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A B S T R A C T   

The test positivity (TP) rate has emerged as an important metric for gauging the illness burden due to COVID-19. 
Given the importance of COVID-19 TP rates for understanding COVID-related morbidity, researchers and cli-
nicians have become increasingly interested in comparing TP rates across countries. The statistical methods for 
performing such comparisons fall into two general categories: frequentist tests and Bayesian methods. Using data 
from Our World in Data (ourworldindata.org), we performed comparisons for two prototypical yet disparate pairs 
of countries: Bolivia versus the United States (large vs. small-to-moderate TP rates), and South Korea vs. Uruguay 
(two very small TP rates of similar magnitude). Three different statistical procedures were used: two frequentist 
tests (an asymptotic z-test and the ‘N-1’ chi-square test), and a Bayesian method for comparing two proportions 
(TP rates are proportions). Results indicated that for the case of large vs. small-to-moderate TP rates (Bolivia 
versus the United States), the frequentist and Bayesian approaches both indicated that the two rates were sub-
stantially different. When the TP rates were very small and of similar magnitude (values of 0.009 and 0.007 for 
South Korea and Uruguay, respectively), the frequentist tests indicated a highly significant contrast, despite the 
apparent trivial amount by which the two rates differ. The Bayesian method, in comparison, suggested that the 
TP rates were practically equivalent—a finding that seems more consistent with the observed data. When TP 
rates are highly similar in magnitude, frequentist tests can lead to erroneous interpretations. A Bayesian 
approach, on the other hand, can help ensure more accurate inferences and thereby avoid potential decision 
errors that could lead to costly public health and policy-related consequences.   

1. Introduction 

The test positivity (TP) rate is defined as the proportion of all tested 
individuals who test positive for a particular illness or disease. In March 
of 2020, the World Health Organization [1] emphasized the importance 
of assessing SARS-CoV-2 test positivity. From that point forward the TP 
rate has emerged as a critical metric for gauging the illness burden due 
to COVID-19. TP rates are routinely reported by news media outlets and 
by many online data repositories, such as Our World in Data (ourworl-
dindata.org). Given the importance of COVID-19 TP rates for under-
standing COVID-related morbidity between nations, researchers and 
clinicians have become increasingly interested in comparing TP rates 
across countries. If country A has a lower TP rate than country B, it 
would appear that country A has a lower disease burden. Perhaps 
country A mobilized a more effective public health campaign that 
emphasized the importance of consistent social distancing and mask use. 

But how do we determine whether country A truly has a lower TP rate 
than country B? The question is an important one that has both public 
health and policy-related ramifications. For example, if decision makers 
in country B mistakenly conclude that country A has a substantially, or 
significantly, lower TP rate, then country B might devote considerable 
resources and enact policy-related changes in order to mimic the 
apparent success of country A. Such efforts, however, will be in vain 
because in this example the TP rates for country A and country B are not 
meaningfully different. How then should a researcher or public health 
professional decide whether two TP rates are substantially different? 
One approach that is sometimes used, but is fraught with error and thus 
not recommended, is the eyeball approach (i.e., unaided human judg-
ment). In a seminal article on this topic, Dawes and colleagues [2] dis-
cussed the issue in terms of clinical versus actuarial judgment—with 
actuarial methods (statistical and mathematical models) consistently 
outperforming human clinical judgments. 
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Regarding statistical and mathematical approaches, there are several 
methods that could be used to compare TP rates (which, statistically 
speaking, are proportions bounded between 0 and 1). These methods 
can be divided into two groups: classical or frequentist methods and 
Bayesian methods. Frequentist methods for comparing two proportions, 
such as TP rates, include the asymptotic z-test [3] and the ‘N-1’ chi- 
squared test [4]. One limitation of these frequentist tests is that with 
very large sample sizes, such as those forming the basis of TP rate cal-
culations at the country-wide level, standard error estimates become 
very small which results in high statistical power and a high probability 
of rejecting the null hypothesis. When comparing two proportions, the 
null hypothesis states that there is no difference between the two values. 
However, when the sample size is very large, rejecting the null means 
that the researcher concludes there is a substantial/significant differ-
ence between the two proportions, even though the actual difference 
between the two values might be quite small. Related to the above point, 
a second limitation of frequentist methods is that results generated by 
these approaches are almost always interpreted from the perspective of 
Null Hypothesis Significance Testing (NHST). A key limitation of NHST 
is that the probability value (p-value) resulting from the test statistic 
measures the probability of the result (or one more impressive) occur-
ring, assuming that the null hypothesis is true. The p-value does not provide 
direct evidence for or against the alternative hypothesis; that is, whether 
the two proportions (TP rates) truly differ from each other under the 
assumption that the null hypothesis is false. Frequentist confidence in-
tervals don’t eliminate this concern because they, too, rely on a p-value 
based interpretation (e.g., if the interval excludes zero, the two pro-
portions are statistically significantly different). A third limitation of 
frequentist methods concerns their emphasis on dichotomous decision 
making: either the null hypothesis is supported or it is not supported. In 
contrast to frequentist-based NHST with its focus on rejecting or 
retaining the null hypothesis, it is the alternative hypothesis that is 
almost always of interest to the researcher. Unlike frequentist methods, 
Bayesian approaches directly evaluate the alternative hypothesis. 

