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A B S T R A C T   

The COVID-19 pandemic has led to widespread school shutdowns, with many continuing distance 
education via online-learning platforms. We here estimate the causal effects of online education 
on student exam performance using administrative data from Chinese Middle Schools. Taking a 
difference-in-differences approach, we find that receiving online education during the COVID-19 
lockdown improved student academic results by 0.22 of a standard deviation, relative to pupils 
without learning support from their school. Not all online education was equal: students who 
were given recorded online lessons from external higher-quality teachers had higher exam scores 
than those whose lessons were recorded by teachers from their own school. The educational 
benefits of distance learning were the same for rural and urban students, but the exam perfor
mance of students who used a computer for online education was better than those who used a 
smartphone. Last, while everyone except the very-best students performed better with online 
learning, it was low achievers who benefited from teacher quality.   

1. Introduction 

The outbreak of the COVID-19 pandemic has generated unprecedented public-health concerns. Many countries have imposed 
lockdowns in order to reduce social contact and contain the spread of the Novel Coronavirus (Bonaccorsi et al., 2020; Fang, Wang, & 
Yang, 2020; Qiu, Chen, & Shi, 2020). As part of lockdowns, the closing of schools has created considerable challenges for teachers, 
students, and their parents.1 This lost time at school may well have an adverse impact on children’s educational outcomes and their 
future well-being (Aucejo, French, Araya, & Zafar, 2020; Azevedo, Hasan, Goldemberg, Geven, & Iqbal, 2021; Engzell, Frey, & 
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Verhagen, 2021; Eyles, Gibbons, & Montebruno, 2020). To help mitigate the effect of physical closures, many schools have provided 
online lessons to their students. 

We here evaluate the effectiveness of distance delivery of education on student academic outcomes, using administrative data on 
Ninth Graders from three Chinese Middle Schools in the same county in Baise City. These three schools (which we will call Schools A, B, 
and C) administered different educational practices over a seven-week period from mid-February to early April 2020 during the 
COVID-19 lockdown. School A did not provide any online educational support to its students. School B used an online learning 
platform provided by the local government, which offered a centralized portal for video content, communication between students and 
teachers, and systems for setting, receiving, and marking student assignments. The students’ online lessons were provided by School 
B’s own teachers. School C used the same online platform as School B over the same period, and distance learning was managed by the 
school in the same fashion as in School B. The only difference between Schools B and C is that, instead of using recorded online lessons 
from the school’s own teachers, School C obtained recorded lessons from the highest-quality teachers in Baise City (these lessons were 
organized by the Education Board of Baise City). For students in the Ninth Grade, all Middle Schools in the county had finished 
teaching them all of the material for all subjects during the first five semesters of Middle School (from September 2017 to January 
2020). Schools B and C then used online education during the COVID-19 lockdown (from mid-February to early April 2020 in the final 
(sixth) semester) for the revision of the material that had already been taught, to help Ninth Graders prepare for the city-level High- 
School entrance exam at the end of the last semester in Middle School. After the COVID-19 restrictions were loosened, all Middle 
Schools in the county reopened on April 6th 2020. On April 7th, Ninth Graders were told that the local Education Board had scheduled 
exams to take place from April 9th to the 12th in each of the subjects that they had been taught in Middle School. The exam in each 
subject was the same for all Ninth Graders in each of the Middle Schools in the county. 

The different educational choices made by the three schools during the COVID-19 crisis offer a natural experiment to identify the 
causal effects of online education on student academic performance. Our difference-in-differences (DID) estimation reveals that online 
learning during lockdown improved student performance by 0.22 of a standard deviation, compared to that of students who received 
no learning support from their school. The quality of the lessons also made a difference: students who had access to online lessons from 
external best-quality teachers achieved 0.06 standard-deviation better exam results than those whose lessons were recorded by 
teachers from their own school. The effects of online education were the same for rural and urban students, but were more effective for 
students who used a computer as their learning device than for those who used a smartphone. We then show that the benefits of the 
distance learning in Schools B and C were not equally distributed by student quality: quantile DID estimates show that low-achieving 
students benefited the most from distance learning, with there being no impact for the top academic performers. As such, online 
delivery of education helped narrow the achievement gap between struggling students and their higher-achieving peers during the 
COVID-19 lockdown. 

We contribute to the literature in three ways. First, there has been little quantitative research on the educational consequences of 
the COVID-19 pandemic.2 Using survey data from Arizona State University, Aucejo et al. (2020) find negative effects of COVID-19 on 
university students’ outcomes and expectations, including delayed graduation and worse labor-market prospects; they also show that 
the adverse consequences of COVID-19 were more pronounced for students from disadvantaged backgrounds. In Maldonado and De 
Witte (2020), Primary-School students in Belgium experienced significant learning losses in standardized tests administered after the 
COVID-19 school lockdown, as compared to the previous cohort. Engzell et al. (2021) show that students in the Netherlands made little 
or no progress when learning at home during an eight-week lockdown, with the learning loss being the largest among students from 
disadvantaged families. Moreover, Bacher-Hicks, Goodman, and Mulhern (2021) use high-frequency internet search data to show that 
the rise in the demand for online resources is substantially higher in high-SES than in low-SES areas. During lockdowns, remote 
learning is probably the only way to tackle the disruption in classroom education (Eyles et al., 2020).3 However, there is not yet any 
empirical evidence on the impact of different types of online education on student performance when schools are physically shut under 
human-mobility restrictions.4 Using data on students from China’s Middle Schools, we here present novel evidence on the causal 
impact of online education on student academic performance during the COVID-19 crisis, and ask whether some groups of students did 
better than others. 

We second add to the experimental evidence on the effects of instruction models on student performance (Alpert, Couch, & 
Harmon, 2016; Bettinger, Fox, Loeb, & Taylor, 2017; Bowen, Chingos, Lack, & Nygren, 2014; Cacault, Hildebrand, Laurent-Lucchetti, 
& Pellizzari, 2021; Figlio, Rush, & Yin, 2013; Kozakowski, 2019). There are two common features in the existing work: the analysis 
first compares the relative effects of face-to-face, fully online, and blended learning, and second is carried out for post-Secondary 
education. The calculation of the absolute effects requires information on a fairly rare reference group: students who receive no 
learning support from an educational institution over the period but take the same exams as the other treated students. Our data here 

2 Recent studies have considered the effects of COVID-19 and the consequent lockdowns on subjective well-being (Brodeur, Clark, Flèche, & 
Powdthavee, 2021), job losses (Couch, Fairlie, & Xu, 2020), remote work (Bartik, Cullen, Glaeser, Luca, & Stanton, 2020), social interactions 
(Alfaro, Faia, Lamersdorf, & Saidi, 2020) and consumption (Baker, Farrokhnia, Meyer, Pagel, & Yannelis, 2020), among others.  

