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A B S T R A C T   

The increasing expansion of urban environments with associated transformation of land-cover has led to the 
formation of urban heat islands (UHI) in many urbanized regions worldwide. COVID-19 related environmental 
impacts, through reduced urban activities, is worthy of investigation as it may demonstrate human capacity to 
manage UHI. We aim to establish the thermal impacts associated with COVID-19 induced urban ‘lockdown’ from 
20 March to 20 April 2020 over Tehran. Areal changes in UHI are assessed through Classification and Regression 
Trees (CART), measured against background synoptic scale temperature changes over the years 1950–2020. 
Results indicate that monthly Tmean, Tmax and Tmin values during this time were considerably lower than long- 
term mean values for the reference period. Although the COVID-19 initiated shutdown led to an identifiable 
temperature anomaly, we demonstrate that this is not a product of upper atmospheric or synoptic conditions 
alone. We also show that the cooling effect over Tehran was not spatially uniform, which is likely due to the 
complexity of land uses such as industrial as opposed to residential. Our findings provide potentially valuable 
insights and implications for future management of urban heat islands during extreme heat waves that pose a 
serious threat to human health.   

1. Introduction 

There has been continued and rapid global expansion of urban en
vironments with associated human activities (e.g. vehicular /air traffic), 
industrial outputs and land-cover transformation into the built- 
environment over recent years (Senanayake, Welivitiya, & Nadeeka, 
2013; Soydan, 2020, Yamamoto & Ishikawa, 2020; Ahmed, Ahmad, & 
Jeon, 2021). A consequence of this is greater differentiation in atmo
spheric energy balances between the built environment and immediate 
surrounding natural environment. Consequently, built-up city regions 
may experience mean air temperatures of up to a few degrees Celsius 
higher than surrounding sub-urban and naturally vegetated areas - a 
phenomenon commonly referred to as ‘urban heat islands’ (UHI) (e.g. 
Silva, DaSilva, & GuimarãesSantos, 2018; Yao et al., 2020; Zhou et al., 
2020; Geraldi et al., 2021). UHI are affected by urban planning policies 
that include, amongst others, the replacement of vegetation with arti
ficial structures. In addition to causing environmental pollution, the 
built environment also contributes to localized climate and ecological 
change (László Bart, 2010; Emadodin, Taravat, & Rajaei, 2016; Inos
troza and PeileiFan, 2019; Ankur and Shweta Bhati, 2020). The 

relatively dark surfaces of buildings, streets and other paved areas 
typically have lower reflectance (albedo) than natural vegetated sur
faces (Jiang et al., 2020). Built surfaces absorb greater amounts of 
incoming solar radiation, which is then converted into thermal energy, 
thus increasing perceptible heat in the surrounding environment (i.e. 
‘heat islands’) (Comarazamy, 2010; Liu et al., 2020; Zhou et al., 2020). 
Areas affected by heat islands have higher mean temperatures 
throughout the year than surrounding vegetated areas, and when wind 
flow is weak, heating impacts may prevail through the night with dif
ferences of as much as 12 ◦C between built-up and adjoining natural 
areas (Dai, MichelGuldmann, & Hu, 2018; Oke, 1987). 

UHI are influenced by several factors including the areal extent of 
built-up areas (YuShih, Ahmad, Chen, PingLin, & Mabon, 2020), 
building density and architecture (Lima, Scalco, & Lamberts, 2019), the 
spatial distribution/volume of urban land uses (e.g. open/vegetated 
spaces: Mabon, Kondo, Kanekiyo, Hayabuchi, & Yamaguchi, 2019), and 
human lifestyles (e.g. preferred modes of travel: private vehicle, train, 
bicycle, walking, mass migration into or out of urban regions: Zhang, 
Wu, Yuan, Dou, & Miao, 2015; Aggarwal, 2017; Newman, 2020). 
Abnormally hot urban conditions may cause significant 
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socio-environmental issues in some urban areas (Li, Sun, Li, & Gao, 
2020). For instance, the number of working hours per year due to 
extreme hot urban conditions in southeast Asia has apparently 
decreased by about 10–15%; this impact is expected to double by 2050 
(Kjellstorm & Meng, 2016). Rising urban temperatures and associated 
air pollution have adverse effects on human health and cause discom
fort, with particular impacts on asthma and various respiratory diseases, 
as also increasing the occurrence of heatstroke, fatigue and even death 
(US Environmental Protection Agency, 2008). 

UHI may be temporarily impacted by large-scale human activities or 
events, particularly through increased/decreased traffic volumes and/or 
particular industrial outputs associated with such activities (Imai & 
Yamamoto, 2015; Zhu, Wong, Guilbert, & Chan, 2017; Kamruzzaman 
et al., 2018; InácioPortela et al., 2020). An example is the mass 
out-migration of Beijing residents during the annual Chinese New Year 
holiday, which has led to urban temperature reductions of between 
0.45 ◦C and 0.83 ◦C when compared to a ‘background period’ (Wu & 
Zhang, 2018; Zhang et al., 2015). The recent Severe Acute Respiratory 
Syndrome-Corona Virus Disease (COVID-19) has seen some of the 
largest reductions in urban activities (vehicular and air traffic, industrial 
outputs) at a global scale during recent times. Some environmental 
consequences of this have already been documented, such as improved 
urban and regional air quality (e.g. Ali et al., 2021; Alqasemi, Hereher, 
Kaplan, Fadhil Al-Quraishi, & Saibi, 2021; Chen, Hao, Zhang, & Chen, 
2020; Rodríguez-Urrego & Rodríguez-Urrego, 2020; Beria et al., 2021; 
Kumar et al., 2021), including also over Iran (Nemati, Ebrahimi, & 
Nemati, 2020) and across a composite of 21 major cities in the Middle 
East (Kenawy et al., 2021). For instance, in Delhi (India), urban air 
quality improved by between 40 and 50% after only 4 days of 
commenced lockdown (Mahato, Pal, & Ghosh, 2020). In China, indus
trial lockdowns due to COVID-19 caused notable declines in NO2 and 
carbon emissions (by 30 and 25% respectively: Isaifan, 2020), while in 
Morocco, pollutants PM10, SO2 and NO2 declined by 75, 49 and 96% 

respectively (Otmani et al., 2020). In a similar study, PM10, NO2, SO2 
and CO values had declined by 45, 51, 31 and 19% respectively within a 
month of lockdown over Barcelona, Spain (Tobías et al., 2020). Apart 
from air quality, studies have now also demonstrated mean land surface 
temperature declines associated with lockdowns, such as for Kolkata, 
India (Sahani, Goswami, & Saha, 2020). Although several studies have 
alluded to UHI being affected through cooling associated with reduced 
urban activities (e.g. Ali et al., 2021; Alqasemi et al., 2021; Kenawy 
et al., 2021), there is a general lack of robust quantification to demon
strate such cooling effects, and that these are indeed a product of 
COVID-19 related urban ‘lockdown’ rather than regional climate-related 
scenarios. Although the work by Alqasemi et al. (2021) reflects on 
temperatures during the 2020 COVID-19 related lockdown over the 
United Arab Emirates, this is against temperatures of the previous year 
only, and thus cannot offer conclusive evidence for lockdown-related 
temperature reductions. A further study focusing on the city of Mon
treal, Canada, investigated the potential effect of COVID-19 on reducing 
traffic and ultimately urban heat generation (Teufel et al., 2021). The 
simulation approach used the limited-area version of the Global Envi
ronmental Multiscale (GEM) model, which spanned the periods 
January-May 2020 and April 2019-May 2020, and applied to normal 
and reduced traffic volumes. The key outcome of Teufel et al.’s (2021) 
work calculates that an 80% reduction in traffic volume equates to 
~1 ◦C reduction in near-surface temperature. A limitation with this 
particular study is that it does not consider the role of synoptic climate 
drivers that too would influence heat generation and affect such results. 
Changes in UHI have also been investigated for the Indo-Gangetic Basin 
over the period 1 April to 15 May 2020, in comparison with the previous 
five years (2015–2019)(Chakraborty, Sarangi, & Lee, 2021). In this case, 
a combination of satellite and reanalysis products were used to establish 
surface energy budgets. Their results indicate >10% reduction in 
columnar air pollution and ~30% greater cloud cover in 2020, ulti
mately yielding little change in available thermal energy at the surface. 

