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Concordance of MERFISH spatial transcriptomics with
bulk and single-cell RNA sequencing
Jonathan Liu1,* , Vanessa Tran1,*, Venkata Naga Pranathi Vemuri1, Ashley Byrne1 , Michael Borja1, Yang Joon Kim1 ,
Snigdha Agarwal1, Ruofan Wang1, Kyle Awayan1, Abhishek Murti2 , Aris Taychameekiatchai2, Bruce Wang2 ,
George Emanuel3, Jiang He3, John Haliburton1, Angela Oliveira Pisco1 , Norma F Neff1

Spatial transcriptomics extends single-cell RNA sequencing
(scRNA-seq) by providing spatial context for cell type identifi-
cation and analysis. Imaging-based spatial technologies such as
multiplexed error-robust fluorescence in situ hybridization
(MERFISH) can achieve single-cell resolution, directly mapping
single-cell identities to spatial positions. MERFISH produces a
different data type than scRNA-seq, and a technical comparison
between the two modalities is necessary to ascertain how to best
integrate them. We performed MERFISH on the mouse liver and
kidney and compared the resulting bulk and single-cell RNA
statistics with those from the Tabula Muris Senis cell atlas and
from two Visium datasets. MERFISH quantitatively reproduced the
bulk RNA-seq and scRNA-seq results with improvements in
overall dropout rates and sensitivity. Finally, we found that
MERFISH independently resolved distinct cell types and spatial
structure in both the liver and kidney. Computational integration
with the Tabula Muris Senis atlas did not enhance these results.
We conclude that MERFISH provides a quantitatively comparable
method for single-cell gene expression and can identify cell types
without the need for computational integration with scRNA-seq
atlases.
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Introduction

Named “method of the year” by Nature Methods in 2021 (Marx, 2021),
spatial transcriptomics promises to revolutionize biological in-
vestigation by allowing researchers to study cells’ transcriptomes in
their native spatial context. Recently, a plethora of various spatial
transcriptomics techniques have arisen, including platforms such
as Slide-Seq (Stickels et al, 2021), 10× Visium (Ståhl et al, 2016), Seq-
FISH (Eng et al, 2019), MERFISH (Chen et al, 2015), STARmap (Wang

et al, 2018), and GeoMX Digital Spatial Profiler (Merritt et al, 2020), to
name a few examples. These techniques all involve different
fundamental mechanisms, ranging from traditional RNA sequencing
performed on spatially barcoded chips to single-molecule fluores-
cence microscopy (Moses & Pachter, 2022).

A microscopy-based method, MERFISH provides a particularly
compelling approach to complement preexisting single-cell RNA
sequencing (scRNA-seq) techniques. Although it can only study
hundreds to a few thousands of genes, MERFISH makes up for this
limitation by offering single-molecule capability. This results in
subcellular spatial resolutions that are orders of magnitude finer
than sequencing-based spatial approaches, which are currently
limited to spatial resolutions at the length scale of a single-cell or
greater. Thus, MERFISH can deeply study a target list of genes of
interest with spatial context, drawing upon and complementing
preexisting insights offered by traditional single-cell analysis.

Because MERFISH is still relatively new, it lacks a systematic
technical comparison with RNA sequencing technologies, espe-
cially at the single-cell level. In addition, although MERFISH has
provided numerous insights in cell culture (Chen et al, 2015; Moffitt
et al, 2016a; Moffitt et al, 2016b; Xia et al, 2019), only recently has
MERFISH been successfully used in tissue samples, notably in the
mouse brain (Moffitt et al, 2018; Wang et al, 2018; Wang et al, 2020
Preprint; Zhang et al, 2020 Preprint) and fetal liver (Liu et al, 2020; Lu
et al, 2021). Evaluating its potential for further biomedical research
necessitates a technical analysis in other types of tissue. As
MERFISH relies on a limited probe panel of marker genes, it is
crucial to ascertain if MERFISH measurements are independently
sufficient and informative to conduct single-cell bioinformatics
analysis such as cell type clustering and identification or if they
need to be augmented with reference scRNA-seq atlases using
computational methods.

