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A B S T R A C T   

The spatialization of socioeconomic data can be used and integrated with other sources of information to reveal 
valuable insights. Such data can be utilized to infer different variations, such as the dynamics of city dwellers and 
their spatial and temporal variability. This work focuses on such applications to explore the underlying associ-
ation between socioeconomic characteristics of different geographical regions in Dublin, Ireland, and the number 
of confirmed COVID cases in each area. Our aim is to implement a machine learning approach to identify de-
mographic characteristics and spatial patterns. Spatial analysis was used to describe the pattern of interest in 
electoral divisions (ED), which are the legally defined administrative areas in the Republic of Ireland for which 
population statistics are published from the census data. We used the most informative variables of the census 
data to model the number of infected people in different regions at ED level. Seven clusters detected by 
implementing an unsupervised neural network method. The distribution of people who have contracted the virus 
was studied.   

1. Introduction 

In March 11th, 2020, the Republic of Ireland’s government launched 
a national action plan in response to COVID-19, a widespread lock-down 
in order to minimize the risk of illness. The impacts of pandemics such as 
the current COVID-19 should be explored extensively. To mitigate and 
recover from the negative repercussions, it is of paramount importance 
to study the effects on the social tissue in cities. It seems that various 
research is needed to thoroughly investigate, understand, mitigate and 
recover from the effect of this pandemic. Some studies have been 
focused on providing risk assessment frameworks based on artificial 
intelligence and leveraging data generated from heterogeneous sources 
such as disease-related data, demographic, mobility, and social media 
data (Beria & Lunkar, 2021; Ge et al., 2020; Sannigrahi, Pilla, Basu, 
Basu, & Molter, 2020; Shokouhyar, Shokoohyar, Sobhani, & Gorizi, 
2021; Silva et al., 2021). The exposure risk of the pandemic in different 
environments has been assessed. Many researchers are exploring the 
dynamics of the pandemic in urban areas to mitigate effects and un-
derstand the impacts of COVID-19 on cities (Das et al., 2021; Rumpler, 
Venkataraman, & Göransson, 2020; Silva et al., 2021). In this area of 
research, four distinctive categories have received significant attention: 
environmental quality, socio-economic impacts, management and 

governance, and transportation and urban design (Sharifi & 
Khavarian-Garmsir, 2020). As far as the socio-economic impacts are 
concerned, pandemics can substantially negatively affect people at the 
bottom of the socio-economic hierarchy, those with low education, low 
income, and low-status jobs. For instance, it has been discussed that the 
Black and Latino people’s mortality rate is twice that of the Whites in the 
US (Wade & Khavarian-Garmsir, 2020). The pandemics can also hit 
vulnerable groups of people in poor sanitary conditions. Moreover, 
various factors such as high density, inadequate access to health services 
and infrastructure facilities can exacerbate the situation (Duffey & Zio, 
2020; Rahman et al., 2020). Different inequality issues can also make it 
difficult to maintain social distancing (Sun & Zhai, 2020). Hence, it is 
essential to understand the existed relation between socio-economic 
inequalities and the pandemic. As discussed, such inequalities can 
threaten public health by making it difficult to enforce protective 
measures such as social distancing. 

Artificial Intelligence technologies such as neural networks and deep 
learning can play a significant role during a pandemic. They can be used 
to provide different platforms for social distance tracking (Ahmed, 
Ahmad, Rodrigues, Jeon, & Din, 2021; Ghahramani, Galle, Duarte, 
Ratti, & Pilla, 2021; Nagrath et al., 2021), monitor and control the 
spread of COVID-19 (Bhattacharya et al., 2021; Zivkovic et al., 2021). 
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Such technology has been used in this study. We assess the association 
between the demographic features and the number of confirmed cases at 
electoral divisions (i.e., ED) in Dublin, Ireland based on an optimized 
self-organizing neural network. It should be mentioned that the number 
of cases until September 10, 2020, have been considered in this work. 
Our aim is to understand the impacts of the pandemic on Dublin city 
given associated characteristics and study the related patterns in 
different clusters obtaining from demographic information, i.e., census 
data. We used a machine learning method based on an unsupervised 
learning approach to group spatial data into meaningful clusters (Hu, 
O’Hagan, Sweeney, & Ghahramani, 2020). In doing so, the similarities 
among spatial objects were taken into account. Given the implemented 
model, the implicit information about different EDs were extracted, and 
all associated relations were examined. Such data exploration can help 
us extract demographic information related to various clusters. First, a 
feature selection method was used to extract the most relevant variables 
since the census data includes over 700 features, and redundant features 
can significantly affect the model accuracy. Feature extraction aims to 
project high-dimensional data sets into lower-dimensional ones in which 
relevant features can be preserved. These features, then, were used to 
distinguish patterns. Dimensionality reduction and feature selectio-
n/extraction methods (Ghahramani, Qiao, Zhou, O’Hagan, & Sweeney, 
2020), e.g., principal component analysis (PCA), linear discriminant 
analysis (LDA), and canonical correlation analysis (CCA), play a critical 
role in dealing with noise and redundant features. These methods were 
used as a pre-processing phase of data analysis and helped us obtain 
better insights and robust decisions. 