Before outlining the merits of Bayesian analysis, let’s first briefly 
define the goal of statistical inference: the results obtained in a sample 
(or samples) are used to make inferences about the population (or 
populations) from which the sample(s) are drawn. All else being equal, 
the sample-based statistics are interpreted as the best single estimates of 
the underlying true population values (i.e., the population parameters). 
In the present study, the parameter of interest is the true difference 
between the TP rates of two different countries. In a Bayesian analysis, a 
key assumption is that because parameters are estimated with error 
(sampling error, measurement error, etc.), some parameter estimates are 
better, or more credible, than others. In Bayesian inference, the goal is to 
ascertain which parameter value, or range of values, is most credible. 
When performing Bayesian estimation, greater credibility is allocated 
toward parameter values that are consistent with the data, and less 
credibility is given to parameter values that are inconsistent with the 
data. By “data”, what is technically meant are the observed sample data 
combined with, or informed by, previous theory and/or research. In 
Bayesian estimation the previous theory and/or knowledge is codified in 
the form of a ‘prior distribution’. The prior distribution, which is a type 
of probability distribution selected by the researcher (see the Method 
section below for more details), combines with/informs the observed 
data to give rise to a posterior distribution of parameter estimates. The 
process is an iterative one: thousands of samples of parameter estimates 
are drawn and examined, using a procedure called Markov Chain Monte 
Carlo (MCMC) sampling, to identify the most credible parameters of 
interest (i.e., the values that are most likely to occur in the population of 
interest). The collection of credible parameter estimates constitutes the 
‘posterior distribution’. 

The purpose of this study was to conduct pairwise, between-country 
comparisons of COVID-19 TP rates using three different methods: the 
asymptotic z-test and the ‘N-1’ chi-squared test (both are widely used 
frequentist methods), and a Bayesian procedure for comparing 

proportions. All three methods are designed to compare statistically 
independent proportions. In this study, because the TP rates are derived 
from different countries, and because different countries contain non- 
overlapping populations, any pair of proportions (TP rates) are consid-
ered to be statistically independent. There were two important aims of 
the analyses: (1) to examine whether the results of the two methodo-
logical approaches (frequentist and Bayesian) lead to similar or different 
inferences, and (2) if the two approaches lead to different inferences, 
then which approach (frequentist or Bayesian) appears to be more ac-
curate? By “accurate” we mean which approach seems more consistent 
with the observed between-country data. 

2. Method 

The TP rate data used in this study were obtained from Our World in 
Data (ourworldindata.org), which is a freely available online data re-
pository. The database is updated frequently and the analyses performed 
in this study used the version of the database updated on September 18, 
2020. All data were processed and analyzed using IBM SPSS and R. The 
z-score calculator available at www.socscistatistics.com/tests/ztest/ 
default2.aspx was used to conduct the asymptotic z-test. To perform the 
‘N-1’ chi-squared test, the online MedCalc calculator was used (available 
at www.medcalc.org/calc/comparison_of_proportions.php). To perform 
the Bayesian analysis for comparing proportions, the prop.diff.eq R 
function written by Reza Norouzian was used (available at raw.githu-
busercontent.com/izeh/i/master/i.r). For the Bayesian analysis, the 
prior distribution that we used was a Beta (1.2, 1.2) probability distri-
bution. The two values of 1.2 are hyperparameters for the two proba-
bilities being compared (i.e., the two TP rates). The specifics about 
hyperparameters are not important for our purposes. What is important 
is that this prior distribution is commonly used when comparing pro-
portions; it is a conservative distribution that depicts most of the pro-
portions between 0 and 1 as being fairly equally likely to occur. The 
exceptions are the extreme proportions near 0 and 1, which are depicted 
as occurring notably less frequently. A picture of the Beta (1.2, 1.2) 
distribution is presented in Fig. 1. 