In this study, we used the Vizgen MERSCOPE Platform to conduct
a technical comparison between MERFISH and RNA sequencing in
mouse liver and kidney tissues. By comparing the insights from
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MERFISH with traditional bulk and scRNA-seq results from Tabula
Muris Senis (Schaum et al, 2020; Tabula Muris Consortium, 2020) and
with data from two Visium spatial transcriptomics datasets (Dixon
et al, 2022; Guilliams et al, 2022), we explored the advantages and
limitations of MERFISH for bioinformatics analysis. After estab-
lishing that the statistics exhibited by both imaging and sequencing
modalities were fairly similar, with MERFISH exhibiting superior
dropout rates and sensitivity, we examinedMERFISH’s ability to identify
different cell types. Intriguingly, MERFISH was able to distinguish
between different cell types in liver and kidney tissue with standard
single-cell bioinformatics analysis, even with only a 307-gene panel
containing marker genes split between three organs. Furthermore, we
were able to resolve clear structure in the spatial distribution of these
cell types, for example, in spatial patterning of pericentral and peri-
portal hepatocytes and endothelial cells in the mouse liver and of
podocytes in the mouse kidney.

We then integrated our MERFISH measurements with Tabula
Muris Senis using a few computational methods (Lopez et al, 2018;
Korsunsky et al, 2019; Kang et al, 2021; Xu et al, 2021) to automatically
predict cell type annotations and investigate what additional in-
sights were offered via computational integration. Interestingly,
computational integration did not enhance cell type identification,
indicating that MERFISH data alone can sufficiently resolve distinct
cell types. Although most cell types were similarly labeled by in-
tegration or manual annotation, some cell types like podocytes
were consistently misclassified by the integration methods. We
ascertained that these errors stemmed from intrinsic differences in
RNA statistics between MERFISH and scRNA-seq, rather than from
the integration methods themselves.

Results

MERFISH uses a combination of single-molecule fluorescence in
situ hybridization (smFISH) and combinatorial labeling of RNA
transcripts with optical barcoding to achieve a highly multiplexed,
single-molecule readout of transcriptional activity in fixed samples
(Chen et al, 2015). Here, we briefly describe the essence of the
technique as applied in this work.

MERFISH provides targeted labeling of RNA transcripts by using a
preselected gene panel, where each transcript is assigned a unique
binary barcode (Fig S1A). These barcodes are error robust, allowing
for reliable transcript identification even with several hundreds of
genes (Moffitt et al, 2016b). After hybridizing a sample with encoding
probes that effectively imprint the desired barcodes onto each RNA
species, the barcode is then detected by sequential rounds of
multichannel imaging, flowing in different subsets of fluorescently
labeled readout probes to hybridize with the barcode region of
encoding probes. Fluorescent spots are computationally decoded
into their respective binary barcodes wherein the presence of a
spot indicates a “1” and the absence indicates a “0” (Fig S1A). These
barcodes and their intracellular positions are combined with cell
nucleus and boundary staining, allowing for segmentation and
measurement of gene expression at single-cell resolution.

Fig S1B summarizes the experimental workflow. After designing a
gene panel barcode scheme, we hybridized encoding probes to a

tissue sample and imaged it (see the Materials andMethods section
for detailed overview of protocol). The resulting raw images con-
tained the necessary information to decode RNA transcript counts.
Staining with a combination of DAPI and membrane protein anti-
bodies produced a fluorescent readout on cell nuclei and
boundaries. Using the MERlin image analysis and cellpose seg-
mentation packages (Emanuel et al, 2020; Stringer et al, 2021), these
raw images were processed to obtain positions of single-RNA
transcripts and segmented geometries of individual cells, re-
spectively. These data were then post-processed to calculate more
parsimonious summary statistics, such as individual cell areas and
single-cell count matrices of each RNA species.