Broadly speaking, dimensionality reduction is considered as a 
method to remove redundant variables. This technique can be regarded 

as two distinctive approaches, i.e., feature extraction and feature se-
lection. Feature extraction refers to those techniques that project orig-
inal variables to a new latent space with lower dimensionality, while 
feature selection methods aim to choose a subset of variables such that a 
trained model minimizes redundancy and maximizes relevance to the 
target feature. In this work, we deal with a clustering problem and high- 
dimensionality issue; hence, a feature extraction technique was used. 
Since interpreting associated patterns in feature extraction methods can 
be a subjective process, different tests were implemented to deal with 
related issues such as readability and interpretability. PCA is a classic 
approach to dimensionality reduction (feature extraction) and has been 
implemented in various research studies. However, it suffers from a 
global linearity issue. Thus, to address this concern, a nonlinear tech-
nique (i.e., kernel PCA (Kim & Klabjan, 2020)) was used in this work. 

Then, the extracted features from the census data were fed into a 
clustering model, and different clusters were identified. The goal in this 
phase is to cluster EDs (including various demographic variables) such 
that similarities among them within each group are maximized. The 
model is based on an advanced spatial clustering technique and can deal 
with non-linear relationships between features of a high dimensional 
data set. To do so, we implemented an unsupervised approach based on 
an artificial neural network (ANN) that can properly transform geo- 
referenced data into information. The main property of ANNs is their 
ability to learn and model nonlinear and complex relationships. The 
model employs a competition-based learning mechanism to generate 
insights from unlabelled data. It leverages a multi-layer clustering 
approach, i.e., a self-organizing neural network (Díaz Ramos, 
López-Rubio, & Palomo, 2020; Yu, Lu, & Zhang, 2020), to transform a 
complex high-dimensional input space into low dimensional output 
space while preserving the topology of the data. Given a set of EDs, the 
model groups together different spatial objects that are similar with 
other (i.e., the distance among observations is minimized in a given 
cluster). Different validity measures were also applied and the results 
are illustrated. For visualization, we use the shapefile of Dublin. Fig. 1 
demonstrates the Dublin shapefile, including different districts. 

The contributions of this work are as follows:  

1. The link between the number of confirmed Covid cases and socio- 
economic determinants at electoral division level in Dublin, 
Ireland is analyzed based on an AI-based spatial clustering method.  

2. A topology-preserving model is implemented to explore nonlinear 
relationship among electoral divisions given the census data to 
characterize the spatial distribution of city dwellers. 

The remainder of this paper is organized as follows: some related 
work on application of machine learning and artificial intelligence to 
deal with concerns related to the pandemic is described in Section 2; 
data pre-processing operations including feature extraction is explained 
in Section 3; the proposed approach with its associated discussions is 
presented in Section 4; Section 5 shows the experimental settings and 
the clustering results; and the future work and conclusions are presented 
in Section 6. 

2. Related work 

Due to the global spread of coronavirus, many researchers across the 
world are working to understand the underlying patterns of the 
pandemic from different perspectives. They are looking for effective 
ways to manage the flow of people and prevent new viral infections. As 
expected, numerous research has been undertaken as to medical con-
cerns (e.g., diagnosis and treatment of the disease like lung disease, lung 
nodules, chronic inflammation, chronic obstructive pulmonary diseases) 
to ensure all required measures are in place. Different strategies, such as 
chest computed tomography imaging (Xie et al., 2020) and polymerase 
chain reaction (Hu, Gao, et al., 2020), have been discussed for detecting 
and classifying COVID-19 infections. Artificial intelligence (AI) 

Fig. 1. Dublin shapefile including different polygons of the administrative 
boundary and attributes of geographic features. 
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approaches have also been used in the field of medical data analysis 
(Bhattacharya et al., 2021), and different algorithms have been imple-
mented for such analysis and patients’ classification. Different neural 
network techniques have been utilized for diagnosis based on identified 
clinical characteristics such as cough, fever, sputum development, and 
pleuritic chest pain (Li et al., 2020; Ouyang et al., 2020). Various im-
pacts of the pandemic on urban areas have also attracted the attention of 
researchers. In Alsaeedy and Chong (2020), the authors have introduced 
a novel method to identify regions with high human density and 
mobility, which are at risk for spreading COVID-19 by exploiting 
cellular-network functionalities. In doing so, they have used the fre-
quency of handover and cell selection events to identify the density of 
congestion. Several visualization techniques like class activation map-
ping (CAM) (Sun et al., 2020), class-specific saliency map, and 
gradient-weighted class activation mapping (Grad-CAM) (He et al., 
2020) has been used to generate localization heatmaps in order to 
highlight crucial areas that are closely associated with the pandemic. 
Rustam et al., have implemented four Machine Learning models, such as 
linear regression, least absolute shrinkage, and selection operator, sup-
port vector machine, and exponential smoothing to understand the 
threatening factors of COVID-19 (Rustam et al., 2020). Different fea-
tures, such as the number of newly infected cases, the number of deaths, 
and the number of recoveries have been taken into account in their 
model. 

Network analysis, as a set of integrated techniques, can be used to 

provide direct visualization of the pandemic risk. By illustrating the 
degree of similarity among various areas given confirmed cases, So et al. 
have demonstrated that network analysis can provide a relatively simple 
yet powerful way to estimate the pandemic risk (So, Tiwari, Chu, Tsang, 
& Chan, 2020). Such analysis can also supplement traditional modelling 
techniques to improve global control and prevention of the disease and 
provide more timely evidence to inform decision-making in crisis zones. 
In Montes-Orozco et al. (2020), the authors have presented a method-
ology to identify spreaders using the analysis of the relationship between 
socio-cultural and economic characteristics with the number of in-
fections and deaths caused by the virus in different countries. The au-
thors have explored the effect of socioeconomics, population, gross 
domestic product, health, and air connections by solving a vertex 
separator problem in multiplex complex networks. 

