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A B S T R A C T   

Inter-sectoral volatility linkages in the Chinese stock market are understudied, especially asymmetries in realized 
volatility connectedness, accounting for the catastrophic event associated with the COVID-19 outbreak. In this 
paper, we examine the asymmetric volatility spillover among Chinese stock market sectors during the COVID-19 
pandemic using 1-min data from January 2, 2019 to September 30, 2020. In doing so, we build networks of 
generalized forecast error variances by decomposition of a vector autoregressive model, controlling for overall 
market movements. Our results show evidence of the asymmetric impact of good and bad volatilities, which are 
found to be time-varying and substantially intense during the COVID-19 period. Notably, bad volatility spillover 
shocks dominate good volatility spillover shocks. The findings are useful for Chinese investors and portfolio 
managers constructing risk hedging portfolios across sectors and for Chinese policymakers monitoring and 
crafting stimulating policies for the stock market at the sectoral level.   

1. Introduction 

The COVID-19 outbreak is a human tragedy and a public health 
emergency. Its devastating impacts have reached the base of the global 
economy. The spread of this deadly virus from China in late 2019 to the 
rest of the world in early 2020 has led to a paralysis of economic activity 
and the co-called lockdown recession that is expected to be more severe 
than the recession experienced during the global financial crisis (GFC) of 
2007–2008. COVID-19 was declared a pandemic on March 11, 2020 and 
some economic and financial communities refer to it as a catastrophic 
event. It has induced instability and sharp declines in stock markets. In 
China, the point of origin of COVID-19, the stock market, as measured by 
the CSI Index, plunged 12.50% from January 13, 2020 to February 2, 
2020. Following a sharp rebound that lasted a few weeks, the CSI Index 
declined again by 16% over the period March 5, 2020 to March 23, 
2020. Chinese stock sector indices such as energy, banks, industrials, 
and consumer discretionary experienced sharp declines. For example, 
the decline in the energy sector exceeded 20% from January 13, 2020 to 
February 2, 2020 and March 5, 2020 to March 23, 2020. The lockdown 
recession has led to a large decrease in the prices of energy, e.g., crude 
oil, and thus the profit margins and stock prices of energy companies. 

For banks, the spike in the share of non-performing loans coupled with 
the decrease in interest rate margins due to reductions in policy rates 
have crushed earnings and thus bank stock prices. Consumer discre
tionary spending on products and services such as travel and leisure has 
decreased considerably, leading to sharp decreases in the consumer 
discretionary index. However, increased spending on staples and sur
vival supplies has made the consumer staples index outperform the 
aggregate stock market. 

Under the extreme market conditions associated with the cata
strophic event of the COVID-19 outbreak, it is informative to uncover 
the dynamics of volatility spillovers across the Chinese equity sectors for 
the sake of investors and policymakers. However, financial markets 
represent a complex and rapidly changing system characterized by an 
asymmetric dependency (Baruník, Kočenda, & Vácha, 2016). The cor
relation across large negative returns is stronger than that across large 
positive returns. Furthermore, the concurrent correlation between re
turn and conditional volatility is negative. Therefore, a stronger reaction 
to negative shocks leads to an asymmetric price volatility that reduces 
the benefits of diversification (Amonlirdviman & Carvalho, 2010). 
Notably, investors and policymakers are concerned not only with 
aggregate volatility but with “good” and “bad” volatilities that exhibit 
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opposite impacts on stock prices and market growth (Wang & Wu, 
2018). Good volatility is related to positive innovation in market returns 
and thus enables the stock markets to be more productive. Conversely, 
bad volatility is related to negative innovation in market returns, and 
thus it has a destabilizing effect on the stock market. Notable benefits 
can arise from decomposing the aggregate volatility into good and bad 
volatility components. Gkillas et al. (2019) argue that, unlike bad 
volatility which is jumpy and hard to predict, good volatility is direc
tional, persistent, and more predictable. Accordingly, detecting the 
spillovers of good and bad volatility across stock returns in stress periods 
gives insight into potential asymmetry in the propagation of risk across 
stock sector indices, which ultimately affects stock pricing, risk valua
tion, and the payoff of diversification and trading strategies (Garcia & 
Tsafack, 2011). 

Information transmission in realized volatility and potential asym
metry in the volatility connectedness have been the subject of recent 
studies dealing with US equities (Baruník et al., 2016), currencies 
(Baruník, Kočenda, & Vácha, 2017), and commodities (Luo & Ji, 2018; 
Shahzad et al., 2018; Bouri, Lucey, Saeed, & Vo, 2021). However, there 
is a lack of evidence about what manner of volatilities, good or bad, are 
propagated in the Chinese stock sector markets, especially during the 
COVID-19 outbreak. In addition to China being the point of origin of the 
COVID-19 pandemic, the Chinese stock market is the fastest-growing 
(Xu, Ma, Chen, & Zhang, 2019) and second-largest after the US. It has 
a huge daily trading volume and a large number of individual and 
institutional investors, although market participants focus more on 
speculation than investment, which makes the local stock market highly 
sensitive (Chen, Li, & Qu, 2019). While the development of the Chinese 
stock market has been marked by important events such as the GFS, the 
European sovereign debt crisis, and the Chinese stock market turmoil of 
2015 (Chen et al., 2019), there is a lack of understanding of the impact of 
non-financial and non-economic events, such as COVID-19, on the 
interconnectedness of Chinese sector indices. 