Fig. 1. Study region indicating land use changes through time and primary weather stations used in this paper.  
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While such studies offer valuable insight to potential thermal effects 
associated with reduced urban human activities, there has, as yet, not 
been an investigative approach using real station-based urban temper
ature data for the period of lockdown and comparing these against 
longer-term values. To this end, and with such a research gap in mind, 
we aim to establish characteristics of Tehran’s urban heat island and 
how it was impacted through COVID-19 related ‘urban lockdown’. 

COVID-19 was officially declared a pandemic in Iran on 20 February 
2020. This subsequently led to a nationwide lockdown to limit the 
spread of the disease. The lockdown commenced between 20 March and 
20 April 2020, coinciding with the month of Farvardin (an Iranian 
month), which is a holiday period in Iran. The Tehran Traffic Police 
Control centre presented a report on vehicular traffic in the capital city, 
according to which traffic had decreased by ~50% by 27 February 2020 
(TPTCC, 2020). Over the period 5–19 March 2020, traffic volume 
declined by ~70% over that for the same period in 2019. Then, from 20 
March to 20 April, this downward trend continued, such that traffic 
volume declined by ~85% over that for the same period in 2019 
(TPTCC, 2020). Given such confirmed reduced human activity over a 
relatively prolonged time in Tehran city, we anticipate this may have 
had an impact on the urban heat island, in a similar way to that reported 
for Beijing during the Chinese New Year, as mentioned earlier. We thus 
test this hypothesis and present its outcomes in the context of it being the 
first study to establish the indirect effects of a global pandemic on urban 
thermal conditions. 

2. Tehran study region 

Tehran metropolis covers an area of 18,909 km2 and is located in the 
northern portion of the central Iranian plateau (35◦07′ N; 51◦24′ E). 
Tehran’s population has seen steady growth over the last few decades 
and is currently estimated at ~8.3 million (Dadashpoor and Alidadi, 
2017). The semi-arid climate is continental in character but with a 
Mediterranean-type precipitation pattern (Köppen climate classifica
tion: BSk). Geographic location has a strong influence on Tehran’s 
climate given its proximity to the Alborz Mountains to the north, from 
which it receives cold and subsiding airflow. Summers are generally hot 
and dry (mean temp. = 28.8 ◦C), spring and autumn mild and relatively 
dry (mean spring temp. = 22.6 ◦C; mean autumn temp. =11.9 ◦C), and 
winters cold and wet (mean temp. = 6.8 ◦C) (Roshan, Shahraki, Sauri, & 
Borna, 2010; Ghanghermeh et al., 2013; Roshan, 2020). 

3. Materials and methods 

Temperature data were obtained from 1951 onwards and include the 
Mehrabad station in Tehran (51◦19′E; 35◦41′N; 1191 m asl). This station 
is located at Mehrabad Airport, well within the inner city region of 
Tehran and ~8 km from the city periphery. Temperature variables 
include Tmean, Tmax and Tmin and cover the period 1951–2020. 

We confirm very few temperature data gaps (<1%) for all parameters 
(Tmean, Tmax, Tmin). Despite this, where few gaps do occur, we undertook 
data imputation through linear regression techniques using neighbour
ing station data, as per the recommendations by Valipour (2012, 2017) 
and Valipour, Banihabib, and Behbahani (2013). Homogeneous time 
series of meteorological variables are necessary for climate studies such 
as the one presented here. To this end, homogeneity of monthly tem
perature data was undertaken using the standard normal homogeneity 
test at the 5% significance level, following Arikan and Kahya (2019). 
According to the homogeneity test results, the time series of temperature 
(Tmean, Tmax, Tmin) for Mehrabad station have homogeneity at a 5% 
significance level. 

For the annual time period of 20 March to 20 April, we also compare 
temperatures between Mehrabad station and four additional stations: 
Shemiranat, Karaj, Rodehen and Firozkoh (Fig. 1). For the purpose of 
analysis, we use the reference period 1991–2020, which represents 
common data availability across all four stations. 

3.1. Evaluating temperature extremes 

The World Meteorological Organization (WMO) has recommended 
16 temperature extreme indicators to evaluate the effects of climate 
change, of which we use six as indicated in Table 1. Other indicators are 
not included as they are not relevant to our temporal scale of investi
gation. It should be noted that only the frequencies for the SU25 index 
have been calculated, while for other indicators, the occurrence 
threshold of temperature indices have been determined. Given the 
importance of the last two decades with respect to accelerated global 
warming, only these indicators are determined for the 2000s and 2010s. 

3.2. Production of urban land use map 

Physical development and climate change are, in combination, 
responsible for UHI and significant temperature differences between 
[some] cities and surrounding areas. However, the urban thermal layer 
is not uniform and fluctuates both spatially and temporally. Fluctuations 
(variability) in the urban thermal layer, which can be measured in near- 
surface air cover, vary according to the type of land use/cover and 
human activities. To this end, the diversity and variable intensity of 
human activities across the landscape have created variable microcli
mates within the urban environment. The process of classifying satellite 
images and producing thematic maps, including land use maps, and 
separating the city from more open/barren surrounding lands, has its 
challenges and is subject to subtle errors. However, in recent years, a 
standard and widely used method known as ‘Local Climate Zone’ (LCZ) 
classification has been established to overcome some of these challenges 
(e.g. Daramola & Balogun, 2019; He, Zhang, Gu, & Su, 2019; Kotharkar 
& Bagade, 2018). The LCZ classification strategy defines and provides all 
valid standards in the field of urban classification using satellite images. 
The LCZ algorithm, based on the climate of local zones, separates 
different climatic zones that exist within the bounds of the city. The 
standards presented in this method are globally uniform and thus do not 
change across regions. According to such standards provided for esti
mating land use changes for 17 urban classes (including various coatings 
of buildings with different densities and floors, along with industrial use 
and natural and agricultural coatings), Landsat 8 and 5 satellite images 
were used in the SAGA-GIS software environment (Table 2). 

For Landsat 8 satellite images, 9 bands (9–10, 1 to 7) with cloud 
cover <10% were used, and for Landsat 5 images, bands of red, green, 
blue and thermal were used. The presence of thermal bands permits the 
separation of land uses based on temperature anomalies and microcli
mates. Given the nature of classes used in this method, access to 
terrestrial data is required. While data for some classes may be manually 
retrieved using Google Earth, other data, such as for residential 
(including the number of floors in each area of Tehran) and industrial 
areas, required field surveys. Such statistics are prepared by the Tehran 
Municipality in the form of block statistics, and are available as shape 
files. For more details on this method and definitions of different LCZ 
classes, please refer to Stewart, Oke, and Scott Krayenhoff (2014). To 
analyse LCZ for Tehran, three study periods (1994, 2007 and 2020) are 
considered, and the transformation of different classes established over 
these periods (Fig. 1). 

Table 1 
Selected indices for analysis of extreme temperature in Iran (after Rahimzadeh, 
Asgari, & Fattahi, 2009).  

index Definition Unit 

SU25 Summer days: Annual count when TX (daily maximum) >25 ◦C Days 
TX90p Warm days: Percentage of days when TX >90th percentile Days 
TN90p Warm nights: Percentage of days when TN (daily minimum) 

>90th percentile 
Days 

TX10p Cool days: Percentage of days when TX <10th percentile Days 
TN10p Cool nights: Percentage of days when TN <10th percentile Days 
TM95p Percentage of days when TM (mean daily) >90th percentile Days  
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3.3. Remote sensing data analysis for establishing Tehran’s urban heat 
island 

To establish an UHI, station-based air temperature data are required, 
for which Modis (Moderate Resolution Imaging Spectroradiometer) 
Terra satellite (originally known as EOS AM-1) data were used as 8-day 
composite images. The advantage of applying 8-day rather than daily 
data, is that these images have less cloud cover and thus least amount of 
lost information in each frame. Modis, with code MOD11A2, was pro
grammed and coded from Google EarthEngine website of Terra satellite 
images. This product (MOD11A2) is a temperature indicator with a 
spatial resolution of 1000 m and time-frame of 8 accumulated days, 
covering the period of 20 March to 20 April for each year from 2000 to 
2020. To complete and implement a spatial analysis of temperature, the 
Spatial Statistics Tools section of Mapping Clusters subset (Getis-Ord Gi) 
Hot Spot Analysis was used in the Arc GIS software. 