Targeting policy responses to crises such as the current pandemic and 
interventions exclusively on people who live in deprived areas requires 
insights such as which clusters in society are most affected. In this work, 
we explore demographic and socioeconomic factors and investigate the 
role of socioeconomic factors in the spread of COVID-19. Our aim is to 
analyze underlying features obtained from census data and describe 
such demographic information concerning the geolocation of patients. 
We study the link of the pandemic with such factors. Fig. 2 illustrates 
different phases of the proposed model. 

3. Data processing 

Geodemographic is referred to as the study of spatial patterns and 
socio-economic characteristics of different areas. Associated de-
mographic databases, such as census data, can be used to understand 
population diversity better since they include characteristics of a 
country’s inhabitants. Generally speaking, spatio-temporal datasets can 
be divided into different categories, such as geo-referenced data points, 
geo-referenced time series, moving objects, and trajectories. The esti-
mation of a region’s population has been a critical application of geo-
spatial science in demography. In this sense, geodemographic clustering 
can be considered as a tool to understand spatially dependent datasets. 
This kind of clustering is unsupervised learning that groups spatial data 
into meaningful clusters based on similarities among various areas. The 
learning procedure is correlated to the tendency of people to associate 
themselves with others who have common characteristics. Census data 
can be considered as a reference for overall population estimation. It 
includes information about individuals who have been counted within 
households in different regions. Such data sets have some special char-
acteristics such as geospatial features. They consist of measurements or 
observations taken at specific locations, referenced by latitude and 
longitude coordinates and/or associated within specific regions (in this 
work electoral divisions). Census data for the population living in the 
Republic of Ireland are available at a different level, i.e., small area and 
electoral division (ED), from a survey taken in 2016. However, since the 
number of confirmed cases are available at EDs, the census data at such 
administrative areas were incorporated. 

3.1. Dataset 

Demographic information is available at the local population level 
via censuses carried out by countries. In Ireland, a census is conducted at 

Fig. 2. Different phases of the analysis model used in this work.  

Table 1 
Some observations of the census data at electoral divisions level consisting of 764 variables.  

GEOGID GEOGDESC T1-1AGE0M T1-1AGE1M T1-1AGE2M T1-1AGE3M T1-1AGE4M … T15-3-N T15-3-NS Covid cases 

E02008 Ayrfield 33 33 34 31 37 … 341 43 133 
E02012 Ballygall B 10 10 5 8 11 … 266 27 109 
E02022 Beaumont B 29 26 35 24 21 … 270 38 75 
E02006 Ashtown A 100 84 70 66 49 … 626 111 99 
E02093 Whitehall D 11 15 12 11 5 … 258 16 150  
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five-year periods by the government, with the most recent census prior 
to this work occurring in 2016. The census of Ireland is disseminated by 
the Central Statistics Office (CSO) and provides a vast amount of in-
formation. Spatial data like a census typically involves a large number of 
observations, meaning analysis of this nature tends to involve complex 
multivariate analysis and machine learning methods (Ghahramani, 
Zhou, & Hon, 2019a, 2019b; Ghahramani, Zhou, & Wang, 2020). There 
are 322 EDs in Dublin, and the census consists of 764 features (relating 
to, for example, age, household size, marriage status, and education 
levels, etc.) for each of 322 EDs. The census reports the features as a 
count of people. We converted these features to percentages of the 
population within each ED. Some sample records are presented in 
Table 1. The number of Covid cases are also aggregated in this table. 
There are no missing values or outliers in the census data. The dataset 
were normalized; the variables were scaled and transformed so that they 
each make an approximately equal contribution to the results. For 
example, there are about 100 variables relating to age information in the 
raw census data that they are summarized into percentages of different 
age bands; and there are about 40 variables relating to education levels 
that are converted to percentages of people holding a third-level higher 
education degree and above for each area. Take some variables 
demonstrated in Table 1 as an example. The variables T1-1AGE0M, 
T1-1AGE1M, T1-1AGE2M, T1-1AGE3M, and T1-1AGE4M, which refer 
to the number of people in different age bands (infants to four years old) 
have been merged, and a new feature Age0-4 has been created. In total, 
we extracted 53 variables that are synthesized from the census data, and 
a subset of these variables is presented in Table 2. For the sake of brevity, 
not all summarized census variables are presented and discussed in 
detail. All the features created in this phase are used in a dimensionality 
reduction phase to be explained later. It should be mentioned that 
spatial features cannot be illustrated or modelled in a simple way due to 
their complex characteristics, e.g., size, boundaries, direction and con-
nectivity. Hence, spatial analysis is more sophisticated than relational 
data processing in terms of algorithmic efficiency and the complexity of 
possible patterns because interrelated information at a spatial scale has 

to be considered. Therefore, spatial or geodemographic clustering is 
used for grouping and labelling geographical neighbourhoods in terms 
of their social and economic characteristics. Such an approach can be 
used to understand our spatially dependent data and the potential un-
derlying associations between this data and confirmed number of Covid 
cases. Such applications allow similarities between patient structures in 
different EDs to be highlighted, geodemographically speaking. 

Each observation (EDs consisting of demographic information) can 
be defined as an m-tuple (m is the number of features). 

Let matrix X ∈Rn×m as: 

X =

⎡

⎢
⎢
⎣

X1
X2
⋮
Xn

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

x11 x12 ⋯ x1m
x21 x22 ⋯ x2m
⋮ ⋮ ⋱ ⋮

xn1 xn2 ⋯ xnm

⎤

⎥
⎥
⎦ (1)  

where R is the real number set, Xi is the ith region and its corresponding 
variables (m-tuple), and n is the number of all areas. As stated earlier, we 
deal with high dimensionality in this work. Such datasets can pose 
serious challenges, such as model overfitting. The more the number of 
variables increases, the more the chance of overfitting. 