In a Bayesian analysis, it is important to select an appropriate prior 
distribution. As noted above, when comparing two independent pro-
portions, the Beta (1.2, 1.2) distribution is an appropriate choice 
because this distribution (a) is not biased toward (does not favor) any 
particular proportion value, and (b) assumes that in most real-world 
applications extreme proportions are, probabilistically speaking, less 
likely to occur. When researchers are conducting a study in which prior 
research has been performed and/or there is strong theory, then the past 
research or theory can inform the selection of a particular type of prior 
distribution. In contrast, for scenarios in which past research and 
compelling theory are lacking, the researcher can select what is known 
as a non-informative prior distribution. A commonly selected non- 

Fig. 1. A Beta (1.2, 1.2) probability distribution.  
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informative prior is the Uniform distribution, in which all empirical 
values are considered to be equally likely to occur. The Beta family of 
distributions is a popular choice for generating prior distributions 
because, depending on the particular hyperparameters selected, Beta 
distributions can assume the characteristics and shapes of many 
different distributions. To give some examples, Beta (1, 1) is the Uniform 
distribution, Beta (5, 5) is the Normal distribution, Beta (2, 8) is a 
Positively Skewed distribution, and Beta (8, 2) is a Negatively Skewed 
distribution. Graphs of these particular Beta distributions are presented 
in Fig. 2. 

3. Results and discussion 

Given the large number of countries in the world, there are, obvi-
ously, a multitude of pairwise comparisons that could be conducted. 
Rather than performing a large number of comparisons, it is perhaps 
instructive to examine a few prototypical yet disparate cases. One such 
case involves Bolivia and the United States; these two countries have 
large and small-to-moderate TP rates, respectively. In the 9–18-20 up-
date of the Our World in Data database (ourworldindata.org), the TP 
values for Bolivia and the United States were 0.337 and 0.045. The 
discrepancy between these two proportions is quite large. In such cases, 
where there are large between-country differences, both frequentist and 
Bayesian analyses will converge on the same conclusion: that there are 
significant/substantial differences between the two TP rates. 

A second instructive case involves the scenario in which the TP rates 
for the two countries are quite similar. An example of this scenario in-
volves the TP rates for South Korea and Uruguay: the values from the 
9–18-20 update of the Our World in Data database were 0.009 and 0.007, 
respectively. These TP rates are very close together and would appear to 
not meaningfully differ from each other. However, despite this intuition, 
the p-values from both frequentist tests were highly statistically signif-
icant (z = 9.32, p < .00001; χ2 = 86.94, p < .0001). Due to the extremely 
large sample sizes (close to 20,000 citizens in South Korea tested posi-
tive), both frequentist tests had very high statistical power and easily 
rejected the null hypothesis of equal TP rates. 

In contrast, the Bayesian procedure, which generates a distribution 
(a posterior distribution) of credible parameter estimates by analyzing 
the observed data as informed by the prior distribution, indicated that 
the two TP rates were practically equivalent. To be more precise, the 
Bayesian results showed that although the difference between the two 
proportions (TP rates) is not exactly equivalent to zero, the difference 
can be regarded as being practically equivalent to zero. This result is 
diametrically opposed to the frequentist findings and aligns more closely 
with the observation of a 0.002 difference between the two TP rates—an 
amount that appears to be quite trivial. A graph of the Bayesian results 
depicting the posterior distribution of credible parameter estimates is 
presented in Fig. 3. In actuality, this graph contains several quantities of 
interest that warrant discussion. First, the 95% credible interval is 
indicated by the solid black line on the x-axis that is situated beneath the 
posterior distribution curve. As can be seen in the graph, the interval 
ranged from − 0.16% to − 0.24% (when converted to proportions, these 
values are − 0.0016 and − 0.0024). This credible interval can be inter-
preted as follows: there is a 95% probability (or, equivalently, we are 
95% certain) that the true difference between the two proportions (the 
two TP rates) ranges between − 0.0016 and − 0.0024. The posterior 
parameter estimate, which in this case is the difference between the two 
TP rates, is labelled in Fig. 3 as Δ(p2-p1). As indicated in the graph, this 
estimate was − 0.20% (which, when converted to a proportion, equals 
− 0.002). This estimate can be interpreted as follows: there is a 95% 
probability (or, equivalently, we are 95% certain) that the true differ-
ence between the two TP rates is − 0.002. Note how straightforward it is 
to interpret the posterior parameter estimate and accompanying 95% 
credible interval. In contrast, if one performed a frequentist analysis and 
thus calculated a 95% confidence interval, the interpretation of the 
confidence interval would be as follows: if the researcher drew a very 