3 Angrist et al. (2021) evaluate two low-technology substitutes for schooling during the COVID-19 pandemic. Their experimental evidence from a 
randomized trial shows positive effects of SMS text messages and direct phone calls on the educational outcomes of Primary-School students in 
Botswana during school closures.  

4 As discussed in Eyles et al. (2020), “at least in the short run, the closure of schools is likely to impact on student achievement and the costs of 
putting this right are likely to be high”; “there may be some benefits too, if a switch to online education encourages greater interaction with 
technology and more efficient teaching practice, but these benefits are as yet unknown and unquantifiable” (page 6). 
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include students from a Middle School who received no learning support from their school during the Chinese school shutdowns, but 
who took the same exam as the other students immediately after returning to school once the COVID-19 restrictions were released. The 
comparison of these students to the online-learning students in the other two Middle Schools provides causal evidence on the absolute 
effects of online education on the exam performance of Middle-School students.5 

Last, we provide new evidence on the effect of teacher quality on student achievement. Previous work such as Rivkin, Hanushek, 
and Kain (2005); Aaronson, Barrow, and Sander (2007); Chetty, Friedman, and Rockoff (2014) and Araujo, Carneiro, Cruz-Aguayo, 
and Schady (2016) has underlined that better-quality teachers in conventional classrooms improve student outcomes. We extend 
this literature to online education, and ask whether students who received the online lessons recorded by external higher-quality 
teachers made more academic progress than did those whose lessons were recorded by their own teachers (with all other aspects of 
online education being managed identically). 

The remainder of the paper is organized as follows. Section 2 describes the background, and Section 3 introduces the data. Section 4 
discusses the empirical approach, and Section 5 then presents the estimation results. Last, Section 6 concludes. 

2. Education in three Chinese middle schools during the pandemic 

Primary and Secondary Education in China takes place successively in three different types of school. At the age of around seven, 
students enter Primary School. After six years in Primary School they go on to Middle School, where they stay for three years.6 At the 
end of Middle School, students have the possibility of going on to a High School, based on the results of the last exam in their Ninth 
Grade. High-School education is prized in China, as opposed to attendance at a vocational school or entry into the job market at age 16, 
which are the options for students with less-good Ninth-Grade exam results. 

We consider the education provided by three Middle Schools located in the same county within Baise City in Guangxi Province.7 

The county’s administrative area is about 2500 km2, with a population of around 370,000 people. Apart from the downtown area, the 
county administration covers 12 townships composed of over 180 administrative villages. There are 11 Middle Schools in the county: 
three located in the downtown area and eight in different townships.8 We have access to the administrative records of Ninth-Grade 
students in the three downtown Middle Schools over the 2019–2020 academic year, which is their final Middle-School year and 
the last year of their compulsory education. There are 2025 Ninth Graders in these three Middle Schools, accounting for 48.5% of all 
Grade-Nine students in the county. 

In the Chinese education system, there are two semesters per year and two exams per semester (a mid-term and a final exam), with 
several different subjects being evaluated in each exam period. All Middle Schools in the county are governed by the local Education 
Board and apply the same curriculum. There are five compulsory subjects (Chinese, Math, English, Politics, and History), which are 
taught in all three Middle-School years. Students take Geography and Biology only in Grades Seven and Eight, Physics in Grades Eight 
and Nine, and Chemistry in Grade Nine only. With two exams per semester, and two semesters per year, Middle-School students take a 
total of 12 exams over their three years. At the end of the last Middle-School semester, Ninth Graders take the city-level High-School 
entrance exam: this is Middle-School exam 12. The results of this last exam are the most important determinant in the competition for 
admission to good High Schools in the city. Middle-School teaching for all subjects in the county runs between the start of Grade Seven 
and the end of the first semester of Grade Nine: for the cohort of Ninth Graders in our data, the start of Grade Seven was in September 
2017 and the end of the first semester of Grade Nine was in January 2020. The second semester of Grade Nine, which generally runs 
between February and June, is used for revision to prepare for the city-level High-School entrance exam, which normally takes place at 
the end of June. 

Due to the COVID-19 pandemic and the consequent school closures, students were not able to return to their schools on the 
previously-scheduled starting date (February 9th 2020), although there were no confirmed COVID-19 cases in the county at that time.9 

Our data here cover Ninth Graders in the three downtown Middle Schools (Schools A, B, and C), which implemented different 
educational practices in response to the lockdown. 

School A did not make any particular arrangements to support student learning during the COVID-19 school shutdown. It did not 
require its students to connect to an online platform like the other two schools: students were instead told to study on their own and 

5 It would also be of interest to compare the relative effects of physical classroom education and online learning, as in previous economic analyses 
of instruction models. We here focus on the absolute impact of online education on student outcomes (relative to the baseline of no support provided 
by schools), which is arguably of more policy and practical interest for many countries in the current COVID-19 context. When classroom instruction 
is not an option, online education is a natural substitute (Eyles et al., 2020). Our analysis here aims to shed (some) light on whether online learning 
can support student academic progress under mobility restrictions, and if so how students could be better helped in virtual classrooms.  

6 Since 1986, Primary- and Middle-School attendance has been compulsory in China.  
7 Following our agreement with the county, we do not identify the county by name. Prefecture-level cities in China such as Baise are large 

administrative areas within provinces.  
8 The allocation of students to Middle Schools is determined by catchment areas, with students being required to go to a Middle School located 

within or close to their neighborhood. Allocation is not based on academic ability, and the students we analyze here did not take any exams at the 
end of their Primary-School education in June 2017.  

9 COVID-19 cases were first reported in Wuhan, the capital city of Hubei Province, at the end of 2019. On January 22nd 2020, the first case was 
confirmed in another city in Guangxi Province, which then activated a Level-I public-health alert (the highest level in China) on January 24th. The 
first confirmed COVID-19 case was reported in Baise City (but not in the county) on January 24th. On February 6th, the Chinese Ministry of Education 
required all schools to postpone the start of the new semester and prohibited face-to-face teaching during the crisis. 
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revise what had been learned in the previous semesters. The school did not take any measures to monitor the students’ learning 
progress, did not prescribe any assignments, and did not distribute any educational resources to students during the lockdown. 

School B used a flexible and centralized online learning platform provided by the Education Board of Baise City, which offered a 
portal for the provision of video content and student–teacher interaction, along with procedures for setting, receiving, and marking 
assignments. It was mandatory for students to register on this online platform and attend the recorded online lessons prepared by 
School B’s own teachers. The online classes were used to review what had been taught in the previous semesters. Time slots were 
allocated to different subjects in the morning and afternoon, in the same manner as on a regular school day. Students could watch the 
online lessons again after class and could ask questions and communicate online with their teachers. Students also had weekly as
signments, and the work they submitted was marked and commented on by School B’s teachers via the learning platform. Last, the 
teachers monitored the students’ progress and participation. 