3.2. Dimensionality reduction 

Dimensionality reduction is the process of eliminating redundant 
variables. To handle such concerns, different approaches have been 
considered in the literature. Generally speaking, feature extraction and 
feature selection techniques are applied to reduce data dimensionality. 
In the former approach, original features are mapped to a new feature 
space with lower dimensionality. The latter refers to those methods that 
identify and select a subset of features such that the trained model 
(based on the selected features) minimizes redundancy and maximizes 
relevance to the target feature. PCA is the most common dimensionality 
reduction approach; however, the transformation applied is linear. But 
when data follow a nonlinear structure, as in our case, approximating 
the model by a linear method like PCA will not perform well on the 
original data. Likewise, multidimensional scaling (Saeed, Nam, 
Al-Naffouri, & Alouini, 2019) and independent component analysis 
(ICA) (Feng & Li, 2020; Shi, Yang, Xu, Zhang, & Farahani, 2019) suffer 
from the linearity issue. To address this shortcoming, nonlinear tech-
niques such as kernel PCA, Laplacian eigenmaps (Sun, 2019), and 
semidefinite embedding (Xiang, Nie, Zhang, & Zhang, 2009) can be 
used. The two first-mentioned methods have been applied in this work. 
The result of the Kernel PCA is illustrated to save space. We can define 
the variance-covariance matrix as 

S =
1
n
∑n

i=1
(Xi − X)T

(Xi − X) (2) 

The aim is to maximize the trace of the covariance matrix (i.e., 
A* = arg maxAtr(S)) given a weighted covariance eigen decomposition 
approach (Chan, Wu, & Tsui, 2012), where A is a set of eigenvectors 
(unitary matrices that can represent rotations of the space). A nonlinear 
transformation ϕ(X) from the original m-dimensional space has been 
considered, and the covariance matrix of the projected features has been 
measure as 

S =
1
n
∑n

i=1
ϕ(Xi)ϕ(Xi)

T (3)  

The eigenvalues and eigenvectors are given by 

Sνk = λνk (4)  

The eigenvectors have been measured (νk =
∑n

i=1akiϕ(Xi)), where k is 
the new number of dimensions. 

Table 2 
Summary information on a subset of summarized variables from the Irish census 
data across all EDs.  

Features Statistics  

Mean Std 
deviation 

Median 
absolute 
deviation 

IQR Median 

Percentage of 
population 
aged 0–4 

7.298 2.168 1.425 [5.797, 
8.638] 

7.238 

Percentage of 
population 
aged 5–14 

14.053 3.379 1.964 [12.272, 
16.228] 

14.313 

Percentage of 
population 
aged 65 and 
over 

13.580 4.413 2.620 [10.721, 
16.071] 

13.243 

Percentage of 
single 
population 

56.157 4.881 2.432 [53.146, 
58.103] 

55.468 

Percentage of 
house-share 
household 

4.254 4.147 1.389 [3.112, 
5.984] 

4.347 

Percentage with 
higher 
education 
degrees 

20.471 9.131 4.292 [14.908, 
23.724] 

18.501 

Percentage of 
professional 
social class 

4.981 3.816 1.863 [2.511, 
6.417] 

4.098 

Percentage of 
unemployed 
population 

11.015 3.938 2.436 [8.241, 
13.249] 

10.526  
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1
n
∑n

i=1
ϕ(Xi){ϕ(Xi)

T νk} = λkνk (5) 

By substituting νk in above equation 

1
n

∑n

i=1
ϕ(Xi)ϕ(Xi)

T
∑n

j=1
akiϕ(Xj) = λk

∑n

i=1
akiϕ(Xi) (6)  

The kernel function (Ψ(Xi, Xj) = ϕ(Xi)Tϕ(Xj)) is, then, multiply both sides 
of Eq. (6) and the kernel principal components can be calculated as: 

ϕ(X)T νk =
∑n

i=1
akiΨ(X,Xi) (7)  

It should be mentioned that we have constructed the kernel matrix from 
the census data. To that end, a Gaussian kernel (Ψ(Xi, Xj) = exp(− || 
Xi − Xj||2/2σ2)) has been used, where c is a constant. Given the measured 
variance for each feature, the associated weight can be measured 

σ2
X =

∑n
i=1ω2

i (Xi − X)2

∑n
i=1ω2

i
(8) 

We have also examined the relevance of all features using the coef-
ficient of determination. In doing so, the proportion of the variances 
have been tested. A supervised learner has been used, and iteratively one 
feature of the dataset has been considered as the dependent variable and 
others as the independent variables. The Hopkins statistic, which is a 
way of measuring the clustering tendency of a data set, has been 
calculated for both scenarios with the value of 0.59 before dimension-
ality reduction and 0.67 after that phase. A value close to 1 indicates that 
the data is highly clustered. Fig. 3 illustrates the result of the dimen-
sionality reduction given the Kernel PCA approach. Given the fraction of 
variances measured in this phase and also given all the weights associ-
ated to each feature, 21 features, such as percentage of population aged 
65 and over, percentage of house-share household, and percentage of 
the unemployed population, have been selected. All these features have 
been integrated with two additional variables, i.e., the population of 
each ED and the number of confirmed covid cases in each of those areas. 
The final dataset is then used in the second phase (i.e., clustering) of the 
model. 