Fig. 2. Examples of different Beta distributions. Panel A: A Uniform [Beta (1, 
1)] distribution. Panel B: A Normal [Beta (5, 5)] distribution. Panel C: A 
Positively Skewed [Beta (2, 8)] distribution. Panel D: A Negatively Skewed 
[Beta (8, 2)] distribution. 
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large number of random samples (with replacement) from South Korea 
and Uruguay (samples of the same size as those examined in the actual 
study), and for each pair of random samples the researcher calculated 
the difference between the two TP rates and the accompanying 95% 
confidence interval, then 95% of the 95% confidence intervals would 
contain the true difference between the two TP rates. We strongly sus-
pect that most researchers would find the interpretation of frequentist 
confidence intervals to be substantially more convoluted and less illu-
minating than the interpretation of Bayesian credible intervals. By the 
way, for all of the Bayesian results discussed above, the signs of the 
values are irrelevant—whether they are positive or negative is merely a 
function of which country was labelled group 1 versus group 2 in the 
Bayesian analysis. 

There are several reasons as to why a Bayesian analysis provides 
richer information than frequentist tests. First, unlike NHST procedures, 
Bayesian approaches directly evaluate the alternative hypothesis, which 
in the present study is that the two TP rates are truly different. Second, a 
Bayesian posterior parameter estimate is accompanied by a credible 
interval, which can be interpreted as a range of values that contain, with 
a specified degree of probability, the true parameter estimate/true 
population value [5]. As mentioned in the previous paragraph, we 
believe that credible intervals are easier to interpret than frequentist 
confidence intervals. The major take home message from this study is 
that when TP rates are very similar, performing a Bayesian, rather than 
frequentist, analysis can avoid a potentially costly false positive decision 
error. Specifically, the Bayesian approach will, in all likelihood, prevent 
researchers and policy makers from mistakenly concluding that two TP 
rates of similar magnitude differ significantly from each other. 

Our emphasis throughout this article has been to compare and 
contrast Bayesian and frequentist methods for analyzing TP rates. We 
did not discuss factors that could influence a test’s actual positivity rate. 
Although a number of factors could be relevant, we believe that two in 
particular deserve mention – the sensitivity of the test and the preva-
lence of the disease in the communities where testing is administered. A 
test’s sensitivity is its ability to correctly identify those individuals 
infected or with the disease. If a test is highly sensitive, it will have a 

high accuracy rate when it comes to correctly identifying those infected 
or with the disease. Recall that a test’s positivity rate represents the 
proportion of all tested individuals who test positive for a particular 
disease. In any group of individuals who are tested, there will be a 
certain number/proportion of people who have the disease. A highly 
sensitive test will be effective at correctly identifying such disease- 
positive individuals which, relative to a less sensitive test, will result 
in a larger proportion of the individuals testing “positive” for the disease 
in question. In other words, all else being equal, a test with a higher 
(versus lower) level of sensitivity will result in a higher test positivity 
rate. Another characteristic of a test is its level of specificity, which is 
defined as a test’s ability to correctly identify those individuals without 
the infection or disease. Because a test’s positivity rate is concerned 
solely with identifying individuals who have the disease, the concept of 
specificity is less relevant for TP rates. An interesting issue to consider 
regarding the SARS-CoV-2 virus concerns the recent variants that have 
been identified. To the extent that the structures and/or biomolecular 
properties of the variants affect the sensitivities of SARS-CoV-2 tests, 
then the test positivity rates of those tests could likewise be affected 
when the variant viruses are driving infection rates. Regarding the 
second influential factor that we believe deserves mention (i.e., the 
prevalence of disease in communities being tested), Usher-Smith and 
colleagues [6] found that tests developed and evaluated in commu-
nities/settings with high disease prevalence may have lower sensitivity 
when used in lower disease prevalence settings. The lower sensitivity in 
lower disease prevalence settings implies, by extension, that test posi-
tivity rates could also be affected by cross-setting differences in disease 
prevalence. 

Finally, regarding the issue of statistical software, the Bayesian R 
function that we used in this study was easy to implement. However, 
there are other Bayesian programs for comparing two independent 
proportions, including the Fully Bayesian Evidence Synthesis online 
application (see bre-chryst.shinyapps.io/BayesApp/) and the Bayesian 
First Aid package for R (available at www.sumsar.net/blog/2014/01/ 
bayesian-first-aid/). There also are other frequentist tests (see [3] for 
alternatives), but the two that we selected are among the most 

Fig. 3. Bayesian Posterior distribution of credible parameter estimates for the difference between TP rates for South Korea and Uruguay on September 18, 2020.  
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commonly used. In conclusion, although frequentist hypothesis tests for 
comparing proportions are widely implemented, their use for comparing 
between-country TP rates, when those rates are similar in magnitude, 
can result in erroneous interpretations which could then lead to costly 
public health and policy-related consequences. 
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