School C used the same online learning platform as School B, and distance education was managed by the school in the same way as 
in School B. The only difference was that the recorded lessons on the platform were not delivered by School C’s teachers: instead, 
School C obtained recorded online lessons provided by the Baise City Education Board. After the COVID-19 shutdown, the City 
organized the recording of online classes for each subject in each grade of Primary- and Middle-School education, and the Education 
Board selected the highest-quality teachers in Baise City for these recorded lessons (in terms of their qualifications, teaching expe
rience, teaching awards received, and other professional recognition).10 None of the Ninth-Grade teachers selected to provide these 
lessons that helped students review what they had learnt in the previous semesters were from Schools A, B, or C. All of the other online 
instructional activities were supplied by School C’s teachers, using the same arrangements as in School B. 

Schools B and C both reacted quickly to the new mode of distance education after the outbreak of the COVID-19 pandemic, and 
started online education in mid-February 2020, about one week after the normal starting date of the Spring semester.11 Students spent 
about seven weeks on distance learning, which ended on April 3rd. With the loosening of COVID-19 restrictions, all Middle Schools in 
the county reopened physically on April 6th. Almost all (98%) of Ninth Graders had returned to school by April 7th, when they were 
notified that the local Education Board had scheduled exams (covering the material taught in the previous five semesters) from April 
9th to the 12th (close to the normal dates for midterm exams in the Spring semester).12 The exam scripts in each subject were the same 
for the Ninth Graders in all the 11 Middle Schools in the county. 

3. Data 

We use administrative data from the Education Board of the county on the 2025 Ninth Graders who started Middle-School edu
cation in September 2017 in Schools A, B, and C. These students were in the last semester of their Middle-School education in the first 
half of 2020. The data include information on both student characteristics and their scores in the first 11 exams for all subjects taken in 
Middle School.13 

We here focus on the exam results in the five compulsory subjects (Chinese, Math, English, Politics, and History), which were taught 
in all of the Middle-School semesters. The students took the first nine exams in the cycle over 2017–2019. The tenth exam, the final 
exam for the first semester of Grade Nine, took place during January 6th–10th 2020, before the first confirmed COVID-19 case in Baise 
City on January 24th. The 11th exam in the Middle-School cycle took place during April 9th–12th, after the schools had reopened on April 
6th. These exams are all standardized within the county in terms of the exam questions and the anonymous marking procedure, so that 
the exam scores can be compared across schools. 

We exclude the 190 Ninth Graders who ever (i) changed schools, (ii) missed an exam, or (iii) did not return to school in April 2020. 
Our final sample consists of 20,185 observations on exam results for the 1835 students who took all of the first 11 exams in the five 
compulsory subjects. Table 1 shows students’ summary statistics in the three schools when they took their first Middle-School exam 
from November 6th to the 8th 2017. School C registered the best academic performance in this first exam, while that in School A was the 
worst. 

Table 1 also shows some significant differences in student characteristics across schools. It is possible that the three groups also 
differ in unobservable ways. Therefore, a simple comparison of scholastic performance of the treatment and control groups does not 
reveal the causal academic impact of online education during the COVID-19 pandemic. In the next section, we introduce the difference- 
in-differences (DID) framework as our identification strategy. Using DID, we can identify the causal impact of online education on 
students’ learning outcomes, if the treatment and control groups display comparable trends in academic outcomes in the absence of 

10 Regarding professional recognition, the Chinese education system ranks teachers in Primary and Secondary schools by levels, from intern 
teachers (the lowest) to third-class, second-class, first-class, and superior-class teachers (the highest) (Ding & Lehrer, 2007).  
11 Schools B and C did not use live online lessons, as opposed to recorded lessons. Live online lessons are more demanding in terms of fast and 

stable Internet connections than are recorded lessons.  
12 As noted above, all Middle Schools in the county taught all of the material for all subjects during the first five semesters of Middle School (from 

September 2017 to January 2020): the final semester (from February to June in a normal year) is used for the revision of the material that has 
already been taught and preparation for the city-level High-School entrance exam that normally takes place in June. Due to the COVID-19 pandemic, 
this entrance exam for our Ninth Graders was delayed to July 2020.  
13 The original results in the city-level High-School entrance exam (the 12th exam in Middle School), which took place in July 2020, are archived in 

the Education Board of Baise City. The Education Board of the county can only make available the records of the broad category of each student’s 
performance in the entrance exam (A+, A, A− , B+, B, B− , or C), and not the number score as for exams 1–11. 
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online education. 

4. Identification strategy 

We carry out a difference-in-differences (DID) estimation to identify the effects of two different types of online education on student 
academic performance, as follows: 

Yist = TreatmentiB*Postt*βB + TreatmentiC*Postt*βC +Xist’γ +Examt + μi + εist (1)  

where Yist is the overall exam score of student i in school s (s=A, B, C) in the tth exam (t=1,2, …,11). For ease of interpretation, we 
standardize the total exam scores from the five compulsory subjects to have zero mean and unit standard deviation. TreatmentiB and 
TreatmentiC are dummies for the students being from Schools B and C; students in School A are the control group. Postt is a dummy for 
the data coming from the 11th exam in April 2020.14 The Xist are time-varying control variables, including student age and class-by- 
school fixed effects. Examt are the exam fixed effects, and μi the individual fixed effects that control for any differences between the 
treatment and control groups in student time-invariant characteristics such as innate ability.15 Last, εist is the error term. We cluster 
standard errors at the student level to account for heteroskedasticity and any arbitrary correlation in exam performance of the same 
student. 

The estimate of βB reveals the causal impact of the online education adopted in School B on student academic performance, as 
opposed to School A that stopped providing any support to its students during the COVID-19 crisis. We here identify the impact of the 
entire package of School B’s online education (composed of specific components using the online platform such as recorded online 
lessons, student–teacher online communications, online assignment marking and feedbacks, etc.) relative to the alternative of no 
school support during the lockdown.16 Analogously, the comparison of βC to βB reveals the comparative effectiveness of the online 
educational programs of Schools B and C on student learning, which reflects the different quality of teachers who recorded the online 
lessons (given that all of the other aspects of online education were identical between these two schools). 

The validity of our DID approach relies on the assumption that, in the absence of the different educational practices in the three 

Table 1 
Students’ characteristics when taking their first Middle-School exam in November 2017.   