4. Clustering approach 

After performing all the data preprocessing operations explained 

above, a clustering method can be implemented to find underlying 
patterns. Due to characteristics of this work, i.e., non-linear dynamics, 
an unsupervised learning mechanism based on a vector quantization 
technique (Xie, Chen, Lewis, & Xie, 2018) has been considered. It should 
be mentioned that most neural network approaches operate based on the 
non-linear optimization of a criterion, which may result in the local 
minimum issue and/or the convergence may take a long time. It has 
been discussed that self-organizing maps are less sensitive to such con-
cerns. This approach is motivated by retina-cortex mapping and 
considered as an optimal technique for vector quantization problems. 
The topographic mechanism used in this method can enable us to study 
relationships among spatial and non-spatial features and identify asso-
ciated patterns. The model is self-organized and operates based on 
learning rules and neuron interactions. The learning process is based on 
cooperation and competition among neurons. Moreover, neurons 
maintain proximity relationships during the learning process. The idea is 
to quantize the input space into a finite number of vectors. All obser-
vations in the input space (census vectors, together with the number of 
Covid cases in each spatial area) are projected to post-synaptic neurons 
in the latent space. The implemented model can transform all the census 
features in the input space into a low-dimensional discrete output space 
while preserving the relationships among variables. To do so, all vectors 
are mapped to neurons based on synaptic connections, each of which is 
assigned with weights. These weights are updated such that adjacent 
neurons on the lattice have similar values. The clustering procedures 
consists of different phases, i.e., competition, collaboration, and weight 
updating. 

In the competition phase of the algorithm, a predefined number of 
neurons are initialized by randomly setting their weights using census 
features. Neurons compete for each input vector’s ownership, and the 
most similar neuron (given the distance measure between an ED object 
together with all relevant features and all neurons) to a given observa-
tion is detected. The winning neuron is called the best matching unit 
(BMU). There are different distance measures to find the similarity be-
tween neurons and an input vector, such as the Euclidian distance, 
correlation tests, and cosine similarity. However, the squared Euclidean 
distance is often used in a real application. Let Xi be the ith input vector 
(i.e., ith ED’s features) and Wj the associated weights of the jth neuron. 
Then, the distance matrix Dij =

1
n
∑n

i=1
∑k

j=1(Xi − Wj)
2 can be defined as: 

Fig. 3. Result of the dimensionality reduction phase implemented for feature extraction based on Kernel PCA.  
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Dij =

⎡

⎢
⎢
⎣

d11 d12 d13 … d1k
d21 d22 d23 … d2k
⋮ ⋮ ⋮ ⋱ ⋮

dn1 dn2 dn3 … dnk

⎤

⎥
⎥
⎦ (9)  

The BMU can be measured according to 

Ψ = arg min
j

||Xi − Wj||2 (10) 

In the collaboration phase, the adjacent neurons of a given BMU are 
updated. The aim is to find out which of the non-winning neurons are 
within the BMU’s neighbourhood detected in the previous phase. To do 
so, the spatial location of a topological neighbourhood of the excited 
neuron is detected. Several neighbourhood functions can be used to 
calculate the neighbourhood radius, i.e., rectangular, Mexican hat, and 
Gaussian functions. The latter (i.e., Gaussian function) is the most 
commonly used one and has been utilized in this work. The cooperative 
process in this phase starts with defining an initial neighbourhood 
radius, which shrinks throughout different iterations based on the 
neighbourhood function. For each neuron j (Nj) in the neighbourhood of 
the ith winning neuron (Ni), the algorithm updates all the weights 
associated with the jth neuron based on a learning rate. It should be 
mentioned that the weights of other neurons outside of Ni neighbour-
hood are not adjusted (in a given iteration). The procedure can be 
defined by the function below: 

λ(ξij) = exp

(

−
ξ2

ij

2σ2

)

(11)  

where λ(ξij) is the topological neighbourhood value of the ith winning 
neuron (Ni), ξij is a lateral distance (the distance between Ψi and its 
adjacent neurons Nj), and σ is a function of the number of iterations and 
starts with an initial value (σo). A decay function ( − n

T) is also employed, 
σ(n) = σo.exp( − n

G), where n is the number of iterations, and G is a 
constant. By defining the distance function formulated above, the 
neighbourhood territory for updating all adjacent neurons is explored. 
Two different connections, i.e., short-range excitatory connections and 
long-range inhibitory interconnections, are used during the projection 
process. The former is utilized at the presynaptic layer and the latter at 
the postsynaptic one. The process can be expressed as: 

∂Yj(n)
∂n

+ τYj(n)

=
∑

j
Wij(n)Xi(n) +

∑

k
ηkY*

k (n) −
∑

k′
γk′ Y

*
k′ (n)

where τ is a constant, Wij(n) is the synaptic strength between input 
vectors at the presynaptic layer and neurons at the postsynaptic layer, ηk 
and γk are connection weights at the presynaptic and postsynaptic 
layers, respectively, and Y* is an active neuron at the postsynaptic layer. 

In the third phase, two methods (i.e., Hebb’s rule (Martins & de Lima 
Neto, 2020; Wickramasinghe, Amarasinghe, & Manic, 2019) and 
Forgetting rule (Chushig-Muzo, Soguero-Ruiz, Engelbrecht, De Miguel 
Bohoyo, & Mora-Jiménez, 2020)) for adjusting weights of neurons are 
considered. Based on the Hebb’s rule, the change of the synaptic weight 
(ΔW) is a function of relative neuron spike timing and is proportional to 
the correlation between an input (X) and an output (Y) of a network, i.e., 

ΔW =
∂Wij(n)

∂t
= ΘYj(n)Xi(n) (12)  

where Θ is the learning rate (0 < Θ < 1). A sigmoid function has been 
applied during the learning process on the outputs to make sure that 
they are not negative. 