In light of this discussion and the above-mentioned gap, this paper 
examines the asymmetric volatility connectedness among Chinese stock 
sector indices. We do this in static and time-varying settings using high- 
frequency data. Our methodological framework captures the asymmetry 
in the volatility spillovers accurately, given its concentration on the 
spillover between good volatilities and bad volatilities, as documented 
by Baruník et al. (2017). 

We contribute to the academic literature as follows. Firstly, we add 
to recent studies considering the effect of COVID-19 on energy, stock, 
and policy uncertainty in the US economy (Sharif, Aloui, & Yarovaya, 
2020) by focusing on the largest emerging market and the site of the first 
COVID-19 cases. Secondly, we extend previous studies dealing with 
stock sectoral connectedness in the Chinese stock market (e.g., Feng 
et al., 2018; Wu, Zhang, & Zhang, 2019) by considering the source and 
magnitude of volatility spillovers in static and time-varying settings, 
which helps detect the major sectors in the network of volatility 
connectedness. Thirdly, we apply the VAR-based approach to connect
edness while decomposing the realized volatility into bad and good 
components (Baruník et al., 2016, 2017; Luo & Ji, 2018; Uddin et al., 
2019), which allows us to uncover evidence of asymmetric volatility 
spillovers among Chinese stock sector indices. This represents an 
extension to most previous studies that highlight the asymmetry in 
volatility by indicating that price volatility is larger in stress periods 
than calm periods. Fourthly, we apply a network typology, uncovering 
how spillovers of bad and good volatility are transmitted across various 
equity sectors during the COVID-19 outbreak. This is useful for market 
participants, given that the volatilities in Chinese sectors have been 
shown to interact with each other during crash periods, leading to an 
increase in the volatility of systemic risk in the stock markets. 

The main results show evidence of the asymmetric impact of good 
and bad volatilities that are found to be time-varying and substantially 
intense during COVID-19. Notably, bad volatility (i.e., downside semi
variance) spillover shocks dominate good volatility (i.e., upside 

semivariance) spillover shocks. These findings are useful for Chinese 
investors and portfolio managers constructing risk hedging portfolios 
across sectors and for Chinese policymakers monitoring and crafting 
stimulating policies for the stock market at the sectoral level. They are 
also relevant to empirical analysis which involves the predictability of 
the effect of tail events on volatility spillovers, which matters to finan
cial risk management. In fact, extending our limited understanding of 
the pattern of extremes in the Chinese sector indices that are driven by 
COVID-19 can be used to improve the accuracy of predicting good and 
bad volatilities for risk management. 

Section 2 reviews the related literature; Section 3 presents the 
dataset and methods; Section 4 provides the connectedness results in 
static and time-varying settings and offers a robustness analysis. The 
final section concludes. 

2. Literature review 

2.1. Volatility spillover 

Several studies consider the volatility spillovers among stock mar
kets using multivariate GARCH models (e.g., Li & Giles, 2015) and the 
asymmetric GARCH-DCC model of Cappiello, Engle, and Sheppard 
(2006), which allows for asymmetry in the conditional variances and 
correlations among stock indices, which is essential during stress pe
riods. These models are applied to global stock sector indices to consider 
hedging effectiveness (Jin, Han, Wu, & Zeng, 2020). However, GARCH- 
based models do not sufficiently capture the dynamics of volatility 
spillovers. With the development of the generalized VAR framework 
based on forecast-error variance decomposition, total and directional 
volatility spillovers can be captured in a robust way in both static and 
time-varying settings (Diebold & Yilmaz, 2012). This approach has been 
used in various stock markets, to show strong cross-market volatility 
spillovers during and after the GFC of 2007–2008. Previous studies 
consider the asymmetry in volatility, which generally indicates that 
price volatility is larger in stress periods than calm periods, and vola
tility spillovers are stronger during stress periods (Do, Powell, Yong, & 
Singh, 2019). However, asymmetry in volatility spillovers arises from 
the differences between bad and good volatility. Capturing such asym
metry becomes possible thanks to the availability of intraday price data 
that allows for the computation of realized volatility based on 5-min 
price data (Andersen & Bollerslev, 1998) and decomposition of real
ized volatility by differentiating good from bad volatility (Barndorff- 
Nielsen, Kinnebrock, & Shephard, 2010). Accordingly, studies have 
applied such asymmetric volatility linkages based on intraday data to a 
wide set of assets such as currencies (Baruník et al., 2017), commodities 
(Luo & Ji, 2018; Uddin et al., 2019), and Asian futures markets (Yar
ovaya, Brzeszczyński, & Lau, 2016). In equity markets, Baruník et al. 
(2016) quantify asymmetries in the volatility spillovers of US equity 
sectors by considering the spillovers from good volatilities to bad vola
tilities and vice versa. The authors propose the spillover asymmetry 
measure (SAM). 