Hot Spot Analysis entails calculating the Getis-Ord G∗
i statistic for air 

temperature in context with neighbouring cell temperatures. The 
G∗

i value is a z-score indicating where high or low values are clustered. 
For a hot spot to be statistically significant, a given location will have a 
high value, and is surrounded by high values. The Getis-Ord statistic is 
calculated according to the formula (ESRI, 2018): 

G∗
i =

∑ n
j = 1 Wi,j − x

∑ n
j = 1 Wi,j

s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n−
∑ n

j = 1 W
2
i, j −

(
∑ n

j = 1 Wi,j

)2

n− 1

√
√
√
√

(1) 

Where i is the resultant G∗
i statistics (z-scores and p- values) for pixel i, 

xj is the LST value for pixel j, wi,j is the spatial weight between pixel i 
and neighbouring pixel j, n is equal to the total number of pixels, and X 
and S are mean and variance: 

X =

∑n
j=1xj

n
(2)  

and 

S =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
j=1x2

j

n

√

−
(

X
)2

(3) 

The G∗
i statistic (z-score) output represents the statistical significance 

of clustering for a specified distance (ESRI, 2018). The z-score was then 
compared with a range of values entailing seven confidence levels 
(Table 3): -0.01 (values < -2.58); -0.05 (values ranging from -2.58 to 
-1.96); -0.1 (values ranging from -1.96 to -1.65); 0 (values ranging from 
-1.65 to1.65); 0.1 (values ranging from 1.65 to 1.96); 0.05 (values 
ranging from 1.96 to 2.58); and 0.01 (values > 2.98). The seven levels 
correspond to seven classes that LST values were assigned to. These are 
most important for analysing “very cold spots” and “very hot spots”, 
which define areas with extreme values. 

The MOD11A2 V6 product provides an average 8-day land surface 
temperature (LST) in a 1200 × 1200 km grid. Each pixel value in 
MOD11A2 is a simple average of all the corresponding MOD11A1 LST 
pixels collected over the given 8-day period. The 8-day compositing 
period was chosen, given that double this period represents the exact 
ground track repeat period of the Terra and Aqua platforms. Along with 
both the day- and night-time surface temperature bands and their 
quality indicator (QC) layers, are also MODIS bands 31 and 32 and eight 
observation layers (https://doi.org/10.5067/MODIS/MOD11A2.006). 
The specifications for each of the images was obtained from the Google 
Earth Engine system, related to the Terra satellite Modis sensor. All 
downloaded images are for the period 20 March to 20 April for each year 
(2000–2020), with Kelvin evaluation unit, numerical range of 7500 to 
65,535, scale factor of two hundredths, pixel size of 100 m, 16-bit data 
type, and 8-day time separation. The urban heat island analysis pro
gramming can be viewed inside the Google EarthEngine website 
through the following link. 

Uhi Code.Rtf 

Table 2 
The ‘Local Climate Zone’ (LCZ) classification scheme and its 17 standard classes (after Stewart & Oke, 2012; Stewart et al., 2014).  

Table 3 
Classification based on p value and z score (Georgiana & Uritescu, 2018).  

Significance level (p value) Critical Value (z-score) Class No Class name 

-0.01 <-2.58 1 Very cold spot 
-0.05 -2.58 to -1.96 2 2 Cold spot 
-0.10 -1.96 to -1.65 3 Cool Spot 
0 0 -1.65 to 1.65 4 Not significant 
0.10 1.65 to 1.96 5 Warm spot 
0.05 1.96 to 2.58 6 Hot spot 
0.01 > 2.98 7 Very hot spot  
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https://code.earthengine.google.com/?scriptPath=users%2Fsarlire 
za839%2Fexample_1%3AThermal%20Island 

3.4. Synoptic evaluation of temperature changes at 500 and 700 hPa 
levels 

As already alluded to, UHI intensity may be affected by a variety of 
urban parameters such as transport type and volume, land use change, 
density of buildings, etc., or by atmospheric systems affecting it. To this 
end, we assess the potential role of atmospheric and synoptic systems 
controlling the UHI over Tehran. Although various synoptic indicators 
may be used to address this, the function of all indicators is to establish 
how synoptic patterns in the study area might increase or decrease 
urban temperatures. Hence, in our final product, we determine the 
variability of spatio-temporal patterns of temperature at high atmo
spheric levels. To achieve this, temperature data at two atmospheric 
levels (500 and 700 hPa) are used. Mean temperatures for the desired 
levels are established for a latitudinal range of 37.5◦ to 35◦N and lon
gitudinal range of 50.0◦ to 52.5◦E, which includes the city of Tehran and 
four additional cities selected for this study. Data and analysis are spe
cifically for the period of 20 March to 20 April each year, over the years 
1950–2020. Daily data were obtained from the NCEP/NCAR Extract site 
and mean values prepared for each period according to coding in the 
environment Grads. 

3.5. Classification and regression trees (CART) for establishing areal 
changes in the urban heat island 

Classification and regression trees (CART) is a computable algorithm 
used for data mining (Breiman, Friedman, Olshen, & Stone, 1984). 
Constructed trees assist in the prediction (regression tree) and classifi
cation (classification tree) of new observations. While classification 
trees are based on dependent variables, regression trees do not have 
predefined classes. The CART methodology includes the construction of 
maximum trees, choice of most suitable tree size and the classification or 
production of new data using the constructed tree. Here we use CART to 
predict the areal extent (hectares) of daytime UHI depicted through 
temperature of atmospheric systems at 500hPa and 700hPa levels. The 
first step involves the splitting and construction of maximum trees, 
which is based on the squared residuals minimization algorithm. 

Pruning techniques and cross-validation procedures are applied ac
cording to Timofeev (2004). By increasing tree size (i.e. tree 
complexity), misclassification errors are reduced. The complexity 
parameter (cp) was then used to select the optimal decision tree size, 
which was identified through trial and error. When the regression tree is 
constructed, it provides a specific response value to each of the new 
observations. In order to validate the modelled results, some perfor
mance criteria are required; these include: a) the Nash–Sutcliffe effi
ciency (NSE) coefficient (Nash & Sutcliffe, 1970) (Eq. (4)), b) the ratio of 
the root mean square error (RMSE) to the standard deviation of 
measured data (RSR) (Eq. (5))(Choubin et al., 2018) and c) the coeffi
cient of determination (R2). 

NSE = 1 −

∑N
i=1(Oi − Pi)

2

∑N
i=1

(
Oi − O

)2 (4)  

RSR =
RMSE

STDEVobs
=

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Oi − Pi)
2

√ ]

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
Oi − O

)2
√ ] (5) 

Where N is the number of data points, Oi and Pi are the observed and 
predicted ith values, O is the mean of the observed values. 

4. Results and discussion 

4.1. Long-term temperature changes for Tehran 

Tmean for the period 20 March to 20 April over the years 1951 to 2020 
is 14.54 ◦C (Fig. 2). The period 1960–1969 is considerably cooler (av =
12.60 ◦C) than times since (1961–2020; av = 14.74 ◦C). The most recent 
couple of decades (2000–2020) are distinctly warmest (av = 15.72 ◦C). 
For the year 2020, Tmean is 12.67 ◦C, and thus represents a significant 
negative temperature departure from the multi-decadal mean (-1.86 ◦C), 
but even more so from the mean of the last two decades (-3.00 ◦C). This 
also represents the lowest Tmean for this annual time-period since 1992 
(i.e. last 29 years). 

Mean Tmax for the period 20 March to 20 April over the years 1951 to 
2020 is 19.81 ◦C (Fig. 2). As was the case for T mean, the period 
1960–1969 is considerably cooler (av = 18.32 ◦C) than times since 

Fig. 2. Mean Tmean, Tmax and Tmin (◦C) for Tehran over the period 20 March to 20 April each year: 1951–2020.  
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(1961–2020) then (av = 19.93 ◦C). The most recent couple of decades 
(2000–2020) are distinctly warmest (av = 20.60 ◦C). This warming 
trend may in part, be attributed to urban expansion and associated 
human-induced warming factors. For the year 2020, mean Tmax is 
17.09 ◦C, and thus represents a significant negative temperature de
parture from the multi-decadal mean (-2.72 ◦C), but even more so from 

the mean of the last two decades (-3.50 ◦C). This also represents the 
lowest mean Tmax for this annual time-period since 1960 (i.e. last 60 
years). 