Yj(n + 1) = Φ

[

WT
j X(n) +

∑

j
ηYj(n)

]

(13)  

where Φ means a sigmoid function. Since adopting Hebbe’s rule for 
weight updating can make weights saturated, the Forgetting rule (βYj(n) 
Wij(n)) is also used in the model. Given (12) and the Gaussian neigh-
bourhood function defined by (11), let Θ = β, then 

βYj(n) = ΘYj(n) = Θλ(ξij)

we can formulate the synaptic learning rule as: 

∂Wij(n)
∂t

= ΘYj(n)Xi(n) − βYj(n)Wij(n)

= Θ[Xi(n) − Wij(n)]Yj(n)
(14) 

With the above discussions, the weight updating process can be 
defined as 

Wj(n + 1) = Wj(n) + ΔWj
= Wj(n) + Θ(n)λ(ξij)[X(n) − Wj(n)]

(15)  

where Θ(n) is the learning rate for the nth iteration, Wj(t) is the weight 
vector of the jth neuron, and λ is a neighbourhood function. The learning 
rate is also a function of time and decreases monotonically, i.e., 

Θ(n) = Θ0exp
(

n
− G2

)

where Θ0 is an initial value, G is a constant, and n is the number of 
iterations. 

After the weights for all the input vectors are calculated, both the 
learning rate and the radius are diminished. The postsynaptic weights 
are adjusted to resemble the census features and reflect its properties as 
closely as possible. To sum up the procedures, the pseudo-code of the 
implemented Self-organizing map is presented in Algorithm 1. The 
summary of notations used is also given in Table 3. Two quantization 
and organization criteria have been utilized to measure the reliability of 
the model. Given such validity measures, the sensitive parameters of the 
algorithm have been adjusted. A discussion regarding the settings of the 
algorithm such as the learning rate, the size of lattice (the number of 
neurons), and level of similarities among neurons are presented next. 

4.1. Algorithm convergence and parameter settings 

The learning rate and the number of units needed should be set in the 
algorithm, while the level of similarities among units and the proper 
number of clusters are designated thereafter. Different techniques can be 
utilized to explore the convergence of the algorithm, such as quantiza-
tion error (QE) (Fan, Yang, & Ye, 2018), topographic error, weight-value 
convergence, and probabilistic models. It should be noted that there is 
no exact cost function that a self-organizing map (SOM) follows pre-
cisely. As explained before, two criteria (i.e., QE and topology preser-
vation metric) have been taken into account to ensure that the output of 
the model is reliable. The quantization metric was used to assess the 
required number of neurons. The squared distance between an obser-
vation Xi and its corresponding neuron was calculated. In other words, 
an optimization problem was solved based on the similarity between 
vectors at presynaptic and postsynaptic layers. The ultimate synaptic 

Table 3 
Summary of the notations.  

Symbol Meaning 

X Census features 
p = |X| The number of observations 
k Size of the lattice 
σ The neighbourhood parameter 
Θ The learning rate 
Ψ The lateral distance 
ξ Best Matching Unit 
lNi Position of the ith neuron on the lattice  
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weights of neurons were achieved after running Algorithm 1. The metric 
calculates the variance associated with neurons’ synaptic weights by 
measuring the average distance between each observation and its cor-
responding BMU, i.e., 

QE =
1
p
∑p

i=1
||Xi − Ψ(i)|| (16)  

where p is the number of observations at the presynaptic layer, summing 
all the errors can be expressed as: 

Ω =
∑k

i=1

∑

Xj∈Vi
ξ2(Xj,Ψi)

= arg min
Xj

ξ2(Xj,Ψi)
(17)  

where k is the size of the lattice (the number of neurons at the post-
synaptic layer) and Vi is the Voronoi areas associated with the ith BMU 
(Ψi). Therefore, by using such a metric for determining the convergence 
of the algorithm, the proper number of neurons was detected. The 
learning rate of the algorithm is a value between 0 and 1. Different 
initial values for the learning rate of the algorithm were tested, and the 
results are illustrated in Fig. 4. The initial learning rate has been set to 
0.57, and 270 neurons have been considered. 

Algorithm 1. Pseudo-code for the SOM model 

5. Results 

5.1. Optimal number of clusters 

Given the implemented model, the algorithm leads to an organized 
representation of activation patterns and prototypes that well represent 
the census features are obtained. The next step is determining the level 
of similarity among neurons. We have performed different validity 
measures to divide neurons at the postsynaptic layer into clusters where 
inter-cluster similarities are minimized while the intracluster similar-
ities are maximized. Let C = {C1, C2, …, Cm} be a set m clusters’ cen-
troids, N = (N1, N2, …, Nk) be k neurons at the postsynaptic layer and 
φ(xi, xj) be the similarity measure between two EDs xi and xj. |Ni|{m} is 
the number of neurons in the mth cluster. The first validity measure used 
in this work, Davies–Bouldin index (DBI), operates based on the inter- 
cluster and intra-cluster variance. The similarities among all ED’s fea-
tures projected into neurons are considered. Let denote the mean dis-
tance of all neurons belonging to cluster Cm to their centroid as: 

δm =
1

|N|
{m}

∑

Ni∈Cl{m}

||N{m}

i − Cm|| (18) 

Let Δij be the distance between two centroids (Ci and Cj). The 
Davies–Bouldin index can be formulated as: 

DBI(p) =
1
p
∑p

i=1
max

(
δi + δj

Δij

)

(19)  

The number of clusters, i.e., p in (18) which minimizes the index can be 
considered as an optimal value. 

For the second validity metric (i.e., Silhouette index), the within- 
cluster distance (Eq. (20)), the mean distance among neurons in each 
cluster (Cli), and the intra-cluster similarity (Eq. (21)) between the 
cluster to which Ni belongs and its nearest cluster are calculated. 