Control group Treatment groups Mann-Whitney test p-value 

School A School B School C 

Mean S.D. Mean S.D. Mean S.D. A = B A = C 

Academic performance 
Total score (range: 0–560) 280.9 100.5 326.6 109.8 338.3 102.5 0.00 0.00 
Chinese (range: 0–120) 67.4 19.4 78.7 19.4 81.0 16.6 0.00 0.00 
Math (range: 0–120) 39.6 27.3 58.7 30.4 64.1 32.5 0.00 0.00 
English (range: 0–120) 54.5 24.3 66.9 29.1 67.5 28.9 0.00 0.00 
History (range: 0–100) 53.6 22.0 55.0 25.5 59.3 22.7 0.00 0.00 
Politics (range: 0–100) 65.9 17.9 67.1 16.3 66.5 13.5 0.00 0.58  

Student characteristics: 
Age in November 2017 13.1 0.8 12.7 0.8 12.9 0.8 0.00 0.00 
Boy 0.44  0.47  0.42  0.29 0.54 
Household head is:         

Father 0.63  0.71  0.77  0.01 0.00 
Mother 0.19  0.11  0.09  0.00 0.00 
Neither father nor mother 0.18  0.18  0.14  0.86 0.07 

Home-to-school distance (kilometers) 8.8 5.5 9.9 7.1 10.5 7.0 0.18 0.00 
Rural student 0.96  0.80  0.89  0.00 0.00 
Number of Students 328  871  636     

14 The main effects of TreatmentiB and TreatmentiC in Equation (1) are contained in the individual fixed effects, and the main effect of Postt in the 
exam fixed effects.  
15 As discussed in Elsner and Isphording (2017), “cognitive ability is formed early in life and remains stable after the age of 10” (page 797). 

Students in our sample were around 13 years-old when taking the first exam in middle school (see Table 1).  
16 Separately identifying the impacts of the individual components of online education would have been useful, but is not possible here as they 

were implemented at the same time. Estimating the overall effect of a policy intervention is common in the literature, particularly in work using 
observational data. Discussing economic research addressing questions about the educational-production function, Banerjee and Duflo (2009) note 
that “it is also difficult to learn about these individual components from observational (i.e., nonexperimental) data. The reason is that observational 
data on the educational production function often comes from school systems that have adopted a given model, which consists of more than one 
input. The variation in school inputs we observe therefore comes from attempts to change the model, which, for good reasons, involves making 
multiple changes at the same time” (page 153). In a different context, reviewing the extensive research on a conditional cash transfer program in 
Mexico, Parker and Todd (2017) write “because the evaluation design in Progresa/Oportunidades compares the entire package of benefits versus the 
alternative of no program, isolating the impacts of specific program features is difficult” (page 878). 
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schools during the COVID-19 pandemic, the trends in academic outcomes in the treatment and control groups would have remained 
the same. Fig. 1 shows that students in School C performed slightly academically better than those in school B, while the exam results in 
School A were notably worse than in the other two schools. In general, the profile of results in these three different schools over the first 
ten Middle-School exams (i.e. those pre-lockdown) are very similar, providing support to the parallel-trend assumption. It can also be 
seen that the results for exam 11 (that post-lockdown) are worse than those for exam 10 in all three schools. 

All of the students in our sample come from the same county, and are thus exposed to the same environment: this helps us to 
identify the causal effects of online learning on student performance. Had the students in the treatment and control groups come from 
different areas, then the effects of online education on exam results may well have been confounded by the economic and psychological 
pressures associated with different area-specific COVID-19 outcomes. 

5. Results 

5.1. Main results 

Table 2 shows the results from the DID estimations. In the first column we do not distinguish between the treatments in Schools B 
and C, and instead ask whether taking part in any kind of online learning (denoted TreatmentiBC) affected overall exam results. The 
estimated coefficient reveals that online learning during the pandemic led to 0.22 of a standard deviation higher exam grades in the 
treatment group than in the control group.17 Equivalently, the seven-week online education improved student exam marks by around 
26 points (=116*0.22, where 116 is the standard deviation of the exam-11 marks), relative to those receiving no learning support from 
their school during the COVID-19 lockdown.18 

Column (ii) of Table 2 then distinguishes between the different types of online learning in Schools B and C. The estimated co

efficients on both TreatmentiB * Postt and TreatmentiC * Postt are positive and statistically significant. However, the F-test at the foot of 
the table rejects the null hypothesis that these two coefficients are equal. While any online education then improved overall exam 
performance, that with lessons recorded by higher-quality teachers conferred greater academic benefit. The online learning in School B 
during lockdown improved student performance by 0.20 of a standard deviation (about 23 exam points), as compared to students who 
did not receive any learning support in School A. But the quality of the lessons also made a difference: students in School C, who had 
access to online lessons from external best-quality teachers, recorded an additional 0.06 standard-deviation rise in exam results (about 
seven exam points) over those whose lessons were recorded by their own teachers in School B. This finding complements previous 
work underlining that teacher quality translates into student achievement in a conventional classroom-instruction setting (Aaronson 

Fig. 1. Parallel trends in pre-lockdown exam scores in Schools A, B and C.  

17 We have also looked at the effects of distance education on students’ exam scores in the separate subjects (Chinese, Math, English, History, and 
Politics), where the dependent variable in each regression is the standardized exam score in subject with zero mean and unit standard deviation. We 
perform the DID regressions using the same set of control variables as used in Table 2. The results are generally consistent with those in Table 1, with 
a beneficial influence of distance learning on exam outcomes during the COVID-19 lockdown. The strongest positive impact is on Politics and the 
weakest on Math, with intermediate effects on Chinese, English, and History. These differential effects are unsurprising, as achievements in different 
subjects generally require different skills (Lavy, Silva, & Weinhardt, 2012). As online learning may be more or less adapted for different subjects, it 
may not have a uniform effect on students’ skills.  
18 As indicated in the first row of Table 1, the total exam score of the five subjects was ranged between 0 and 560 points. 
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et al., 2007; Araujo et al., 2016; Chetty et al., 2014). 

5.2. Heterogeneity analysis 

Table 2 sets out the average academic impact of online learning over the whole sample. In this section, we explore potential 
heterogeneity in the estimated effect. Given that the academic effects of distance learning differ by teacher quality (as indicated in 
Table 2), we will present estimated coefficients for TreatmentiB * Postt and TreatmentiC * Postt separately. 

5.2.1. Heterogeneous effects of online education across student groups 
We consider whether the academic impact of online education differs by student (i) gender, (ii) household type (rural vs. urban), 

and (iii) the type of electronic device used for online learning (computer vs. smartphone). The resulting difference-in-difference-in- 
differences (DDD) estimates appear in Table 3. 