Mean Tmin for the period 20 March to 20 April over the years 1951 to 
2020 is 9.4 ◦C (Fig. 2). The period 1950–1980 is considerably cooler (av 
= 8.20 ◦C) than times since then (av = 10.30 ◦C). The most recent couple 

Table 4 
Mean Tmean, Tmax and Tmin ( ◦C) for five weather stations over the period 20 March to 20 April: 1994–2020.  

Mean(1991–2020) 2020 T departure 
Stations T mean T max Tmin T mean T max Tmin T mean T max Tmin 

Mehrabad 15.6 20.4 10.8 12.7 17.0 8.2 -2.9 -3.3 -2.5 
Shemiranat 13.2 18.2 8.2 10.8 15.3 6.2 -2.4 -2.8 -2.0 
Karaj 13.5 18.7 7.0 10.5 15.6 5.3 -2.9 -3.0 -1.7 
Rodehen 5.4 9.6 1.1 3.4 7.2 -0.3 -1.9 -2.4 -1.5 
Firozkoh 6.9 13.9 -0.1 5.3 11.5 -0.8 -1.5 -2.3 -0.7  

Fig. 3. Mean frequency of daily temperature threshold classes for Mehrabad weather stations over the period 20 March to 20 April. Data are for the late 20th and 
early 21st centuries, and for the year 2020. 
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of decades (2000–2020) are distinctly warmest (av = 11.00 ◦C). For the 
year 2020, the mean Tmin is 8.24 ◦C, and thus represents a significant 
negative temperature departure from the multi-decadal mean (-1.15 ◦C), 
but even more so from the mean of the last two decades (-2.72 ◦C). This 
also represents the lowest mean Tmin for this annual time-period since 
1997 (i.e. last 23 years). 

4.2. Long-term temperature changes between the five stations 

The stations of Mehrabad and Shemiranat are located in Tehran city 
centre (inner city) and thus in the core of the UHI. The stations of Karaj 
(35 km), Rodehen (52 km) and Firozkoh (128 km) are located with 
increasing distance, respectively, from the inner Tehran city periphery, 
or core of the heat island (see Fig 1a). Notably, Tmax departures for the 
period 20 March to 20 April in 2020 from the 1991–2020 reference 
period, is consistently stronger at all stations than Tmin (Table 4). In the 
context of COVID-19 related lockdown and the urban heat island, these 
diurnal temperature departures correspond with maximum decline in 
human activity during the day and to a lesser extent during the night. 
The stations of Mehrabad (-2.89 ◦C), Karaj (-2.93 ◦C) and Shemiranat 
(-2.41 ◦C) indicate strongest mean negative temperature departures in 
2020, while the two most distant stations from the city centre, namely 
Rodehen and Firozkoh, record comparatively weaker negative de
partures (-1.97 and -1.54 ◦C respectively), yet even these are significant. 
Notably, although Karaj is located 52 km beyond the inner city pe
riphery, it is also a metropolis in the neighbourhood of Tehran, affected 
by the UHI. These results thus demonstrate maximum cooling effects 
during 2020 in the most built-up and busiest sectors of Tehran, while the 
cooling anomaly diminishes in strength with distance into the more 
outlying parts of the city where the heat island is less pronounced. 

4.3. Frequency classes for daily mean temperature 

Here we present daily temperature threshold classes related to the 
peak (frequency) of daily mean temperatures for each decade of the 
study (Fig 3). Seven threshold classes for daily mean temperatures 
during the period 20 March to 20 April each year, are represented as 
follows: class 1 =<0 ◦C, class 2 = 0.1 to 5 ◦C, class 3 = 5.1 to 10 ◦C, class 
4 = 10.1 to 15 ◦C, class 5 = 15.1 to 20 ◦C, class 6 = 20.1 to 25 ◦C, and 
class 7 =>25.1 ◦C. Mean decadal values, as also those for the year 2020, 
are calculated and plotted (Fig. 3). 

Two patterns of daily temperature threshold class occurrences are 

observed for different decades. The first pattern is from the 1950s to the 
1970s, during which time the maximum frequency (peak) of daily mean 
temperature occurrence belongs to the fourth class (i.e. temperature 
threshold of 10.1 to 15 ◦C) and follows a normal distribution (Fig. 3). 
However, from the 1980s to 2010s, the peak (frequency) shifted to the 
fifth class (i.e. temperature threshold of 15.1 to 20 ◦C) and is negatively 
skewed. This seems a product of global/regional warming. Notably, 
during 2020, the peak (frequency) shifts back to the fourth class, as was 
the case during the 1970s and earlier, which is in strong contrast to 
outputs during the last two decades in particular. In fact, the class fre
quency distribution for 2020 is most closely aligned to that for the 1950s 
and 1960s. 

For most years during the last two decades, the highest frequency of 
daily Tmean is situated in the fifth class with a temperature threshold of 
15.1 to 20.0 ◦C. Years with a maximum frequency (19 events each) of 
daily Tmean in the fifth class include 2010, 2013 and 2016. In contrast, 
only three years have their highest frequency of daily Tmean in the fourth 
class with a temperature threshold of 10.1 to 15.0 ◦C; namely 2003, 

Table 5 
Frequency of temperature occurrence for different temperature classes.  

Number of Classes 1 2 3 4 5 6 7 

class of Temperature(◦C) <0 0.1–5 5.1–10 10.1–15 15.1–20 20.1–25 <25 
2000 0 0 0 5 15 11 1 
2001 0 0 1 2 17 12 0 
2002 0 0 4 12 15 1 0 
2003 0 0 6 14 6 6 0 
2004 0 1 4 10 12 5 0 
2005 0 1 6 8 12 5 0 
2006 0 0 0 11 16 5 0 
2007 0 0 8 10 12 2 0 
2008 0 0 0 1 18 13 0 
2009 0 0 4 20 8 0 0 
2010 0 0 4 8 19 1 0 
2011 0 0 1 10 18 3 0 
2012 0 0 1 12 15 4 0 
2013 0 0 0 7 19 6 0 
2014 0 0 7 6 14 5 0 
2015 0 0 2 9 18 3 0 
2016 0 0 3 10 19 0 0 
2017 0 1 5 8 15 3 0 
2018 0 0 2 6 17 7 0 
2019 0 0 3 13 15 1 0 
2020 0 1 3 21 7 0 0  

Table 6 
Threshold and frequency of temperature extreme indicators in Tehran over the 
last two decades.  

Years SU25 
(days) 

TX90p 
(C◦) 

TN90p 
(C◦) 

TX10p 
(C◦) 

TN10p 
(C◦) 

TM95p 
(C◦) 

2000 11 29.4 18.4 17.4 7.6 23.9 
2001 15 28.6 18.8 20.0 9.0 24.1 
2002 1 24.6 15.4 13.0 5.4 20.0 
2003 7 28.6 19.6 13.6 5.6 24.1 
2004 4 25.6 15.6 14.2 1.6 21.2 
2005 4 26.2 17.0 12.4 2.2 22.5 
2006 6 27.6 17.8 18.2 7.0 23.2 
2007 0 24.2 15.8 12.2 3.0 20.1 
2008 15 29.0 18.4 21.6 10.6 24.2 
2009 0 21.6 12.6 14.0 2.0 16.6 
2010 4 25.4 16.4 13.4 5.0 20.0 
2011 3 26.4 16.0 17.2 7.0 22.0 
2012 4 27.6 17.4 16.2 4.6 23.9 
2013 6 26.0 16.4 18.4 8.6 21.6 
2014 5 25.8 15.4 14.4 3.8 20.9 
2015 4 26.4 16.4 14.5 6.0 22.2 
2016 0 23.2 13.0 14.8 4.4 18.1 
2017 3 26.0 16.2 9.6 4.0 21.9 
2018 9 28.2 18.8 13.0 6.2 23.7 
2019 2 23.8 14.5 12.2 6.2 19.2 
2020 0 22.0 12.8 9.4 3.6 17.8  
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Table 7 
Land use changes over Tehran: 1994–2020. Class Id’s are as follows: 2= Compact midrise; 5= Open midrise; 7= Lightweight low-rise; 8= Large low-rise; 9= Sparsely 
built; 10= Heavy industry; 11= Dense trees; 12= Scattered trees; 13= Bush, scrub; 14= Low plants; 16= Bare soil or sand; 17= Water.   