2.2. The Chinese stock market at the sectoral level 

Established in 1991, the Chinese stock market evolved rapidly to 
reach second place among global stock markets in terms of trading ac
tivity and market value. It involves two major exchanges containing 
more than 3500 listed companies spreading to various sectors. As of 
December 2019, the total market value of all Chinese listed companies 
amounted to 59.29 trillion yuan (or 9.23 trillion US dollars). The Chi
nese stock market plays an important role in global finance and involves 
many institutional investors. However, it is considered a highly volatile 
and risky investment scene, subject to frequent booms and busts. The 
market crashes around the GFC of 2007–2008, and the bubble burst of 
June–September 2015 are notable. 

The Chinese stock market at the aggregate level is widely studied in 
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academia, mostly in terms of its relationship with international stock 
markets (Yao, He, Chen, & Ou, 2018; Yu, Fang, Sun, & Du, 2018) and 
commodities (Hammoudeh, Nguyen, Reboredo, & Wen, 2014). How
ever, sectors contribute to systemic risk, and the volatility contributions 
vary among equity sectors (Eckernkemper, 2018). As such, the volatility 
of one sector can transfer to another, which ultimately affects the 
volatility of the whole system, and thus the returns of market partici
pants and the decisions of policymakers. Accordingly, capturing the 
source and magnitude of volatility is crucial to uncover sectoral vola
tility contributions and the network of sectoral interconnectedness in 
the Chinese stock market. At the sector level, few studies consider the 
Chinese stock market, as the focus is mainly on its relationship with 
crude oil prices (Huang, An, Gao, & Huang, 2015; Yang, Zhu, Wang, & 
Wang, 2016). Less is known about the connectedness among sector 
indices. Hao and He (2018) apply a copula model to the dependences 
between manufacturing, finance, and real estate stock sector indices. 
Feng et al. (2018) study risk spillover networks across Chinese sectors, 
considering various investment horizons. They show that the risk of one 
sector index has an influence on another. Wu et al. (2019) show a time- 
variation in the sectoral linkages in the Chinese stock markets and evi
dence that the industrial sector is central to the network of return 
spillovers. 

As shown above, asymmetries in volatility spillovers among the 
Chinese stock sector indices at the interconnectedness level are little 
studied. Especially, no evidence exists of the effect of the COVID-19 
outbreak on the Chinese stock sector indices in a time-varying manner 
using network typology, differentiating between good and bad volatil
ities. Accordingly, we contribute to the academic literature by exam
ining the asymmetric volatility spillover among Chinese stock market 
sectors during the COVID19 pandemic using 1-min data, extending 
previous findings on the effects of the COVID-19 on financial markets (e. 
g. Shahzad et al., 2021). 

3. Data and methodology 

3.1. Data 

We use the CSI 300 sector index series for ten sectors: energy (EN), 
material (MAT), industrial (IND), consumer discretionary (CD), con
sumer staples (CS), health care (HC), financials (FIN), information 
technology (IT), telecommunications (TELE), and utilities (UTL). Our 
sample period is January 2, 2019 to September 30, 2020, and the 
sampling frequency is 1 min. The component stocks contained in the 
sector index series are the same as the CSI 300 Index, now grouped by 
their industrial classifications. As a result, each index is compiled from a 
different number of component stocks (see the last column of Table 1). 
For each index, the base date is December 31, 2004, and the base point is 
1000, denominated in RMB. 

Fig. 1 plots the CSI Energy Sector Index (EN) versus the CSI Index 

(market). The outbreak of COVID-19 in China at the end of January 
2020 has a negative effect on both indices, causing a large decline in 
both at the beginning of February. The market index decreases by 
around 12% from 4250 to around 3750, and the energy index goes down 
by almost 20% from 1600 to 1300. Then the energy index continues 
decreasing while the market index fluctuates around 3750 points. 

3.2. Realized volatility and semi-volatility 

For an index price on day t, we compute its log return as rt, τ = log Pt, 

τ − log Pt, τ− 1 for each minute τ. Since the Chinese stock market trades 
from 9:30 to 11:30 and from 13:00 to 3:00, in total, we have 4 × 60 =
240 minutes for each trading day. That is, τ = 1, …, 240. Based on these 
240 1-min returns, we calculate the daily realized variance for each 
sectoral index as: 

RVt =
∑240

τ=1
r2

t,τ (1a) 

We then follow Barndorff-Nielsen et al. (2010) to decompose RVt into 
two semivariances, downside semivariance, and upside semivariance, 
which are also known as bad volatility and good volatility, respectively: 

RV −
t =

∑240

τ=1
r2

t,τI
{

rt,τ < 0
}

(1b) 

RV+
t =

∑240

τ=1
r2

t,τI
{

rt,τ > 0
}

(1c) 

It is obvious that the realized variance is the sum of the two semi
variances, say, RVt = RVt

− + RVt
+. 

The literature shows an asymmetry effect of these two semivariances. 
For example, Todorova (2017) examines COMEX gold futures from 
January 2003 to June 2016 and finds that negative semivariance relates 
more to the short-term dynamic of the overall volatility than positive 
semivariance; while the latter, on the other hand, has a stronger corre
lation with the overall volatility at daily, weekly, and monthly horizons. 
Conversely, Baruník et al. (2017) focus on the foreign exchange market 
2007–2015 and show that negative semivariance dominates the spill
overs. Given the disagreement on the importance of good versus bad 
volatility, we examine the effect of both volatilities. 