Probably the most common type of online learning is that which was used in School B (all aspects of online education were 
managed by teachers in own school), and in column (i) of Table 3, TreatmentiB produces the same educational benefits for boys and 
girls. School C on the contrary used recorded lessons that were designed and delivered by external higher-quality teachers, with no 
difference in any other aspect of online instruction. In column (i), it can be seen that girls benefited more from TreatmentiC than did 
boys. In online education during the lockdown, time slots were allocated to different subjects in the morning and afternoon. Students 
needed to sit in front of their online-learning device for the same number of hours as on a regular school day. Without any teacher being 
physically present in the same room, the effectiveness of online learning depends critically on students’ non-cognitive traits such as 
self-discipline, agreeableness (one sub-trait of which is cooperation), and conscientiousness. Previous work has found that girls 
outperform boys in these aspects (Duckworth & Seligman, 2006; Rubinstein, 2005). On the contrary, in column (ii) of Table 3 there is 
no significant difference in the effects of the two types of online lessons between rural and urban students. 

We last ask whether the effects of online learning differed by the type of electronic device.19 In column (iii) of Table 3, while both 
online-learning models improved student exam performance, students with access to a computer at home benefited 60–75% more than 
those using a smartphone. Online-class participation is likely easier via computer (Frenette, Frank, & Deng, 2020; Nurhudatiana, Hiu, 
& Ce, 2018). When students spend long periods in online classes, the screen size of a smartphone can be a distinct disadvantage when 
compared to that of a computer. It is also easier to profit from recorded lessons while having the relevant course material open on the 
same screen; this is more difficult to manage on the considerably smaller screen of a smartphone. Last, as smartphones have limited 
storage space, downloading course documents and submitting assignments pose their own set of challenges. These differences in 
learning devices may lie behind the heterogeneous effects of online learning during lockdown. 

5.2.2. The effect of online education along the student-performance distribution 
We next consider whether the educational effects of online learning vary by the student’s initial academic performance. We apply 

the unconditional quantile regression (UQR) of Firpo, Fortin, and Lemieux (2009) to estimate quantile DID regressions. One key 
element of the UQR approach is the concept of the influence function in robust statistics, representing the impact of one individual 
observation on a distributional measure (quantile or variance, for example). Adding the influence function back to the distributional 

Table 2 
Online learning and exam results (DID estimates).   

(i) (ii) 

TreatmentiBC * Postt 0.221***  
(0.010)  

TreatmentiB * Postt  0.195***  
(0.011) 

TreatmentiC * Postt  0.258***  
(0.011)  

Test for coefficient equality: 
F-statistic – 47.71 
p-value – 0.00 
Individuals 1835 1835 
Observations 20,185 20,185 
Overall R2 0.109 0.110 

Notes: The dependent variable is the standardized total exam score. The control variables 
include student age, class-by-school fixed effects, exam fixed effects, and individual fixed 
effects. Standard errors clustered at the individual level appear in parentheses. * p<0.1; ** 
p<0.05; *** p<0.01. 

19 Of the 1835 students in our final sample, 16% had a computer at home, with 84% having access to a smartphone only. Ordinary smartphones are 
much more affordable than computers in China. No Ninth Graders in our sample reported not having access to a computer or smartphone at home. 
Chinese parents generally invest heavily in children’s education, particularly in the run-up to important exams (Brown, 2006; Sun, Dunne, Hou, & 
Xu, 2013). 
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measure produces the recentered influence function. If Yist is the academic outcome of student i in school s in exam t, the influence 
function IF(Yist, qτ) for the τ-th quantile of Yist is then (τ − I(Yist ≤ qτ))/fYist(qτ), where qτ is the τ-th quantile of Yist, I an indicator function 
and fYist the density of the marginal distribution of Yist. The recentered influence function RIF(Yist, qτ) is then qτ + IF(Yist, qτ), with the 
theoretical property that its expected value equals qτ. 

As RIF(Yist, qτ) is never observed in practice, we follow Firpo et al. (2009) and replace the unknown components by their sample 
estimators: 

R̂IF
(

Yist, q̂τ

)

= q̂τ +

τ − I
(

Yist ≤ q̂τ

)

f̂ Yist

(

q̂τ

) , (2)  

where q̂τ is estimated as arg min
q

∑N
i=1(τ–I(Yist ≤ q))(Yist–q). The nonparametric Rosenblatt kernel density estimator f̂ Yist

(

q̂τ

)

is 

1
N
∑N

i=1
1
hY

KY

⎛

⎝Yist − q̂τ
hY

⎞

⎠, where KY is the Gaussian kernel and hY the scalar bandwidth for Yist. 

We then model R̂IF
(

Yist , q̂τ

)

as a function of the same control variables as in Eq. (1): 

R̂IF
(

Yist, q̂τ

)

= TreatmentiB*Postt*βBτ + TreatmentiC*Postt*βCτ +X′

istγτ +Examt + μi + εistτ. (3) 

The quantile DID estimates of βBτ and βCτ from Eq. (3) represent the causal effects of distance education in Schools B and C on the 
unconditional τ-th quantile of Yist in our data.20 Standard errors clustered at the individual level come from bootstrapping with 300 
replications. The quantile DID estimates provide a more complete description of the relationship between online learning and the full 
distribution of academic outcomes. 

Table 4 lists the quantile DID estimates at the 10th to 90th percentiles of the unconditional distribution of student exam performance. 
It is clear that the academic effect of online learning is not the same over the student exam-score distribution. The estimated co
efficients on TreatmentiB * Postt and TreatmentiC * Postt at the lower end of distribution are much larger than those at the top. For 
example, the positive academic impact of School B’s online education at the 20th percentile is over three times as large as that at the 
80th percentile. Low performers thus benefited the most from online learning programs. We also find that the top academic performers 
at the 90th percentile were not affected by online education: these students did well independently of the educational practices their 
schools employed during lockdown. Outside of these top academic performers, the online learning programs in Schools B and C 
improved student exam performance. 

Table 2 showed that the average impact of TreatmentiC is larger than that of TreatmentiB; Table 4 underlines that this gap mainly 
comes from the low achievers at the 10th and 20th percentiles. Although the estimated coefficients on TreatmentiC * Postt are consistently 
larger than those on TreatmentiB * Postt, from the 30th to the 80th percentile of the academic-performance distribution, the gap is not 
significant at conventional statistical levels. Instruction thus improves the exam performance of all bar the very-best students, while 
the quality of this instruction differentially benefits the students with the worst past exam results. In Aaronson et al. (2007), higher- 

Table 3 
Heterogeneous effects of online education by student characteristics (DDD estimates).   