1994   2007   2020  
Class_Id Area (hectares) % Class_Id Area (hectares) % Class_Id Area (hectares) % 

2 18,459 30.13 2 18,355 29.96 2 21,161 34.54 
5 9378 15.31 5 9265 15.12 5 9467 15.45 
7 18,983 30.99 7 16,403 26.77 7 11,970 19.54 
8 563 0.92 8 497 0.81 8 1012 1.65 
9 214 0.35 9 159 0.26 9 214 0.35 
10 9887 16.14 10 9755 15.92 10 13,260 21.64 
11 623 1.02 11 623 1.02 11 623 1.02 
12 1549 2.53 12 1544 2.52 12 1807 2.95 
13 82 0.13 13 82 0.13 13 82 0.13 
14 897 1.46 14 3966 6.47 14 897 1.46 
16 595 0.97 16 580 0.95 16 595 0.97 
17 34 0.06 17 34 0.06 17 176 0.29  

Fig. 4. Spatial coverage of annual: a) hot spots and b) cold spots for Tehran metropolis: 2000–2020.  
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2009 and 2020. Most years (18) during the last two decades have 
negatively skewed Tmean values (Table 5). However, 2020 contrasts 
strongly with this tendency and demonstrates a normal distribution. 

4.4. Thresholds and frequency of temperature extreme indicators 

Thresholds of temperature extreme indicators were determined for 
each year over the period 20 March to 20 April, while the frequency (in 
days) is indicated for the SU25 index (Table 6). Highest occurrences (15 
days) for the SU25 Index are recorded in 2001 and 2008. In contrast, no 
incidents are recorded in four years since 2000, one of these being 2020. 
The threshold value for the TX90p index was particularly high over the 
years 2000–2008 (av = 27.10 ◦C) and reached a maximum value 
(29.40 ◦C) in 2000. The mean index value has been somewhat lower 
over the years 2009–2020 (av = 25.20 ◦C), with lowest values recorded 
in 2009 (21.60 ◦C) and 2020 (22.0 ◦C). This pattern repeats itself for the 
TN90p index, with the period 2000–2008 recording a mean index value 
of 17.40 ◦C, while that for 2009–2020 is 15.5 ◦C. A maximum threshold 
value of 19.6 ◦C is reached in 2003. Again, lowest values are for 2009 
(12.6 ◦C) and 2020 (12.80 ◦C). Extreme cool daytime thresholds 

represented by the TX10p indicate that the lowest value in the last 20 
years was recorded in 2020 (9.40 ◦C). The extreme cool nighttime 
threshold (TN10p) in 2020 (3.60 ◦C) is also well below the mean 
(5.40 ◦C) threshold value for the last two decades and the lowest since 
2009 (2.00 ◦C). Finally, the 2020 value for the TM95p index is second 
lowest (17.80 ◦C) only to the 2009 (16.60 ◦C) value and well below the 
mean for the last two decades (21.50 ◦C). Overall, as far as extreme 
temperature threshold values are concerned during the last two decades, 
two years stand out; namely 2009 and 2020. In the case of 2009, this is 
due to unusual cold synoptic anomalies from the north. In the case of 
2020, there were no such cold synoptic anomalies and thus we attribute 
the extremes in this year to COVID-19 related lockdown factors, as 
discussed in this paper. 

4.5. Spatio-temporal land use changes over Tehran 

Outputs depicting land use change over Tehran indicate that in 1994, 
Class 7 (lightweight low-rise) covered 30.99%, Class 2 (compact mid
rise) covered 30.13%, Class 10 (heavy industry) covered 16.14% and 
Class 5 (open midrise) covered 15.31% of area. All other land use types 

Fig. 5. Spatial pattern of heat and cold islands (daytime) for the metropolis of Tehran during the period 20 March to 20 April: 2000–2020.  
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over the greater Tehran Metropol made up the remaining 7.44% of area. 
General similarities in percentage class types are recorded for the year 
2007. Although Class 7 drops to 26.77%, Classes 2, 10 and 5 remain 
similar at 29.96%, 15.92% and 15.12% respectively, while other land 
use types make up the remaining 12.22%. Possibly the most noteworthy 
change identified under ‘other land use types’ is that Class 14 (low 
plants) had increased in areal extent from 1.46% to 6.47% between 1994 
and 2007 (Table 7). By the year 2020, Class 7 had dropped further to 
cover only 19.54% of area, while in contrast Classes 2 and 10 had 
increased considerably in area to cover 34.54 and 21.64% respectively. 
Notably, the expansion of heavy industrial areas (Class 10) is likely to 
have impacted on the formation and intensification of the UHI given that 
its thermal energy outputs exceed those generated by other land use 
classes. No significant change is measured for Class 5 between 1994 
(15.31%) and 2020 (15.45%). In addition, ‘other classes’ (Classes 11 to 
14), which represent less reflective surfaces through ‘green space’, are 
better suited to reducing the UHI effect than are more reflective surfaces. 
Such classes have, however, also not changed much in percentage area 
between 1994 (5.18%) and 2020 (5.45%). 

A further class that may be very effective in reducing the UHI, but 

increase cold islands, is the presence of water (Class 17). Local water 
bodies have increased from 34 hectares in 1994 to 176 hectares in 2020, 
primarily due to the construction of the Chitgar Dam in 2013, and the 
subsequently established lake, which covers 130 hectares in extent since 
2013. Fig. 1 and Table 7 indicate the distribution of different land uses 
over Tehran during the study period 1994–2020. 

4.6. Spatio-temporal variability of Tehran’s UHI: 2000–2020 

We now focus attention on the spatio-temporal variability of Teh
ran’s UHI (both daytime and night-time) for the period 20 March to 20 
April during the last two decades (Fig. 5 and Fig. 6). For this, we use a 
simple linear regression test (i.e. parametric test) to determine trends. 
The Pearson correlation coefficient indicates the significance of such 
trends/changes, denoted by the symbol r, which varies between +1 and 
-1. 

The surface area of both ‘hot spots’ and cold spots’ are calculated for 
each year, as explained in the methods section. Most notable from these 
findings is that the year 2020 records the lowest areal extent (12,804 
hectares) of daytime hot spots since the year 2000 and is considerably 

Fig. 6. Spatial pattern of heat and cold islands (night-time) for the metropolis of Tehran during the period 20 March to 20 April: 2000–2020.  
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below the mean value for the last two decades (mean = 17,733 hect
ares), as also that for the second lowest recorded (15,303 hectares) in the 
year 2018 (Fig. 4a). Likewise, night-time records indicate the lowest UHI 
extent for 2020 (22,414 hectares), followed by the year 2000 (22,703 
hectares; mean for 2000–2020 = 24,164 hectares). This indicates that 
the UHI over Tehran had its smallest diurnal spatial extent in 2020. A 
considerable overall increasing trend in the spatial extent of Tehran’s 
UHI is recorded over the period 2000–2019 (r = 0.41; at the 95% sig
nificance level). However, if considered over the period 2000–2020, this 
trend is substantially weakened to r = 0.15, hence indicating the extent 
of 2020 as an outlier year, especially in the context of the last 20 year 
trend. 

The spatial extent of daytime cold spots during 2020 (14,131 hect
ares) is not as extensive as might have been expected, and in fact is 
marginally below the 2000–2020 mean (by 1298 hectares) (Fig. 4b). The 
spatial extent of night-time cold spots in 2020 (20,459 hectares) is also 
somewhat lower than the mean for the period 2000–2020 (21,893 
hectares). This is perhaps to be expected given the strong overall spatial 
decline in cold islands (r = -0.5) between 2000 and 2020. 

Fig. 5 presents the annual spatial distribution of daytime urban heat/ 

cold islands across the metropolis of Tehran for the period 20 March to 
20 April since 2000. Heat islands are most prominent over western and 
southern portions of the metropolis. Noteworthy is a spatially- 
continuous strip of heat island extending from the western city periph
ery to southeastern periphery over the years 2000–2017. However, 
during the last three years (2018–2020), this elongated heat island 
seems to have become fragmented in easternmost regions, and is hence 
becoming spatially-discontinuous. 