3.3. Connectedness of the volatility system in the time- and frequency- 
domain 

For the realized volatilities or semi-volatilities, we first estimate a 
stationary VAR model of order p: 

yt = Φ(L)yt + εt = Φ1yt− 1 +Φ2yt− 2 +⋯+Φpyt− p + εt (2)  

Table 1 
Sector indices of the Chinese stock market.  

Index Name Ticker Abbreviation #Stocks 

CSI 300 Energy Sector Index 000908 EN 10 
CSI 300 Materials Sector Index 000909 MAT 34 
CSI 300 Industrials Index 000910 IND 53 
CSI 300 Consumer Discretionary Index 000911 CD 30 
CSI 300 Consumer Staples Index 000912 CS 16 
CSI 300 Health Care Index 000913 HC 29 
CSI 300 Financials Index 000914 FIN 77 
CSI 300 Information Technology Index 000915 IT 34 
CSI 300 Telecommunication Services Index 000916 TELE 8 
CSI 300 Utilities Sector Index 000917 UTL 9   

total 300 

Notes: The CSI index series are compiled by the China Securities Index Co., Ltd. 
The last column (#Stocks) counts the number of component stocks included in 
each ETF. 

Fig. 1. Time series plot of the energy sector and stock market index. Note: The 
blue line is the CSI Energy Sector Index (EN) and the red line the CSI 300 Index 
(Market). The sample period is January 2, 2019 to September 30, 2020. 
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where vector yt = (RV1t,…,RVnt) is an n × 1 vector that contains the 
realized volatilities or semi-volatilities of sectoral index returns; Φ(L) is 
a lag polynomial. The vector εt is an n × 1 vector of random errors with 
mean zero and variance matrix Σ; furthermore, we assume no serial 
correlation in εt. Given that the VAR system specified in Eq. (2) is sta
tionary, by the Wold representation, it can be rewritten as a moving 
average process with infinite order, or VMA(∞), sayyt = Ψ(L)εt = Ψ0εt +

Ψ1εt− 1 + ⋯ + Ψhεt− h + ⋯. Here, Ψh is the MA coefficient matrix cor
responding to the h-th lag; when h is zero, we set Ψ0 to the identity 
matrix, I. 

3.3.1. Time-domain connectedness 
Following Pesaran and Shin (1998), we apply a generalized forecast 

error variance decomposition (FEVD) to the VMA (∞) entailed by Eq. 
(2). By doing an H-step ahead forecast, we denote the contribution of the 
realized volatility of the j-th to the forecast error variance of the realized 
volatility of the i-th variable as follows: 

θij =

∑H− 1
h=0

(
e′

iΨhΣej
)2

e′

jΣej ×
∑H− 1

h=0 e′

i(ΨhΣΨ′

h)ei
=

1
σjj

×

∑H− 1
h=0

(
(ΨhΣ)ij

)2

∑H− 1
h=0 (ΨhΣΨh

′)ii

(3)  

where we denote the ij-th element of Σ as σij, and the j-th diagonal 
element as σjj; and ej is a vector of zeros except that the j-th element is 
one. In our empirical studies, we choose a forecast horizon of 5 days (H 
= 5). By standardizing the contribution across all variables (j = 1, 2, …, 
n), we can compute the following connectedness measures as in Diebold 
and Yilmaz (2012, 2014). 

3.3.2. Frequency-domain connectedness 
To get the frequency-domain connectedness measures, we start with 

the VMA(p) model in Eq. (2). We then obtain the VMA (∞) represen
tation, say yt = Ψ(L)εt. We then apply the Fourier transform to the lag 
coefficient polynomial, and obtain Ψ(e− iω) =

∑
h=0
∞ e− iωhΨh, where ω is a 

specific frequency. We then obtain the power spectrum of yt as S y(ω) =
∑∞

h=− ∞E
[
ytyt− h

′
]
e− iωh = Ψ

(
e− iω)ΣΨ

(
eiω). The contribution of the j-th 

variable (i.e., the realized volatility of the j-th ETF) to the forecast error 
variance of the i-th variable (i.e., the realized volatility of the i-th ETF) as 
follows: 

ϑij(ω) =
1
σjj

×

⃒
⃒
⃒(Ψ(e− iω)Σ )ij

⃒
⃒
⃒

2

(Ψ(e− iω)ΣΨ′

(eiω) )ii

=
1
σjj

×

∑∞
h=0(Ψ(e− iωh)Σ )

2
ij

∑∞
h=0(Ψ(e− iωh)ΣΨ′

(eiωh) )ii

(4)  

3.3.3. Time-domain connectedness vs. frequency-domain connectedness 
Table 2 presents the definitions of various time-domain spillover 

measures based on Diebold and Yilmaz (2012); Diebold and Yılmaz 

(2014) and the frequency-domain spillover measures based on Baruník 
and Křehlík (2018) and Ferrer et al. (2018). We can see that the two sets 
of measures differ only in their calculation of the contribution of vari
able j to the forecast error variance of variable i. 