(i) Gender (ii) Household type (iii) Device for learning 

Groupi=1 if boy Groupi=1 if rural Groupi=1 if smartphone 

TreatmentiB * Postt 0.202*** 0.191*** 0.332*** 
(0.014) (0.057) (0.028) 

TreatmentiB * Postt * Groupi − 0.017 0.005 − 0.144*** 
(0.021) (0.058) (0.030) 

TreatmentiC * Postt 0.285*** 0.271*** 0.398*** 
(0.014) (0.059) (0.031) 

TreatmentiC * Postt * Groupi − 0.065*** 0.014 − 0.147*** 
(0.022) (0.060) (0.033) 

Individuals 1835 1835 1835 
Observations 20,185 20,185 20,185 
Overall R2 0.110 0.109 0.110 

Notes: The dependent variable is the standardized total exam score. The control variables include student age, class-by-school fixed effects, exam fixed 
effects, individual fixed effects, and all pairwise interactions between Treatmentis, Postt, and Groupi. Standard errors clustered at the individual level 
appear in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 

20 Some contributions that have used the UQR method in a quantile-DID setting include Havnes and Mogstad (2015), Herbst (2017) and Baker, 
Gruber, and Milligan (2019): these evaluate universal child-care programs in Norway, the US and Canada, respectively. 
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quality teachers in the classroom raise student test scores, and more so for students at the lower end of the initial ability distribution. 
We here uncover an analogous impact of lessons recorded by higher-quality external teachers on low-achievers, even though these 
external teachers had no interaction with the students in School C. As such, it is the quality of the material that matters here, inde
pendently of any student–teacher interaction. 

5.3. Robustness checks 

5.3.1. Re-checking the common-trend assumption 
DID estimation requires that the trends in the outcomes pre-treatment be similar, and we carry out a number of checks in this 

section. While Fig. 1 is generally supportive of common trends, there appears to be a slight divergence in exam 10. We first follow Boes, 
Marti, and Maclean (2015) and calculate separate trends by school in exams 1–10. Specifically, we compute the first-differenced total 
scores in the first ten exams for each student in the three schools, and then use the t test to check the differences between the control 
group (School A) and the treatment groups (Schools B and C). These are not significantly different between the treatment and control 
groups at the 10% level (p-value = 0.76 for Schools A and B; and p-value = 0.11 for Schools A and C). 

Second, to formally check whether our results are unduly affected by exam 10, we successively re-estimate the DID regression using 
only exams t (t=2,3, …,9) to 10 in the pre-treatment period (thus putting increasing weight on exam 10). The results are reported in 
Table 5. Our conclusions regarding the exam performance in the three schools hold in each of these estimations. Therefore, the slight 
divergence in scores in exams 9–10 has little influence on our main results. 

Third, we ask whether the three exam-11 results in Fig. 1 are just the continuations of the trends in exams 9 and 10. We create 
pseudo exam-11 results by correcting for the exam 9–10 trend (this shifts the exam-11 result in School A upwards, as there was already 
a downward trend pre-lockdown): the results are listed in Table 6. With these pseudo exam-11 results we continue to find that online 
learning improves exam results, and more so with higher-quality teachers. 

Fourth, we conduct a placebo test using student records in the first ten exams. We assume that online education in Schools B and C 
took place between the 9th and the 10th exams. As such, the exam-10 results are assumed to be the pseudo post-treatment outcomes. 
We generate a dummy, Posttp, to indicate the pseudo time of online education between the 9th and the 10th exams. The results in 
Table 7 show that the estimated coefficients on both TreatmentiB * Posttp and TreatmentiC * Posttp are insignificant. The coefficients are 
also considerably smaller in size than those in Table 2. 

Last, we take a combined propensity score matching and difference-in-differences approach (PSM–DID) to adjust for observed 
student differences and deal with unobserved confounders that are constant over time across schools. Since the PSM–DID approach 
allows us to estimate the impact of only one treatment at a time, we carry out this estimation first with data from Schools A and B, and 
then Schools A and C. To see whether these separate regressions affect the estimated coefficients, Panel A of Table 8 lists the baseline 
DID results for Schools B and C from two separate regressions (as opposed to the one DID regression in Table 2). The results are 
reassuring, in that they are almost identical to those in column (ii) of Table 2. In the PSM–DID approach, we use a probit model to 
estimate the propensity score of being in the treatment group for each student (denoted by ̂p(Xi)), using the observed characteristics in 
Table 1 as covariates. We then follow Hirano, Imbens, and Ridder (2003) and generate weights of 1

p̂(Xi)
for students in the treatment 

group and 1
1− p̂(Xi)

for those in the control group. Focusing on the students who are in the treatment and control groups with common 

support, we carry out DID estimation with these weights to obtain the PSM–DID estimates: these appear in Panel B of Table 8. Only few 
students are dropped due to a lack of common support, which is not unexpected as the student characteristics in Table 1 are reasonably 
similar across schools. The weighted DID estimates from the students with common support are very similar to those in Panel A. We 
also follow Crump, Hotz, Imbens, and Mitnik (2009), and carry out weighted DID estimation on a sample that is further restricted to 
have estimated propensity scores between 0.10 and 0.90: the results in Panel C remain similar. We conclude that our main findings of 
the impact of online education on student performance remain robust in estimation samples of students in the treatment and control 

Table 4 
The heterogeneous effects of online education over the student-performance distribution (Quantile DID estimates).   

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 

TreatmentiB * Postt 0.319*** 0.371*** 0.316*** 0.214*** 0.191*** 0.188** 0.155*** 0.106* − 0.059 
(0.079) (0.062) (0.055) (0.058) (0.057) (0.076) (0.063) (0.057) (0.047) 

TreatmentiC * Postt 0.486*** 0.452*** 0.354*** 0.263*** 0.227*** 0.247*** 0.192*** 0.160*** 0.045 
(0.076) (0.063) (0.055) (0.061) (0.059) (0.077) (0.060) (0.054) (0.046)  

Test for coefficient equality: 
F-statistic 16.16 4.73 1.02 1.92 0.52 2.33 0.83 1.60 8.69 
p-value 0.00 0.03 0.31 0.17 0.47 0.13 0.36 0.21 0.00 
Individuals 1835 1835 1835 1835 1835 1835 1835 1835 1835 
Observations 20,185 20,185 20,185 20,185 20,185 20,185 20,185 20,185 20,185 
Overall R2 0.033 0.092 0.074 0.048 0.026 0.031 0.006 0.000 0.000 

Notes: The dependent variable is the recentered influence function for the τ-th quantile of the standardized total exam score. The control variables 
include student age, class-by-school fixed effects, exam fixed effects, and individual fixed effects. Bootstrapped standard errors clustered at the in
dividual level appear in parentheses. The quantile DID estimates are calculated using the Stata code xtrifreg by Borgen (2016). * p<0.1; ** p<0.05; *** 
p<0.01. 
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groups who have comparable observed characteristics. 