Some notable spatial differences in both heat and cold islands occur 
in 2020, which contrasts strongly to all other years. In the first instance, 
large spatially-continuous heat islands are not present in 2020, but 
rather occur as ‘small pockets’ of heat islands. This most likely reflects a 
displacement of areas which usually encounter maximum human 
movement\activity (i.e. areas of work [industrial outputs, transport 
hubs etc.], school or university attendance) to peripheral areas of resi
dence – a situation rather unique to 2020 given the COVID-19 related 
lockdown, which may account for the patchy ‘heat pockets’. Secondly, 
the northernmost sector of the metropolis in all previous years was 
characterized by a large cold island, yet for the first time since 2000, this 
part of the city experienced small pockets of heat islands. This may be 

Fig. 7. Tmax and Tmin threshold values for daytime a) heat and b) cold islands and night-time c) heat and d) cold islands during the study period 2000–2020.  
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due to this being a densely populated residential area to which many 
would have been restricted during the lock-down, and hence may be 
associated with enhanced (above normal) residential heating outputs in 
2020. Thirdly, for the first time since 2000, the entire central to eastern 
portion of the metropolis experienced a large cold island, which is 
typically a busy transport route and industrial output region of the city, 
but which would have been largely ‘shut-down’ during the period 20 
March to 20 April of 2020. In essence then, what would usually have 
been a cold island over the northern metropolis, has been displaced by a 
heat island, and instead a cold island has established itself over central- 
eastern portions of the city. 

We now present mean Tmax and Tmin for heat and cold islands as 
depicted in Fig. 7. Findings show that mean Tmax and Tmin values for 
daytime heat islands over the period 20 March to 20 April each year 
from 2000 to 2020 is 30.5 ◦C and 26.7 ◦C respectively (Fig. 7a). 
Accordingly, both mean Tmax and Tmin values are lowest (27.75 ◦C and 
23.43 ◦C respectively) for the year 2020. Similarly, mean Tmax and Tmin 
for cold islands are also lowest in 2020 (23.45 ◦C and 18.55 ◦C respec
tively), although Tmax is similar to that recorded in 2019 (23.38 ◦C) and 
Tmin similar to that in 2007 (18.51 ◦C)(Fig. 7b). Mean Tmax/Tmin values 
for cold islands are 26.30 ◦C and 22.00 ◦C respectively for the full period 

2000–2020. Night-time UHI temperature threshold values in 2020 
(mean Tmax = 11.73 ◦C; T min = 9.8 ◦C) are somewhat higher than the 
longer-term mean for the period 2000–2020 (mean Tmax = 13.58 ◦C; T 
min = 10.64 ◦C). The same applies for night-time cold islands in 2020 
(mean Tmax = 7.12 ◦C; T min = 1.95 ◦C; mean for the period 2000–2020: 
Tmax = 9.85 ◦C; T min = 3.38 ◦C). 

Six temperature classes were established for both daytime and night- 
time, based on absolute maximum and minimum values for each of these 
diurnal periods. Over the period 20 March to 20 April 2000 to 2020, 
daytime temperatures varied from a minimum of 18.5 ◦C in 2007 to a 
maximum at 34.9 ◦C in 2001. Based on these extreme outliers, we 
provide six temperature classes as shown in Fig. 8. The greatest areal 
extent (10% of Tehran) of the coldest temperature class (18 to 20.9 ◦C) 
occurred in 2007. However, the greatest extent (74.2% of Tehran) of the 
two coldest temperature classes (18 to 23.9 ◦C) occurred in 2020. 
Interestingly, although there were large areal extents of cold islands in 
years such as 2008 and 2013, these do not record any area of the city 
reaching the two coldest temperature class values. Although the largest 
extent of the UHI occurred in 2007 (21,120 hectares), no area of the city 
experienced the most extreme heat classes (30 to 35.9 ◦C) that year. 
Largest areal extent of extreme heat (30 to 35.9 ◦C) was recorded in 

Fig. 7. (continued). 
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2001 (83.8%), 2000 (64.6%) and 2006 (21.1%). The year 2020 stands 
out as the year with the lowest areal extent of urban area (only 0.5%) 
occupied by heat classes in the range of 27 to 35.9 ◦C, followed by 2019 
(1.7%) and 2003 (2.0%). 

For night-time values, on average 5.0% of Tehran experiences mean 
temperatures in the range of 0 to 5.9 ◦C during the period 20 March to 20 
April over the years 2000–2020 (Fig. 8). Noteworthy is that in the year 
2008, which recorded the lowest UHI areal extent, no area fell within 
this mean night-time 0 to 5.9 ◦C temperature class, but in fact had the 
highest mean night-time temperature (15.7 ◦C) of all years. Conversely, 
76% of years record less than 7% areal extent of cold island night-time 
mean temperatures between 0 and 5.9 ◦C, yet in the year 2007, which 
recorded one of the lowest cold island areal extents (20,454 hectares; see 
Fig. 4), about 7.4% of Tehran fell within this temperature class. In 2020, 
as much as 14.6% of Tehran’s areal extent fell within this mean nigh- 
time temperature class, which is the third most extensive area for this 
class after 2003 (19.7%) and 2009 (15.2%). Largest areal extent of 
night-time heat islands occurred in 2019 (26,079 hectares) and 2007 
(24,911 hectares), yet in both these years no area of the city recorded 

mean threshold temperatures in the warmest classes of 12 to 18 ◦C 
(Fig. 8). These patterns point to the fact that one cannot only consider 
areal extent of heat or cold islands, as in some years of greater areal 
coverage of urban heat (cold) islands, a smaller than average portion of 
the city may have experienced extreme high (low) temperature thresh
olds. Hence, the importance of considering both areal extent of heat/ 
cold islands and their thermal threshold values. 

Findings thus show that maximum variability in the areal extent of 
the UHI is during daytime (sunshine) hours, coinciding also with 
maximum economic, social and other activities in Tehran. To this end, 
results indicate substantial decreases in the areal extent of the UHI 
during 2020, particularly in areas with ‘heavy industry’ over western 
and some portions of southern Tehran. Yet at the same time, the UHI 
expanded over northern regions of the city where ‘open midrise’ and 
‘open low-rise’ residential land uses are most prominent. In addition, for 
the first time we observe the establishment of a cold island over the 
eastern half of Tehran where ‘compact midrise’ residences are the 
dominant land use. 

Fig. 8. Percentage area for different daytime and night-time temperature classes in Tehran over the period 20 March to 20 April for each year: 2000–2020.  
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4.7. Influence of atmospheric systems on Tehran’s UHI 

Using the Classification and regression trees (CART) method, we 
predict changes in the areal extent of the UHI based on temperatures at 
the 700hPa and 500hPa levels (Fig. 9). Correlation between the actual 
extent of the UHI over Tehran and that for the predicted area based on 
temperatures, indicates significant values of r = 0.63 and r = 0.82 for the 
700hPa and 500hPa levels respectively. Similarly, statistical values for 
the Nash-Sutcliffe coefficient and RSR were calculated for predicted 
values at the 700hPa (NSE = 0.67; RSR = 0.57) and 500hPa (NSE =
0.40; RSR = 0.76) levels. These results demonstrate a better perfor
mance (less error) at the 700hPa than 500hPa level. The greater distance 
between the 500hpa level and the ground level means a reduced impact 
that this temperature level (500hpa) has on the UHI. 