Our use of both time- and frequency-domain connectedness follows 
from Balli et al. (2019), Caporin et al., 2021, Liu and Hamori (2020) and 
Zhang, Hu, and Ji (2020). The former analyses the spillover among 
crude oil, natural gas, clean energy, bond, and stock index in the US and 
Europe, while the latter focuses on the spillover among natural gas, 
crude oil, and energy sector index in the US, Canada, and four European 
countries. As Liu and Hamori (2020) point out, the merits of this mixed 
approach are twofold. First, they allow us to examine directional spill
overs, which we can show by a network diagram. Second, with the 
frequency -domain connectedness measure, we can distinguish the 
short- and long-term components of the spillovers. Both Liu and Hamori 
(2020) and Zhang, He, Nakajima, and Hamori (2020) show that the 
spillover based on the return system is stable during the sample horizon; 
meanwhile, the spillovers based on the variance system clearly identifies 
structural breaks due to economic and political shocks. For example, 
Zhang, He, et al. (2020) discover the oil crisis in late 2014 and the 2016 
Brexit all lead to a sudden spike in the volatility spillover. We expect the 
COVID-19 brings a similar effect. 

3.3.4. Spillover asymmetry measure (SAM) 
Baruník et al. (2016) propose a spillover asymmetry measure (SAM) 

based on two semivariances: 

SAM = C+ − C− (5)  

where C+ and C− are the total volatility spillover indices due to RVt
+ and 

RVt
− . To compute SAM, we follow a three-step procedure. First, based on 

the positive and negative semivariances, we estimate two VAR(p) 
model. Second, for each VAR(p) model, we compute the two total 
connectedness measures, C+ and C− . In this step, we refer to the formula 
in the second line of Table 2. Then, we compute SAM according to eq. 
(5). Intuitively, when SAM stays positive, the effect of upward risks 
dominates; when SAM is negative, the effect of down-side risks 
dominates. 

4. Empirical findings 

Our sample period covers the outbreak of COVID-19 in early 2020. 
Recent studies have shown that this incident has had a significant impact 
on crude oil prices, stock market indices, and policy uncertainty in the 
US (Sharif et al., 2020). Furthermore, Zhang, Hu, and Ji (2020) show 
that, after the outbreak in China, the connectedness of the Chinese stock 
market, measured by a transformed correlation, significantly increases 
with the stock markets of Singapore, South Korea, and Japan. Since the 
ten sectors of Chinese firms have a diverse degree of openness to the 
outside world, we expect the pandemic to have asymmetric effects, and 
those effects to be time-varying, depending not only on the resilience of 
the sector itself but also the resilience of its most connected industries. 

4.1. Connectedness based on systems of daily realized variances and semi- 
variances 

Panel (a) of Fig. 2 plots the directional connectedness based on the 
return variances of the ten sectoral indices. In the network graph, we can 
identify three clusters. First, energy (EN) and utilities (UTL) have strong 
spillovers to each other because the input of utility firms is the output of 
the energy firms, such as coal and oil. Second, the financial sector (FIN) 
turns to be standalone. It has weak spillovers from and to other sectors, 
alluding to fact that the China’s financial system centers around banks 
rather than the securities market (Chan, Fung, & Thapa, 2007). Third, 
the rest eight sectors form the third and also the largest cluster. Among 
these sectors, consumer discretionary (CD) and consumer staples (CS) 

Table 2 
Measures of connectedness between variables in a VAR(p) system.  

Type of Connectedness Time-Domain Frequency-Domain 

pairwise connectedness (j to i) θ̃ij =
θij

∑n
j=1θij  

ϑ̃ij(ω) =
ϑij(ω)

∑n
j=1ϑij(ω)

total connectedness of the system 
(also known as the total 
spillover index) 

C =

1
n
∑n

i∕=j

∑n
j=1

θ̃ij  

C(ω) =

1
n
∑n

i∕=j

∑n
j=1

ϑ̃ij(ω)
net pairwise connectedness (j to i) Cij,net = θ̃ij − θ̃ji  Cij,net(ω) = ϑ̃ij(ω) −

ϑ̃ji(ω)
from connectedness of i (from all 

other variables to i) 
Ci←⋅ =

1
n
∑n

j∕=i
θ̃ij  

Ci←⋅(ω) =
∑n

j∕=iϑ̃ij(ω)

to connectedness of i (from i to all 
other variables) 

Ci→⋅ =
1
n
∑n

j∕=i
θ̃ji  

Ci→⋅(ω) =
∑n

j∕=iϑ̃ji(ω)

net connectedness of i (scaled by 
100) 

Ci,net =
1
n
∑n

j∕=i
θ̃ji −

1
n
∑n

j∕=i
θ̃ij  

Ci,net(ω) =
∑n

j∕=iϑ̃ji(ω) −
∑n

j∕=i ϑ̃ij(ω)