5.3.2. Assessing the potential confounding impact of time-varying unobservables 
The validity of our DID estimates can still be challenged by potential time-varying unobserved factors during the COVID-19 crisis. 

Table 5 
Using only exams t (t=2,3, …,9) to 11 for estimation (DID estimates).   

Exams Exams Exams Exams Exams Exams Exams Exams 

2–11 3–11 4–11 5–11 6–11 7–11 8–11 9–11 

TreatmentiB * Postt 0.198*** 0.205*** 0.208*** 0.216*** 0.212*** 0.202*** 0.204*** 0.212*** 
(0.010) (0.010) (0.009) (0.008) (0.008) (0.008) (0.008) (0.011) 

TreatmentiC * Postt 0.265*** 0.267*** 0.277*** 0.288*** 0.290*** 0.290*** 0.303*** 0.329*** 
(0.011) (0.010) (0.010) (0.009) (0.009) (0.009) (0.008) (0.011)  

Test for coefficient equality: 
F-statistic 63.98 68.90 105.98 185.02 304.49 597.25 1955.96 522.64 
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Individuals 1835 1835 1835 1835 1835 1835 1835 1835 
Observations 18,350 16,515 14,680 12,845 11,010 9175 7340 5505 
Overall R2 0.110 0.089 0.096 0.129 0.119 0.091 0.103 0.094 

Notes: The dependent variable is the standardized total exam score. The control variables include student age, class-by-school fixed effects, exam fixed 
effects, and individual fixed effects. Standard errors clustered at the individual level appear in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 

Table 6 
Correcting exam-11 results for the exam 9–10 trend (DID estimates).   

(i) (ii) 

TreatmentiBC * Postt 0.151***  
(0.020)  

TreatmentiB * Postt  0.133***  
(0.021) 

TreatmentiC * Postt  0.177***  
(0.021)  

Test for coefficient equality: 
F-statistic – 9.81 
p-value – 0.00 
Individuals 1835 1835 
Observations 20,185 20,185 
Overall R2 0.179 0.178 

Notes: The dependent variable is the standardized total exam score with the exam-11 results 
being corrected for the exam 9–10 trend. The control variables include student age, class-by- 
school fixed effects, exam fixed effects, and individual fixed effects. Standard errors clus
tered at the individual level appear in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 

Table 7 
Using exam-10 results as the outcomes in a placebo treatment (DID estimates).   

(i) (ii) 

TreatmentiBC * Posttp − 0.010  
(0.040)  

TreatmentiB * Posttp  0.011  
(0.042) 

TreatmentiC * Posttp  − 0.039  
(0.041)  

Test for coefficient equality: 
F-statistic – 5.02 
p-value – 0.03 
Individuals 1835 1835 
Observations 18,350 18,350 
Overall R2 0.179 0.180 

Notes: The dependent variable is the standardized total exam score in the first 10 exams. 
The control variables include student age, class-by-school fixed effects, exam fixed ef
fects, and individual fixed effects. Standard errors clustered at the individual level appear 
in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 
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For example, as Schools B and C provided online lessons during the lockdown, while School A did not, and with the critical High-School 
entrance exam taking place in a few months, parents of Ninth Graders in School A might have spent comparatively more time 
monitoring their children’s learning progress and/or providing other resources for their children’s learning. In this case, we will 
underestimate the positive effects of online learning on student performance. Schools can also differentially affect student learning via 
channels other than online education during the lockdown (Angrist, Bergman, & Matsheng, 2021). Teachers in School B may have 
communicated with parents via SMS messages and/or phone calls, for instance, allowing parents to provide their children with more 
effective learning support at home, while School-C teachers did not: here we will under-estimate the beneficial impact of teacher 
quality in recorded online lessons. 

It is natural to ask how potential confounding unobservables affect the baseline DID estimates in Eq. (1). If accounting for un
observed factors produces substantially-different results from those in Table 1, we can conclude that our identification strategy is 
flawed; on the contrary, if the estimates are of similar magnitude, then selection on unobservables is not a major concern. 

In this section, we assess the impact of time-varying unobserved factors that are potential correlates of TreatmentiB * Postt and 
TreatmentiC * Postt in Eq. (1).21 As these are unobserved, we cannot control for them directly. We instead turn to the bounding 
approach, which can partially identify the impact under examination by establishing consistent bounds on the true value that would 
result had we controlled for all relevant control variables (observed and/or unobserved). The potential bias from omitted control 
variables can be evaluated by exploring the sensitivity of the estimated coefficients to the inclusion of different observed covariates. 
Coefficients that remain stable after the inclusion of observed controls can be interpreted as exhibiting limited omitted-variable bias 
(Altonji, Elder, & Taber, 2005). It should be emphasized that estimated coefficients may also remain stable when the new covariates 
are uninformative: as such, Oster (2019) suggests also taking into account the explanatory power of the control variables (as measured 
by the R2 value). 

We here use the method in Oster (2019), which adds the R2 value to that of Altonji et al. (2005). We require two key pieces of 
information to construct the bound estimates. The first is the value of δ that measures the relative degree of selection on observed and 
unobserved variables. Oster (2019) suggests assuming that the selection on observables is the same as that on unobservables (δ=1). 
The second is the R2 from a hypothetical regression of the dependent variable on the treatment variable and a full list of observed and 

unobserved controls (denoted by RMax
2 ). Oster (2019) suggests that RMax

2 be set equal to Min
{

1, 1.3R̂
2}

, where R̂
2 

comes from the 

baseline regression controlling for observed explanatory variables.22 The identified set (or bounds) [β̂, β*(RMax
2 , δ=1)] includes the true 

estimate. Here, β* is estimated as β̂ − (β − β̂) R2
Max − R̂

2

R̂
2
− R2

, where β and R2 are obtained from the regression of the dependent variable on the 

treatment variable with no controls, and ̂β and R̂
2 

are from the baseline regression with controls. If the identified set [β̂, β*(RMax
2 , δ=1)] 

excludes zero, then we can conclude that the true effect of a treatment is not zero and that the baseline estimate β̂ is robust to potential 
selection on unobservables. 