Fig. 10 presents patterns of temperature variability for the 500 and 

700hPa levels. Long-term average temperatures for the period 20 March 
to 20 April (1950–2020) at the 500 and 700hPa levels are -18.45 ◦C and 
-0.41 ◦C respectively. In 2020, temperatures at these levels were 
-18.40 ◦C and -0.32 ◦C respectively, thus only fractionally lower than the 
long-term average. This demonstrates near-normal upper atmospheric 
conditions during March/April of 2020, and hence no unusual anomaly 
at these levels or at the synoptic scale. When examining data for the last 
two to three decades, these indicate temperature equivalents or cooler 
conditions than those in 2020 for the years 2004, 2007, 2009, 2011, 
2012, 2013, 2016 and 2019 at the 500hPa level, and during the years 
1992, 1993, 1996, 1997, 1999, 2007, 2012 and 2019 at the 700hPa 
level. In addition, despite results showing some years with very low 
temperatures at the 500 and 700hPa levels, this has not yielded smaller 
areal extents of the UHI than that measured in 2020. For instance, if 
examined at the 500hPa level, coldest years with average temperatures 

Fig. 9. Changes in the predicted values of the areal extent (hectares) of daytime UHI coverage over Tehran versus the actual values for the period 20 March to 20 
April each year (2000 to 2020). a) Predicted areal extent of the UHI according to the 700hPa temperature level and b) Predicted areal extent of the UHI according to 
the 500hPa temperature level. 
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of -19.81 ◦C and -19.79 ◦C were recorded in 2009 and 2019, respec
tively. These same years had daytime UHI extents of 17,392.75 and 
15,511.17 hectares respectively, and all of which were greater in extent 
than that measured in 2020. Conversely, although the year 2018 was 
warmer than most at the 500hPa level (av. = -17.02 ◦C), it produced the 
smallest UHI extent (15,303 hectares). Similar scenarios occur for 
temperature patterns at the 700hPa level. Coldest temperatures at the 
700hPa level were measured in 1992 (-3.12 ◦C), 2019 (-1.90 ◦C), 1996 
(-1.63 ◦C) and 1997 (-1.47 ◦C), yet in both 1996 and 1997 the UHI extent 
was greater than that measured in 2020. Interestingly, in 2007, when 
both the 500hPa (-18.65 ◦C) and 700hPa (-1.04 ◦C) levels show cooler 
temperatures than those in 2020, the daytime UHI was most extensive in 
area. We demonstrate these examples to show that upper level condi
tions driven by regional weather patterns (synoptics) are clearly not the 
only determining factor affecting Tehran’s UHI, and that in fact ground- 
based conditions may in many years have an overriding impact to that of 
upper atmospheric (synoptic only) conditions. 

4.8. Context of climatic conditions in 2020 

We now consider the 2020 climate in context of the longer-term 
mean conditions for the March-April period, based on standard normal 
distributions. In so doing, we hypothesize a normal distribution and use 
the Kolmogorov-Smirnov test for verification (see also Alma et al., 2018; 
Ye, Hanson, Ding, Wang, & Vogel, 2018; Sharma et al., 2019). Proba
bility occurrences of six climate components (i.e. Tmean, Tmax and Tmin 
for Mehrabad station; areal extent of the UHI over Tehran; and tem
peratures at the 700hPa and 500 hPa levels for years 2000–2020) were 
established (see Table 8) (Fig. 6). 

The percentage probability occurrence of the UHI areal extent in 
2020 is 0.3% and confirms the lowest probability of occurrence for all 
years considered here (Table 8). By comparison, other years with low 
probability values include 2018 (8.89%), 2019 (10.75%) and 2017 
(23.89%). The lowest percentage probability occurrences for Tmean and 
Tmax are also recorded in 2020 (4.85% and 4.95% respectively), and by 
comparison the second lowest occurrences are measured for the year 
2009 (8.08% and 13.79% respectively). However, for Tmin, the lowest 
probability of occurrence is calculated for 2009 (4.09%), followed 
closely by 2020 (4.18%). Our assessment thus demonstrates that the 
overall lowest probability of such climate component occurrences is for 
2020, followed by 2009. Yet, probability estimates for 700hPa 

temperatures is not particularly low (28.01%) for 2020. By comparison, 
the years 2009 (2.68%), 2019 (6.81%), 2007 (11.7%) and 2012 
(17.62%) record lowest probabilities. Similarly, probability estimates 
for 500hPa temperatures in 2020 are relatively high (35.94%), with 
seven years since 2000 recording lower probabilities. This suggests that 
there was no anomalous regional climatic scenario in 2020, yet near- 
surface climatology across Tehran was anomalous. The implications of 
these results are that localized urban-based factors contributed to the 
anomalous urban climatic scenario in March-April of 2020. 

5. Discussion 

Although the COVID-19 pandemic has only been with us for 1–2 
years, there have already been a number of published articles dealing 
with (indirect) associated impacts on weather and climate, including 
likely consequences on current and future global climate (Forster, For
ster, & Evans, 2020) and implications for climate crisis management 
(Manzanedo and Manning, 2020). Studies have also identified regional 
to sub-regional climate/weather associations with COVID-19, such as 
over Iran (Ahmadi & Ramezani, 2020) and Jakarta, Indonesia (Tosepu 
et al., 2020) respectively. Most efforts have focused on climatic pa
rameters that most effectively spread the disease (Adekunle, Tella, 
Oyesiku, & Oseni, 2020; Doğan, Jebli, Shahzad, Farooq, & Shahzad, 
2020; MazharIqbal et al., 2020; Silva, MolinRibeiro, Cocco Mariani, & 
Santos Coelho, 2020). In contrast, our work has examined how the 
COVID-19 related lockdown has impacted on urban climate; namely the 
UHI. To this end, we have demonstrated that the Tehran metropolis 
experienced relatively immediate climatic responses. Our results 
demonstrate a few key important findings, which we now summarize. 

Perhaps one of the most important spatial contexts of recent climate 
warming has been in large urbanized areas. Here, heat islands have 
expanded spatially and become more intense due to the combined ef
fects of both regional climate warming and enhanced urban warming 
through increased human-induced activities and land-cover change 
(Huang & Lu, 2015; Roshan & Moghbel, 2020a; Roshan, Moghbel, & 
Attia, 2020). In the context of Tehran, results indicate that the heat is
land has expanded over recent decades, most particularly in western and 
southwestern sectors where this coincides with originally vegetated 
surfaces having changed to areas now occupied by industrial develop
ment and extensive warehouse complexes. For instance, vegetated sur
faces between 1986 and 2010 declined by 1.15km2 over the Tehran 
metropolis (Sadeghinia, Alijani, & Zeaieanfirouzabadi, 2013). In addi
tion, the portion of built-up areas expanded from 25% in 1988 to 30% in 
2010 over the wider metropolis, while ‘green spaces’ (gardens, parks, 
forest patches) declined by about 50% between 1988 and 2000 
(Bokaeain et al., 2019). 

The relatively high inter-annual variation of Tehran’s heat island 
(spatially and intensity) during the March- April period may be due to 
this being a transitional climatic period (i.e. spring) between the rela
tively cold months before, and hot months after this time. Hence, the 
dominance of either cold or warm air masses, both of which typically 
influence Tehran during this time of year, affecting such inter-annual 
variability (Azizi, Shamsipour, Mahdian mahforouzi, & Miri, 2014). 
An additional factor in recent years has been the greater ease with which 
urban inhabitants of Tehran have been able to travel out of the city 
during this annual holiday period, which is largely owing to improved 
road and transport infrastructure. This might account for some of the 
cooler anomalies and reduced heat island effects in recent years, as 
opposed to earlier years when fewer people vacated the metropolis. 

Our results demonstrate that owing to the month-long ‘shut-down’ 
from 20 March to 20 April 2020, there are notable temperature re
ductions (using a variety of parameters) over those of previous years, as 
also a reduced areal extent of the UHI across the Tehran Metropolis. We 
have also demonstrated that cooling during 2020 is not a product of 
upper atmospheric (i.e. synoptic scale) scenarios, as these indicate 
relatively normal conditions when compared to the longer-term 

Table 8 
Percentage probability occurrence of various climatic components using the 
standard normal distribution method. Probability occurrence values lower than 
those recorded in 2020 are indicated in red.  