α(i) = 1
|N|

{m}
− 1

∑

Ni ,Nj∈Cl{m}

d(Ni,Nj) (20)  

Fig. 4. Comparing the quantization error given different lattice size.  
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Λ(Ni,Cp) =
1

|N|
{p}

∑

Nj∈Cl{p}

d(Ni,Nj) (21)  

The smallest intra-cluster distance is then calculated, 
β(i) = arg minm∕=pΛ(Ni, Cp). The Silhouette index (Š) for each neuron (Ni) 
at the postsynaptic layer can be defined as 

Š =
β(i) − α(i)

max(α(i), β(i)) (22)  

The mean of the index defined above for a given cluster is then calcu-
lated. Silhouette values fall between − 1 and 1, and a value close to 1 
indicates that the corresponding number of clusters is optimal. Consid-
ering the DBI measure, the average distance among clusters should be 
minimized. Hence, the minimum values for this validity index are 
considered. According to the results achieved from the validity measures 
presented in Table 4, we choose seven as the optimal number of clusters. 
The results achieved in this work show that the algorithm converges 

appropriately, and the generated neural network units have been 
decently grouped into super-clusters. Finally, the results of the clus-
tering method are illustrated in Fig. 5. 

We have aggregated the number of confirmed COVID cases in each 
electoral division given the identified clusters, and the results are 
demonstrated in Table 5. As shown, the number of confirmed COVID 
cases in clusters 5, 6, and 7 are higher comparing with others. Given the 
result of the clustering model and the visualizations in Fig. 5, we can 
identify different characteristics of each cluster. The detailed features 
are presented in Table 6. We have found that those clusters with a high 
number of cases have the lowest proportions of the population with age 
over 65, high percentage of employment, high percentage of private 
rent, and high percentage of the population aged 25–44 (young pro-
fessionals). At the same time, they have the highest proportion of house 
shares. The boxplots illustrated in Fig. 6 correspond to the cluster 
characteristics in the seven detected clusters. 

6. Conclusions and future work 

In this work, we have proposed a multiple-level approach to study 
the association between geodemographic clustering and the number of 
confirmed Covid cases in Dublin, Ireland. This work suggests that by 
incorporating and clustering the publicly available census data, we can 
obtain valuable insights regarding the spatial variations of people who 
have contracted the virus. The proposed method includes various pha-
ses. As the census data used in this work consists of numerous features, 
and such characteristics can make a predictive modelling task chal-
lenging, a feature selection approach has been implemented based on a 
non-linear method. Different tests have also been applied to make sure 
the most relevant features are selected. Then, an advanced geodemo-
graphic clustering algorithm was implemented based on a self- 
organizing feature map to extract clusters given the selected features. 
The quality of the generated map was analyzed. It should be noted that 
there is no universal definition of what is good clustering, and this 
notion is relative. As discussed throughout the paper, an SOM was 
considered in this work due to the inherent non-linear characteristics of 
the spatial dataset. Different validity measures were employed to make 
sure the results of the method used are reliable. We demonstrated that 
the algorithm has converged properly. 

According to the analysis, we have detected seven clusters based on 

Table 4 
Two validity measures tested for selecting an appropriate number of clusters.  

Number of clusters Silhouette index Davies–Bouldin index 

3 0.4212 0.1721 
4 0.4961 0.1281 
5 0.5007 0.0998 
6 0.6741 0.0954 
7 0.8311 0.0704 
8 0.8019 0.0731 
9 0.7702 0.0782  

Fig. 5. Clustering result of the implemented method for electoral divisions 
based on the census data, in which 7 clusters are detected; due to the fact that 
the small areas are dense in the city centre area. 

Table 5 
The number of confirmed Covid cases across seven clusters; the corresponding 
values of the cases/population metric for clusters 5, 6, and 7 are higher than 
those of others.  

Clusters Number of cases Population Cases/Pop 

Cluster 1 788 97,014 0.0081 
Cluster 2 1034 157,018 0.0065 
Cluster 3 901 129,784 0.0069 
Cluster 4 1077 180,540 0.0059 
Cluster 5 2540 271,128 0.0093 
Cluster 6 1824 171,103 0.0106 
Cluster 7 3635 350,772 0.0103  

Table 6 
Some characteristics of clusters.  

Clusters Some characteristics of three clusters with high number of cases 

Cluster 5 • High percentage of house share•
High number of couples with no child•
High proportion of aged 25–44 

Cluster 6 • High percentage of house share•
High proportion of dink family•
High employment rate 

Cluster 7 • High percentage of house share 
• High employment rate•
High proportion of aged 0–14  

M. Ghahramani and F. Pilla                                                                                                                                                                                                                  



Sustainable Cities and Society 69 (2021) 102848

9

the census data and the spatial distribution of the people were explored 
using the unsupervised neural network method. The distribution of 
people who have contracted the virus was studied. The use of the pro-
posed geodemographic approach incorporating spatial data of a geo-
demographic nature means that clusters can be interpreted in terms of 
real-life infected people attributes. 
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Jiménez, I. (2020). Data-driven visual characterization of patient health-status using 
electronic health records and self-organizing maps. IEEE Access, 8, 137019–137031. 
https://doi.org/10.1109/ACCESS.2020.3012082 

Das, A., Ghosh, S., Das, K., Basu, T., Dutta, I., & Das, M. (2021). Living environment 
matters: Unravelling the spatial clustering of covid-19 hotspots in Kolkata megacity, 
India. Sustainable Cities and Society, 65, 102577. https://doi.org/10.1016/j. 
scs.2020.102577 