The bounding results appear in Table 9. Panel A presents the controlled-effect estimates (denoted by ̂β), which are reproduced from 

column (ii) of Table 1. The identified sets (bound estimates) then appear in Panel B. When RMax
2 =Min

{
1, 1.3R̂

2}
and δ=1, neither of 

the two identified bounds include zero, and we conclude that the baseline DID estimates are robust to the potential influence of 
unobservables. Besides establishing whether the bounds include zero, we can also consider the width of the bound estimates. In 
TreatmentiB * Postt, the estimated 0.195 standard-deviation increase in student academic performance in School B is robust, but the 
bound is slightly larger at 0.259. Potential selection on unobservables then produces a bound of the causal pathway between online 
learning and exam performance in School B at least as large as that in Table 2. The same pattern holds for TreatmentiC * Postt. 

Table 8 
PSM–DID estimates.   

Panel A: DID estimates Panel B: PSM–DID estimates p̂(Xi) in common support  Panel C: PSM–DID estimates 0.10≤ p̂(Xi) ≤0.90  

(i) (ii) (iii) (iv) (v) (vi) 

TreatmentiB * Postt 0.194***  0.193***  0.207***  
(0.011)  (0.016)  (0.012)  

TreatmentiC * Postt  0.258***  0.253***  0.257***  
(0.011)  (0.014)  (0.012) 

Individuals 1199 964 1190 951 990 909 
Observations 13,189 10,604 13,090 10,461 10,890 9999 
Overall R2 0.196 0.132 0.147 0.123 0.155 0.127 

Notes: The dependent variable is the standardized total exam score. The control variables include student age, class-by-school fixed effects, exam fixed 
effects, and individual fixed effects. Standard errors clustered at the individual level appear in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 

21 Any time-invariant unobserved confounders already appear in the individual fixed effects.  
22 For reasons such as measurement error, a dependent variable will unlikely be completely explained even with a full set of controls in empirical 

settings. As such, RMax
2 is not necessarily equal to one. The suggested value of 1.3R̂

2 
is identified by Oster (2019) from randomized-trial studies 

published in four top economics journals. 
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It may be that the assumption of the equal importance of the observed and unobserved variables is too strong, and selection on the 
latter may be greater. We investigate by increasing the value of δ to first 1.5 and then 2.0 in the last two rows of Table 9. This produces 
increasingly large upper bounds, supporting our conclusion that online education improved student performance during the lockdown. 

5.3.3. Using an alternative index of academic performance 
The correlation coefficient between the exam results for any two of the five subjects ranges from 0.70 to 0.77 in our data. We thus 

construct a summary index that takes these substantial correlations into account, using principal component analysis (PCA) to 
transform correlated exam results into a smaller number of uncorrelated principal components. Applying the Kaiser criterion, we retain 
the one PCA component with an eigenvalue greater than one, which explains about 79% of the variation in academic outcomes. We 
then standardize this PCA index so that it has zero mean and unit standard deviation. 

Table 10 lists the estimates from the same DID regressions as in Table 2 using this alternative index of scholastic achievement: the 
results are very similar.23 Our conclusion then remains unchanged: both types of online education improved student exam perfor
mance, and online lessons recorded by higher-quality teachers conferred greater academic benefit. 

6. Conclusion 

The COVID-19 pandemic and associated policy responses have generated profound changes in almost every aspect of our social and 
economic lives. Lockdown measures and social distancing-orders have been introduced by governments to restrict human mobility and 
limit the spread of disease. To mitigate the learning losses from the significant disruption of education provision during the COVID-19 
crisis, many schools switched from physical classroom learning to the distance delivery of education via online platforms. 

In this paper, we examined the causal effects of online education on student academic performance, when face-to-face education 
was prohibited under human-mobility restrictions, using administrative data from Middle Schools in China that introduced different 
educational practices for around seven weeks during the COVID-19 lockdown. Our DID estimates reveal that online learning, as 
opposed to no learning support, had a large positive effect on students’ overall subsequent exam performance. But the content of the 
(recorded) lessons also mattered: those recorded by higher-quality teachers produced better exam results. Moreover, while the aca
demic benefits of online learning were the same for rural and urban students, students who engaged in online learning with a computer 
profited more than those who used a smartphone. Furthermore, quantile DID analysis showed that while any online learning benefited 
all students outside of the top performers, it was the academically-weaker students who benefited the most from online education and 
were more reactive to the quality of the teachers providing the online lessons. 

Our findings have important policy implications for educational practices when face-to-face education is not possible. First, online 
learning resources are beneficial for students, and reduce inequality in exam performance (as compared to no academic involvement) 
as students with worse exam results benefit more. Second, the quality of the teachers who design and deliver the recorded online 
lessons has a significant effect on students’ exam scores. Local governments or education boards can recruit top-quality teachers to 
prepare online lessons that comply with the local curriculum standards and make these available to schools and students. This is cost- 
effective, as it comes with substantial economies of scale, and produces better academic outcomes than each school preparing its own 
online lessons. Last, resources matter: it should be ensured that all students have the resources necessary to access online education 
(Frenette et al., 2020), potentially through collaboration with the telecommunications sector. If available resources are constrained, 
priority should be given to low-achieving children as they benefit the most from distance learning. 

A number of caveats apply to our findings. First, our data on student academic records and online educational practices comes from 
only three Middle Schools in one Chinese county. The external validity of our empirical results obviously requires investigation.24 The 
nationwide evaluation of online learning has not been possible due to data availability. In addition, area-specific COVID-19 conditions 
may have affected the educational practices that could be adopted by Chinese schools during the crisis. Had our treatment and control 
groups come from different areas, the effects of online education on exam results could have been confounded by economic and 
psychological pressure associated with area-specific COVID-19 outcomes. However, all of our students here come from urban schools 
in the same county, and were thus exposed to the same environment. Our analysis does thus have greater internal validity, but at the 
cost of lower external validity. Second, we have only looked at the effects of online education used by schools to review material that 
had already been taught in previous semesters. We would also like to know how effective online education is for the learning of new 
knowledge. One major challenge here is that the absolute effects of online education (versus the alternative of no learning support from 
schools) cannot be causally identified as there is no suitable control group: no Chinese school would require students to take an exam 
covering material that was not taught by their teachers in school. Last, it would also be of interest to examine the relative effects of face- 
to-face and online education on student performance, as in previous work. This comparison is currently not possible, as face-to-face 
teaching was prohibited by the Chinese Ministry of Education during the COVID-19 crisis. Equally, under normal circumstances, 
teaching in Chinese schools is only face-to-face, with no online sessions running in parallel. We leave these aspects for future research 
when suitable data become available. 

23 A comparison of the R2 between Tables 2 and 10 suggests that PCA aggregation has improved statistical power to detect effects that are 
consistent across the exam results in the five subjects when they have idiosyncratic variations.  
24 Previous work such as Figlio et al. (2013), Alpert et al. (2016) and Bettinger et al. (2017) used data from one university in the US to analyze the 

effects of online learning in higher-education settings. 
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