Year UHI Tmean Tmax Tmin 700hpa 500hpa 

2000 90.66 92.65 90.32 91.15 82.12 58.32 
2001 55.17 96.41 96.41 94.84 96.08 93.06 
2002 57.93 27.76 22.97 37.07 37.07 57.14 
2003 80.78 28.1 25.14 39.36 32.28 47.21 
2004 58.32 33.72 35.94 30.15 32.28 32.64 
2005 36.32 32.64 37.45 32.28 59.48 77.64 
2006 68.08 76.42 79.95 77.04 81.06 72.91 
2007 97.06 17.36 16.85 21.77 11.7 15.63 
2008 72.24 97.67 98.64 98.03 98.57 84.85 
2009 42.47 8.08 13.79 4.09 6.81 2.44 
2010 48.01 43.64 48.41 47.21 79.1 96.08 
2011 30.85 68.08 61.03 66.64 45.62 35.57 
2012 69.85 52.39 52.79 48.8 17.62 11.12 
2013 43.64 81.86 82.12 78.52 56.36 31.92 
2014 71.57 37.83 42.86 29.12 42.47 59.1 
2015 76.73 57.14 49.2 64.43 55.96 62.93 
2016 25.46 22.36 24.2 18.14 41.29 35.94 
2017 23.89 30.85 25.46 35.57 53.98 70.19 
2018 8.89 82.89 80.78 83.15 75.8 86.86 
2019 10.75 23.27 18.41 28.43 2.68 2.56 
2020 0.3 4.85 4.95 4.18 28.1 35.94  
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(1950–2020) (Fig. 10). The strongest anomaly is for day-time temper
atures (Tmax), for which there is a recorded temperature departure of 
-2.72 ◦C in 2020, while that for Tmin = -1.15 ◦C and Tmean = -1.87 ◦C. 
Strongest temperature reductions during the day may at least in part 
reflect a more dramatic decline in human-related urban activities during 
day-time working hours (when there would be maximum production 
and movement across the city) than during the night when such activ
ities would, even under normal circumstances, have been at a reduced 
level over those during the day. However, such deviations in tempera
ture are not uniform in amplitude across the greater Tehran metropolis, 
as this is a function of land-use type (including such things as archi
tectural design of buildings), land-use density and density of people 
living in urban/sub-urban zones (Jia & Zhao, 2020; Li, Chen, Wang, & 
Gong, 2019; Roshan & Moghbel, 2020b). To this end, the current study 
has identified somewhat smaller negative temperature departures from 
the mean at more outlying areas (e.g. Rodehen and Firozkoh) than in 
central Tehran during 2020. This is likely owing to increased energy 
consumption (e.g. heating) in densely populated residential areas, as has 
also been reported for Barcelona (Spain) in response to COVID-19 
lockdown measures (Mozón-Chavarrias et al., 2021). In the case of 
Tehran, we would expect that the urban-periphery did not cool as 

substantially given out-migration from more central parts of the city to 
such periphery areas during the lockdown. Although it is beyond the 
scope of the current paper to examine these more complex 
spatio-temporal dynamical causes of urban heat generation and heat 
release, which affect urban heat budgets, they are nevertheless impor
tant considerations worthy of a more detailed future investigation. 

Finally, we consider broader urban and peri‑urban environmental 
implications. Human reaction to the COVID-19 pandemic has included 
forced lockdowns with reduced (relatively short-term) industrial out
puts and traffic volumes, fewer/smaller social gatherings, and consid
erable changes in daily habits (e.g. greater percentage of the workforce 
working from home). This has yielded largely positive environmental 
consequences including reduced greenhouse gas emissions, reduced air 
pollution, cleaner beaches/urban parks and a decline in environmental 
(urban) noise pollution (Irfan et al., 2021; Somani, Srivastava, Gum
madivalli, & Sharma, 2020; Mozón-Chavarrias et al., 2021). It is difficult 
to project the extent to which society will revert back to past habits or 
whether a so called ‘new normal’ will prevail into the foreseeable future 
as the COVID-19 pandemic eventually wanes in significance. The 
longer-term societal habits as a legacy to the pandemic will also likely 
vary geographically. However, it is likely that reduced urban and air 

Fig. 10. Temperature variability at the 500 and 700hPa levels over Tehran for the period 20 March to 20 April each year: 1950–2020. Years colder than 2020 are 
marked with a black circle. 
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traffic will prevail, at least to some extent, for the near-future. This is 
largely owing to an increased number of people permanently working 
from home, and greater emphasis being supported through on-line 
platforms of communication as opposed to face-to-face meetings. 

6. Conclusion 

A major challenge to large and rapidly expanding urban centers 
worldwide, is self-induced urban heating and rising air pollution while 
global temperatures continue to rise. This is a particular problem faced 
in regions already experiencing excessive urban heat, and has important 
implications for continued urban growth in a sustainable manner that 
considers human health (Gandini et al., 2020). Until now, solutions to 
curtail rising levels of urban air pollution and UHI has been largely 
unsuccessful in many developing nation contexts. To this end, forced 
urban ‘lockdowns’ due to the COVID-19 pandemic in such city contexts 
have yielded positive air quality outcomes and reduced the extent/ 
severity of UHI with almost immediate effect. The COVID-19 pandemic, 
through its impact on reducing human and industrial activity by an 
imposed countrywide lockdown during the annual March-April holiday 
period, had a notable overall urban cooling effect over Tehran in 2020. 
An influential factor reducing the intensity and areal extent of the UHI 
was reduced traffic load in the Tehran metropolis. This is an important 
lesson learnt as it implies that UHI can be managed (i.e. reduced in 
extent and intensity) relatively quickly, and with immediate climatic 
effects. This offers a potential management tool to reduce periods of 
severe heat related health risks when urban heat thresholds reach 
particularly dangerous levels, especially so in a rapidly warming and 
urbanizing world. 

Declaration of Competing Interest 

None. 

Acknowledgements 

The authors work was partially supported by the Golestan University 
under grant No. 992161. We thank Golestan University for their support 
in the project. We wish to thank Professors Ghanghermeh and Ranjbar 
from Golestan University and Prof. Oji from Gilan University for their 
comments and intellectual guidance, which helped improve an earlier 
version of the paper. 

References 

Adekunle, I., Tella, S. A., Oyesiku, K. O., & Oseni, Io. (2020). Spatio-temporal analysis of 
meteorological factors in abating the spread of COVID-19 in Africa. Heliyon, 6(8), 
e04749. 

Aggarwal, P. (2017). 2◦C target, India’s climate action plan and urban transport sector. 
Travel Behaviour and Society, 6, 110–116. 

Ahmadi, K., & Ramezani, M. A. (2020). Iranian emotional experience and expression 
during the COVID-19 crisis. Asia-Pacific Journal of Public Health, 32(5), 285–286. 

Ahmed, I., Ahmad, M., & Jeon, G. (2021). Social distance monitoring framework using 
deep learning architecture to control infection transmission of COVID-19 pandemic. 
Sustainable Cities and Society, 69, Article 102777. 

Ali, G., Abbas, S., Qamer, F. M., Wong, M. S., Rasul, G., Irteza, S. M., et al. (2021). 
Environmental impacts of shifts in energy, emissions, and urban heat island during 
the COVID-19 lockdown across Pakistan. Journal of Cleaner Production, 291, 25806. 

Alqasemi, A. S., Hereher, M. E., Kaplan, G., Fadhil Al-Quraishi, A. M., & Saibi, H. (2021). 
Impact of COVID-19 lockdown upon the air quality and surface urban heat island 
intensity over the United Arab Emirates. Science of the Total Environment, 767, Article 
144330. 

Ankur, M. M., & Shweta Bhati, P. S. (2020). Urban sprawl during five decadal period over 
National Capital Region of India: Impact on urban heat island and thermal comfort. 
Urban Climate, 33, Article 100647. 

Arikan, B., & Kahya, E. (2019). Homogeneity revisited: Analysis of updated precipitation 
series in Turkey. Theoretical and Applied Climatology, 135, 211–220. 

Azizi, G., Shamsipour, A., Mahdian mahforouzi, M., & Miri, M. (2014). Intensities of the 
Urban Heat Island of Tehran under the influence of atmospheric synoptic patterns. 
Journal of Environmental Sciences, 39(4), 55–66. 

Beria, P., & Lunkar, V. (2021). Presence and mobility of the population during the first 
wave of Covid-19 outbreak and lockdown in Italy. Sustainable Cities and Society, 65, 
Article 102616. 

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and 
regression trees. Monterey: Wadsworth and Brooks/Cole.  

Chakraborty, T. C., Sarangi, C., & Lee, X. (2021). Reduction in human activity can 
enhance the urban heat island: Insights from the COVID-19 lockdown. Environmental 
Research Letters, 16(50), Article 054060. 

Chen, Z., Hao, X., Zhang, X., & Chen, F. (2020). Have traffic restrictions improved air 
quality? A shock from COVID-19. Journal of Cleaner Production, 279, Article 123622. 

Choubin, B., Zehtabian, G., Azareh, A., Rafiei-Sardooi, E., Sajedi-Hosseini, F., & Kişi, Ö. 
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