Note: the definitions are taken from Diebold and Yilmaz (2012, 2014) and 
Baruník and Křehlík (2018). 
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Fig. 2. Diebold-Yilmaz (DY) network diagram. (a) System of daily realized volatilities. (b) System of daily realized semivariances. The network graph illustrates the 
degree of pairwise weighted directional connectedness of a variance system that consists of the daily realized volatilities and daily realized semivariances (based on 
1-min data) of the Chinese stock markets sectors (HC = health care; CD = consumer discretionary; UTL = utilities; CS = consumer staples; IT = information 
technology; IND = industrials; FIN = financials; EN = energy; MAT = materials; TELE = telecommunications) over the full sample period. Total connectedness is 
measured using the Diebold-Yilmaz framework. The border colour indicates the origin of connectedness. Red implies a contribution from the variable under 
consideration to the other variables of the system. The size of edges (indicated by the figure on the edge) shows the magnitude of pair-wise directional spillover. In 
Panel (b), the rectangles are positive semivariances, while the ellipses show negative semivariances. Lag = 1; forecast horizon = 5 days. 
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have lower “to connectedness” than the other six sectors. This finding is 
consistent with the consumption smoothing behavior in macroeco
nomics, which says that spending on daily necessities remains largely 
the same over time. Meanwhile, industrials (IND), materials (MAT), 
consumer discretionary (CD), and health care (HC) have been strong 
receivers of spillover. It confirms the intuition that COVID-19 has 
inflicted a significant negative impact on industrial production and non- 
food consumption due to the lock-down policy. The outbreak of the 
pandemic also put a heavy burden on the healthcare system, both 
financially and in terms of personnel (Qiu, Chen, & Shi, 2020). 

These findings, especially the second and the third points, are vastly 
different from those for the US. For example, Baruník et al. (2016) 
reaches a different conclusion when examining 21 firms from seven 
sectors from August 2004 to December 2011.1 They find that the 
financial sector (FIN) and the energy (EN) sector were the largest 
transmitters of net spillovers during the financial crisis. For the rest of 
the sample period, consumer discretionary (CD), staples (CS), telecom
munications (TELE), and health care (HC) sectors display larger asym
metries in spillover than the other three sectors. 

Panel (b) of Fig. 2 shows the connectedness based on the semi
variances of the sectoral index returns. We use a rectangle to indicate 
positive semivariance and an ellipse to mark negative semivariance. The 
strongest spillover effect is observed in the first cluster, that is, between 
negative semivariance of energy (EN-) and two semivariances of utilities 
(UTL+ and UTL-). From the network diagram, we can discern that up
ward risks of the energy market (EN+)—which can be interpreted as the 
volatility during periods of price declines—exert two effects on the 
utilities index. The existence of the two effects follows from that energy 
products are the input of various amenities. First, when energy stocks 
perform weakly, energy becomes cheaper, and the profits of energy 
firms decrease. In this case, when other things being equal, the profit of 
utilities firms increases. So, there is a directional spillover from EN- to 
UTL+. Second, negative semivariance of energy (EN-) may be the result 
of a negative shock to the general economy. In this case, which transmits 
to the utilities sector. As a result, we also witness a spillover from EN- to 
UTL-. Last, negative semivariance in the energy ETF (EN-) may be the 
result of downside volatilities in the utilities (UTL-), so there is also 
connectedness from UTL- to EN-. 

Another interesting spillover effect is from upward semivariance of 
financials (FIN+) to downside variance of financials (FIN-), which may 
reflect the frequent up-and-down movements in the financial sector 
around the pandemic outbreak. Moreover, FIN+ is a receiver of negative 
shocks from information technology (IT-) and consumer staples (CS-). 
The rationale is, the pandemic imposes negative shocks to industrial 
firms, pulling down the demand for IT and CS. Seeing a fall in the 
profitability of non-financial sectors, investors may divert funds away 
from the financial market. On the other hand, spillover from financials 
(FIN+ and FIN-) to CS is not strong, which is consistent with Luo and Ji 
(2018). Focusing on the spillover from US crude oil to five Chinese 
agricultural commodities from 2008 to 2015, Luo and Ji (2018) find that 
the connectedness of the volatilities of the two markets remains weak. 
Our findings are similar: the Chinese energy industry (EN) also has a low 
spillover effect on the consumer staples sectors (CS), even if we split the 
variances into good and bad volatilities for both sectors. 

Last, the downside variance of industrials (IND-) has a spillover on 
the downside of materials (MAT). This spillover also has an intuitive 
interpretation: when there is a negative shock to the industrial sector, 
firms demand fewer materials to produce industrial goods. Over time, 
this negative impact transmits to the materials sector, resulting in large 
connectedness from IND- to MAT-. 

4.2. Frequency-domain connectedness based on systems of daily realized 
semi-variances 

In this section, we use the Baruník and Křehlík (BK) approach to 
examine the spillover among the ten sectors. Following the recent 
literature, such as Hasan, Arif, Naeem, Ngo, and Taghizadeh–Hesary, F. 
(2020) and Naeem, Peng, Suleman, Nepal, and Shahzad (2020), we 
focus on two horizons: short- and long-term, defined as 1 to 5 days and 
more than 5 days, respectively. 

