A2 and A16). 
In the period of March 23 to April 5, 2020, the amount of light-duty 
traffic is reduced by 45–60% with respect to the average values of 
February 2020, whereas the number of middle-heavy and heavy-duty 
trucks is reduced by roughly 10% and 5%, respectively. Taking into 
account the different emission factors of these vehicles for NOx and NO2, 
we estimate a total effect on the NO2 concentration contributions of 
35–40%. This estimate is quite close to the reduction in NO2 contribu
tions observed in the calibration of the hourly maps. 

4. Discussion 

The EMEP4NL simulated reductions partially overlap with the 
Random Forest analyses when the 95% confidence intervals are 
considered, but especially for the extended lockdown scenario with 
relatively large assumed reductions in economic activities and corre
sponding emissions. There can be several reasons for the differences 
between both methods. 1) A Random Forest method is used to estimate 
what the concentrations would have been in the absence of reductions in 
emissions. The method uses a set of explanatory variables and historical 
observations to describe the concentrations. The whole difference be
tween the observed 2020 concentrations and expected concentrations, 
in the absence of emission reductions, is ascribed to the lockdown 
measures. The effect of meteorological variability is at least mostly taken 
into account, but there might be other factors affecting the 2020 con
centrations that have not been taken into account, which are now 
incorrectly ascribed to the lockdown measures. For example, changes in 
local emissions or the physical surroundings close to the measurement 
station. The unusual meteorological conditions during the lockdown 
might also not be present sufficiently in the training dataset used to 
estimate the Random Forest variables. Another potential source might 

be the absence of a trend term in the Random Forest analysis. NO2 
concentrations at urban and traffic locations show a downward trend of 
about 1 μg m− 3 per year. Ignoring a trend term could lead to an over
estimation of the lockdown effect. Although when we included a trend 
term in additional Random Forest analysis the results hardly changed. 
Therefore, the effect of a trend term is probably small compared with the 
uncertainty derived by the Random Forest analysis. It is also not clear if 
a long-term trend will be relevant for the expected concentrations for a 
short period of only eight weeks. 2) Another reason explaining the dif
ference between both methods could be an underestimation of the 
changes in economic activity and related emissions for the lockdown 
scenario. The scenario with extended emission reductions, i.e., re
ductions larger than based on the reported and estimated changed in 
economic activities (light and heavy-duty traffic and industry), is closest 
to the data from the Random Forest analyses. 3) The EMEP4NL model 
may not give a full explanation of measured PM concentrations. 

Since a broader range of sources contributes to PM concentrations 
compared to nitrogen oxides, and the source contributions are trans
ported over longer distances, the spatial gradients in PM concentrations 
are small (Fig. 7). PM2.5 reductions are smaller than those for NOx and 
NO2 due to the substantial contributions from secondary aerosols from 
the agricultural sector that are hardly affected by the lockdown. PM10 
reductions are even less affected due to the contribution of natural 
sources such as windblown dust, sea salt, etc. 

Increases are observed in O3 concentrations for all station types, but 
especially for traffic locations. Close to roads the emitted NO reacts with 
ozone to form NO2 (Parrish et al., 2012; van Pul et al., 2011). In the 
Netherlands, because of the high NOx emissions and corresponding 
concentrations, the concentrations of volatile organic compounds 
(VOCs) are the rate limiting step in the production of ozone at many 
locations. Reductions in NOx emissions therefore primarily lead to in
creases in O3. 

Menut et al. (2020) reported effects of the lockdown measures on the 
air quality in Europe from simulations with an atmospheric 
chemistry-transport model and lockdown scenario for Western Europe. 
For the Netherlands, for the month of March, they found a reduction in 
NO2 concentration of 23% in urban areas and 16% in rural areas, a 

Fig. 9. Trend plot of estimated NO2 traffic contributions obtained from the hourly NO2 maps calculated in the Netherlands (blue). The red curves are mobility trend 
estimates reported by Apple (2020) and Google (2020). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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reduction in PM2.5 concentrations of 10% in rural and urban areas, and 
an increase in O3 concentrations of 6–8% in rural and urban areas. Their 
results for NO2 and O3 concentrations are similar to our findings, but are 
somewhat smaller than we what found for PM2.5 concentrations. 

Reductions in NO2 tropospheric column values from satellite obser
vations are reported by Bauwens et al. (2020). For cities as Frankfurt, 
Hamburg, and Brussels they report reductions in column NO2 amounts 
of about 20% during the lockdown. No data is reported for the 
Netherlands, but the reductions found for the cities in Belgium and 
Germany are close to our findings for NO2 surface concentrations. 

Giani et al. (2020) analysed observations of PM2.5 concentrations 
and reported an average reduction of 17% for the whole of Europe. This 
average reduction is in line with the reductions we report here for the 
Netherlands. But, because of the large differences in the stringency of 
the lockdown measures in European countries and regional differences 
in meteorological conditions across Europe, the average value for 
Europe may not be representative for the Netherlands. 

5. Conclusions 

The Random Forest analysis of the observed concentrations and the 
EMEP4NL simulations with prescribed emission reductions yield similar 
changes in concentrations resulting from the lockdown measures in 
March to May 2020. The Random Forest analyses of the observations 
yield on average larger decreases in NOx, NO2, and PM2.5 concentration 
and larger increases in O3 concentration than the EMEP4NL simulations. 

The Random Forest analyses yields reduction in NO2 concentrations 
of on average 30% (95% CI 25–35%), 26% (95% CI 21–32%), and 18% 
(95% CI 10–25%) for traffic, urban and rural background locations, 
respectively. Slightly smaller reductions of 8–28% are found with the 
EMEP4NL model for urban and regional locations with estimates of re
ductions in economic activity and emissions of traffic and industry in the 
Netherlands and other European countries. Reductions in observed 
PM2.5 concentrations of about 20% (10–25%) are found for all locations, 
which is again somewhat smaller estimates of 5–16% based on the 
model simulations. 

From the analyses of the observations and the model simulations it 
can be concluded that the unusual 2020 meteorology in the Netherlands 
affected (decreased) PM10 and PM2.5 concentrations by about 8% and 
10%, respectively, but not the NOx, NO2, and O3 concentrations. 
Therefore, the observed PM concentrations during the lockdown period 
are reduced by both the lockdown measures and by the 2020 
meteorology. 

The largest changes in economic activities during the lockdown 
period are for light-duty traffic. Based on a comparison between 
observed concentrations and modelled local traffic contributions along 
city roads and highways we derived a reduction in NO2 contributions 
from road traffic of about 35% during the lockdown, which is close to 
estimates of the reductions in traffic volumes. 

Finally, it is important to note that the largest health effects from 
poor air quality in the Netherlands are associated with exposure to PM10 
and PM2.5, and that exposure to NO2 contributes about one-third to the 
health effects in the Netherlands (Fischer et al., 2015). Also, the health 
effects are derived for a long-term (many years) exposure and it is not 
known what the long-term effects are for reductions for just a few 
months. Therefore, the lockdown measures in spring of 2020 have 
improved the air quality in the Netherlands, but the most important 
compounds for health effects have only been reduced by about 10–25%. 
By the middle of October, a second partial lockdown was announced 
with potentially additional positive effects on the air quality. 
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