Díaz Ramos, A., López-Rubio, E., & Palomo, E. J. (2020). The forbidden region self- 
organizing map neural network. IEEE Transactions on Neural Networks and Learning 
Systems, 31, 201–211. https://doi.org/10.1109/TNNLS.2019.2900091 

Duffey, R. B., & Zio, E. (2020). Analysing recovery from pandemics by learning theory: 
The case of covid-19. IEEE Access, 8, 110789–110795. https://doi.org/10.1109/ 
ACCESS.2020.3001344 

Fan, Q., Yang, G., & Ye, D. (2018). Quantization-based adaptive actor-critic tracking 
control with tracking error constraints. IEEE Transactions on Neural Networks and 
Learning Systems, 29, 970–980. https://doi.org/10.1109/TNNLS.2017.2651104 

Fig. 6. Boxplots of census data on percentage of different variables given 7 detected clusters.  

M. Ghahramani and F. Pilla                                                                                                                                                                                                                  

https://doi.org/10.1016/j.scs.2020.102571
https://doi.org/10.1109/OJEMB.2020.3002447
https://doi.org/10.1109/OJEMB.2020.3002447
https://doi.org/10.1016/j.scs.2020.102616
https://doi.org/10.1016/j.scs.2020.102589
https://doi.org/10.1109/TIM.2012.2186654
https://doi.org/10.1109/ACCESS.2020.3012082
https://doi.org/10.1016/j.scs.2020.102577
https://doi.org/10.1016/j.scs.2020.102577
https://doi.org/10.1109/TNNLS.2019.2900091
https://doi.org/10.1109/ACCESS.2020.3001344
https://doi.org/10.1109/ACCESS.2020.3001344
https://doi.org/10.1109/TNNLS.2017.2651104


Sustainable Cities and Society 69 (2021) 102848

10

Feng, Y., & Li, H. (2020). Dynamic spatial-independent-component-analysis-based 
abnormality localization for distributed parameter systems. IEEE Transactions on 
Industrial Informatics, 16, 2929–2936. https://doi.org/10.1109/TII.2019.2900226 

Ge, X. Y., Pu, Y., Liao, C. H., Huang, W. F., Zeng, Q., Zhou, H., et al. (2020). Evaluation of 
the exposure risk of sars-cov-2 in different hospital environment. Sustainable Cities 
and Society, 61, 102413. https://doi.org/10.1016/j.scs.2020.102413 

Ghahramani, M., Galle, N. J., Duarte, F., Ratti, C., & Pilla, F. (2021). Leveraging artificial 
intelligence to analyze citizens’ opinions on urban green space. City and Environment 
Interactions, 10, 100058. https://doi.org/10.1016/j.cacint.2021.100058 

Ghahramani, M., Qiao, Y., Zhou, M. C., O’Hagan, A., & Sweeney, J. (2020a). Ai-based 
modeling and data-driven evaluation for smart manufacturing processes. IEEE/CAA 
Journal of Automatica Sinica, 7, 1026–1037. https://doi.org/10.1109/ 
JAS.2020.1003114 

Ghahramani, M., Zhou, M., & Hon, C. T. (2019a). Extracting significant mobile phone 
interaction patterns based on community structures. IEEE Transactions on Intelligent 
Transportation Systems, 20, 1031–1041. https://doi.org/10.1109/ 
TITS.2018.2836800 

Ghahramani, M., Zhou, M., & Hon, C. T. (2019b). Mobile phone data analysis: A spatial 
exploration toward hotspot detection. IEEE Transactions on Automation Science and 
Engineering, 16, 351–362. https://doi.org/10.1109/TASE.2018.2795241 

Ghahramani, M., Zhou, M., & Wang, G. (2020b). Urban sensing based on mobile phone 
data: Approaches, applications, and challenges. IEEE/CAA Journal of Automatica 
Sinica, 7, 627–637. https://doi.org/10.1109/JAS.2020.1003120 

He, T., Guo, J., Chen, N., Xu, X., Wang, Z., Fu, K., et al. (2020). Medimlp: Using grad-cam 
to extract crucial variables for lung cancer postoperative complication prediction. 
IEEE Journal of Biomedical and Health Informatics, 24, 1762–1771. https://doi.org/ 
10.1109/JBHI.2019.2949601 

Hu, S., Gao, Y., Niu, Z., Jiang, Y., Li, L., Xiao, X., et al. (2020a). Weakly supervised deep 
learning for covid-19 infection detection and classification from ct images. IEEE 
Access, 8, 118869–118883. https://doi.org/10.1109/ACCESS.2020.3005510 

Hu, S., O’Hagan, A., Sweeney, J., & Ghahramani, M. (2020b). A spatial machine learning 
model for analysing customers’ lapse behaviour in life insurance. Annals of Actuarial 
Science, 10, 1–27. https://doi.org/10.1017/S1748499520000329 

Kim, C., & Klabjan, D. (2020). A simple and fast algorithm for l1-norm kernel pca. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 42, 1842–1855. https://doi. 
org/10.1109/TPAMI.2019.2903505 

Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., et al. (2020). Artificial intelligence 
distinguishes covid-19 from community acquired pneumonia on chest ct. Radiology, 
19. 

Martins, D. M. L., & de Lima Neto, F. B. (2020). Hybrid intelligent decision support using 
a semiotic case-based reasoning and self-organizing maps. IEEE Transactions on 
Systems, Man, and Cybernetics: Systems, 50, 863–870. https://doi.org/10.1109/ 
TSMC.2017.2749281 

Montes-Orozco, E., Mora-Gutiérrez, R., De-Los-Cobos-Silva, S., Rincón-García, E., Torres- 
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