Panel (a) Fig. 3 shows the short-term spillovers. Again, we observe 
three clusters. The first cluster includes the negative semivariance of 
energy (EN-) and two semivariances of utilities (UTL+ and UTL-). At the 
same time, the upward semivariance of the energy sector (EN+) is a 
weak receiver of volatility shocks from other non-financial and non- 
energy sectors. These results are consistent with the Diebold-Yilmaz 
(DY) method—as shown in Fig. 2(b), EN- has been a receiver of vola
tility shocks to the utilities sectors. The second cluster includes only the 
financial sector (FIN+ and FIN-). Both semivariances of FIN are receivers 
of shocks from other sectors, yet none of them are strong. The lack of 
short-term spillover effect may be ascribed to the relatively slow 
adjustment in non-financial sectors: changing physical capital in these 
industries is more difficult than tuning monetary investment positions in 
the financial sector. The rest seven sectors form the largest cluster, 
where every sector functions both as a receiver and transmitter of 
spillovers. 

The long-term spillover, presented by Panel (b) of Fig. 3, deviates 
drastically from the short-term dynamics in Panel (a) for non-financial 
and non-energy sectors. There are only three pairs that have signifi
cant spillovers. (1) There is spillover from the positive semivariance of 
telecommunications (TELE+) to its negative counterpart (TELE+). This 
result may follow from the expansion-to-contraction dynamics of this 
sector due to the lockdown. (2) There is spillover from negative semi
variance of information technology (IT-) to positive semivariance of the 
financial sector (FIN+). This directional connectedness might be 
attributed to the following mechanism: the pandemic causes a 
contraction in the industrials (IND-) and consumer discretionary (CD) 
sectors, which in turn, transmits to the IT sector. As the profitability of 
the IT sector tumbles, investors turn to the financial sector in a swamp, 
leading to a boom in the latter. 

4.3. Time-varying spillover 

Panel (a) of Fig. 4 shows the total connectedness (or spillover) index 
based on the system of realized volatilities, where the forecasting hori
zon is 5 days (H = 5) and the window length is 100 days (w = 100). The 
yellow shaded area marks the period after the outbreak on February 4, 
2020. Overall, the graph exhibits a time-varying pattern that has been 
reported by previous studies on Chinese sectors (e.g., Wu et al., 2019). 
As we extend our sample beyond the unprecedented outbreak of the 
catastrophe, we can see a sharp rise in the total connectedness measure. 
It indicates that the negative shock has struck the whole economic sys
tem. Towards the end of March, while the peak of the pandemic had 
passed, the overall connectedness index remained high. The first week of 
February. 

Similarly, Panel (b) of Fig. 4 shows the spillover asymmetry measure 
(SAM), defined as the spillover of the positive semivariance minus the 
spillover of the negative semivariance (Baruník et al., 2017). Before 
February 4, 2020, this asymmetry measure stayed within the range of 
[− 5%, +5%]. After the COVID-19 outbreak, this measure entered the 
negative region and approached − 10%. Nevertheless, as China gradu
ally gets the pandemic under control around March 2020, this measure 
increased from its trough and reverted to its previous range. 

Using frequency-domain connectedness, Panel (c) illustrates the 
short- and long-term asymmetry. We can see that the extreme upward 
and downward spikes of the total spillover index are all caused by short- 
term connectedness (marked in blue). The upward spike in April was 

1 These sectors include financials (FIN), information technology (IT), energy 
(EN), consumer discretionary (CD), consumer staples (CS), telecommunications 
service (TELE), and health care (HC). 
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owing to the removal of the lockdown. And the other two spikes in 
summer 2020 was also due to the removal of small-scale lockdowns.2 In 
contrast, the long-term SAM remain negative most of the time, indi
cating that continued downside risks exist our sample periods. Before 
the pandemic, SAM is already negative. This value can be attributed to 
China’s economic growth decline since late 2018 (Liu, Sun, & Zhang, 
2020). During the pandemic, SAM stayed within the negative realm due 
to the lock-down policy, under which most economic activities were put 
into a halt. After that, the long-term SAM decreased turned positive from 
July to mid-August. This decline coincides with the removal of small- 
scale lockdowns and travel restrictions. Entering August, long-term 
SAM decreases again, which may result from the second wave of 

lockdowns in cities like Dalian (in Liaoning Province). 

4.4. Robustness checks 

In the previous sections, our chosen forecasting horizon is 5 days (H 
= 5), and the window length is 100 days (w = 100). To verify that our 
results are not sensitive to the choice of forecasting horizon (H) or 
window length (w), we select all possible combinations from the 
following parameter sets: w ∈ {75; 100; 125} and h ∈ {3; 5; 10}. The nine 
combinations generated are: (a) w = 75, H = 3; (b) w = 75, H = 5; (c) w =
75, H = 10; (d) w = 100, H = 3; (e) w = 100, H = 5; (f) w = 100, H = 10; 
(g) w = 125, H = 3; (h) w = 125, H = 5; and (i) w = 125, H = 10. 

The graph of these sets is shown in Panel (a) of Fig. 5. In terms of the 
spillover index (i.e., the total connectedness of the system), all combi
nations of forecasting horizon (H) and window length (w) have similar 
trajectories and thus overlap most of the time. Moreover, all choices lead 
to two kink points: one situates at the beginning of February, marking 
the outbreak of the pandemic; and the other sits at the beginning of 
April, denoting the removal of the lockdown. 

Panel (b) of Fig. 5 illustrates the common-sample correlation 

Fig. 3. Network diagram of realized semi-variances spillover using the Baruník and Křehlík (BK) approach. a). Short-run (1–5 days). b). Long-run (more than 5 days). 
Note: This network graph illustrates the degree of pairwise weighted directional connectedness in a system that consists of the daily realized semivariances (based on 
1-min data) of Chinese stock markets sectors (HC = health care; CD = consumer discretionary; UTL = utilities; CS = consumer staples; IT = information technology; 
IND = industrials; FIN = financials; EN = energy; MAT = materials; TELE = telecommunications) over the full sample period. Total connectedness is measured using 
the generalized forecast error variance decomposition approach of Baruník and Křehlík (2018). The border colour indicates the origin of connectedness. Red implies a 
contribution from the variable under consideration to the other variables of the system. The size of edges (indicated by the figure on the edge) shows the magnitude 
of pair-wise directional spillover. The square nodes are positive semivariances, while circles show negative semivariances. Lag = 1; forecast horizon = 5 days. The 
sample period is from January 2, 2019 to September 30, 2020. 

Fig. 4. Time-varying spillover. (a) Spillover based on the system of realized volatilities. (b) Spillover based on the system of asymmetry measure (SAM). (c) Spillover 
based on the system of frequency-domain asymmetry measure (SAM). Notes: The spillover asymmetry measure has w = 100 and h = 5 trading days. The shaded area 
(yellow) is the COVID-19 impact period starting on February 4, 2020. In Panel (b), negative values imply higher negative spillover, and vice versa. In Panel (c), the 
blue (red) line shows the short- and long-run asymmetry. 

2 For example, new cases appeared in Beijing on June 11, 2020, all of which 
were found to relate to the Xinfadi wholesale market. Beijing was able to 
control the expansion of the pandemic and reopened the market on August 15. 
In late July, a few cities in Northeast China (e.g., Dalian in Liaoning Province) 
have reported imported cases, which resulted in massive COVID-19 testing and 
short-term lockdowns. 
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heatmap. For each square block, the darker the colour, the higher the 
correlation. No matter which combination of w and H we choose, the 
resulting spillover indexes have high, positive common-sample corre
lation with each other. Based on our calculations, most correlations 
exceed 0.8. Therefore, both panel (a) and (b) provide evidence that our 
results are not sensitive to the choice of forecasting window (w) and 
horizon (h). 

5. Conclusion 

In this paper, we examine the asymmetric volatility spillover among 

Chinese stock sector indices during the COVID19 outbreak. Using 1-min 
data from January 3, 2019 to September 30, 2020, we construct daily 
measures of realized volatility, differentiating between measures of 
good and bad volatilities and applying asymmetric connectedness 
measures in static and time-varying settings. The main results indicate 
an asymmetric spillover effect across the Chinese stock sector indices, 
which strengthens significantly during the COVID-19 outbreak. This 
underscores the conclusion that the catastrophic event of COVID-19 has 
a strong and asymmetric impact on the network of volatility spillovers 
among sector indices. The total volatility spillover index varies with 
time. Downside semivariance spillovers dominate upside semivariance 

Fig. 5. Robustness to the choice of rolling window 
and forecast horizon. (a) Spillover index. Notes: The 
results for our baseline setting, with window length 
w = 100 and forecast horizon H = 5 trading days, are 
shown by the dark blue line. Results for each other 
combination of w ∈ {75; 100; 125} and h ∈ {3; 5; 10} 
trading days are shown as light blue lines. (b) Cor
relation heatmaps of common-sample connectedness. 
Notes: Letters a to i in the common-sample correla
tion heatmap refer to combinations: (a) w = 75, h =
3; (b) w = 75, h = 5; (c) w = 75, h = 10; (d) w = 100, 
h = 3; (e) w = 100, h = 5; (f) w = 100, h = 10; (g) w =
125, h = 3; (h) w = 125, h = 5; and (i) w = 125, h =
10.   
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spillovers during the COVID-19, suggesting an asymmetric effect. The 
findings are robust to the choice of forecasting horizon and window 
length. 

Our results are useful for investors and policymakers. They give fresh 
insight into the dynamics of volatility spillovers among the stock sector 
indices and evidence of asymmetry that affects portfolio and risk 
choices, volatility forecasting inferences, and the payoff of trading 
strategies across Chinese sector indices during stress periods. Notably, 
market participants and policymakers should pay special attention to 
downside semivariance shocks more than upside semivariances during 
stressful periods given that downside semivariance shocks have a pres
surizing effect on the system of connectedness. Therefore, vigilant 
monitoring of bad volatility spillovers is required for the sake of stock 
market stability in China. Specifically, special monitoring efforts should 
be given to the core sectors such as industrials, utilities, energies, and 
materials to maintain the overall stability of the Chinese stock market, 
especially given that these sectors exhibit a destabilizing effect through 
their bad volatility spillovers and the recent unfortunate signs that a 
second wave of COVID-19 is likely to emerge in China. 

Future research could consider decomposition of the realized vola
tility into diffusive and discontinuous volatilities, to help uncover the 
contribution of the continuous and jump components of volatility in the 
network of connectedness in the Chinese stock market during COVID-19. 
Another contribution could involve the extension of our analysis to the 
asymmetric predictability of realized semivariances in the Chinese stock 
sector indices along the lines of Fang, Jiang, and Luo (2017). 
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