In this work, we investigated a 307-gene panel in the mouse liver
and kidney. The genes were selected to be differentially expressed
cell type marker genes for the mouse liver, kidney, or pancreas (see
the Materials and Methods section for more details). Fourteen
datasets were collected from the mouse liver (5), kidney (4), and
pancreas (5). Of these, all five of the pancreas samples and two of
the kidney samples did not yield enough RNA for downstream
analysis (see the Materials and Methods section and Fig S2). Fur-
thermore, one of the kidney samples only yielded enough tran-
scripts for bulk RNA analysis. In addition, only one of the liver
samples was stained for DAPI and cell boundary antibodies that
allowed for single-cell segmentation. The other four were used for
bulk RNA analysis only. Thus, the bulk RNA analysis in this study
used five liver and two kidney samples, and the single-cell RNA
analysis used one liver and one kidney sample.

Example workflow

Fig 1 shows an example of the data acquisition and image analysis
procedure for an ~1-cm2 mouse kidney tissue sample (Fig 1A).
Zoomed-in images are acquired for various fields of view (FOVs).
Each image consists of a z-stack of seven z-positions, with a space
of 0.7 μm between each z-position. Each FOV is first imaged for DAPI
and cell boundary antibody stains as shown in Fig 1B and C. Then,
multiple rounds of hybridization begin and the various smFISH
signals are acquired as shown in Fig 1D for a single bit.

From examining the presence, absence, and co-localization of
individual smFISH spots, the digital barcodes of unique RNA species
can be decoded using computational image analysis (Fig 1E, colored
points; see the Materials and Methods section for details). The cell
boundary antibody stain and DAPI channels can be used to seg-
ment and produce single-cell boundaries (Fig 1E, black). These
result in processed images containing the single-cell boundaries
and decoded transcript positions, which are then used for
downstream bioinformatics analysis.

Sample quality and RNA integrity are critical to successful
MERFISH analysis. We computed the average density of detected
RNA transcripts for each tissue and compared this number with
the RNA integrity number (RIN), a common metric for measuring
RNA quality (Schroeder et al, 2006). The two metrics correlated
quite well (see the Materials and Methods section and Fig S2), and
we discarded measurements with an RIN score lower than four. All
five liver datasets passed this margin, as well as two kidney
datasets.
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Comparison of MERFISH results with bulk RNA-seq

First, we examined noise in MERFISH measurements by comparing
bulk RNA transcript counts between technical replicates. Fig 2A and
B show total log-transformed counts of detected RNA transcripts
for each gene in the panel between two technical replicates taken
from the same tissue block in the mouse liver and kidney. Both
tissues exhibited high correlation, with R = 0.99 and R = 0.95 for the
liver and kidney, respectively. MERFISH replicates are extremely
reproducible.

Then, we compared bulk MERFISH results with bulk RNA-seq data
from Tabula Muris Senis (Schaum et al, 2020). Because the mice
used in this study were 3 mo old, we only considered those mice

from Tabula Muris Senis that were also 3 mo old. Fig 2C and D
show the total log-transformed counts per gene in the mouse
liver and kidney between the two types of technologies, with
some marker genes highlighted for illustrative purposes. Each
point represents the RNA count for a single gene, averaged
across different experimental samples for the corresponding
technology. Although the correlation was lower than between
MERFISH technical replicates, it was still apparent (R = 0.61 and
R = 0.58 for the liver and kidney, respectively), albeit slightly
lower than previous MERFISH studies in cell culture (Xia et al,
2019). Furthermore, MERFISH systematically detected more
transcripts than bulk RNA-seq, with fold-change increases of
~10× to over ~1,000×.

Figure 1. Sample multiplexed error-robust fluorescence in situ hybridization data acquisition workflow.
(A) Low-resolution image of the DAPI channel for a mouse kidney tissue sample. Red box indicates zoomed-in region displayed in B-E. (B, C) DAPI (B) and (C) cell
boundary antibody stain channels for the zoomed-in region. (D)Multiplexed error-robust fluorescence in situ hybridization signal for a single barcode bit channel in the
same zoomed-in region. (E) Positions of decodedmRNA transcripts (colorful dots) and segmented cell boundaries (black) in the same zoomed-in region after running data
through image analysis pipeline, with each color representing a unique gene species. Panels (B, C, D) show raw images with brightness and contrast levels selected for
ease of visualization.
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As an additional point of comparison, we examined bulk MER-
FISH results together with another spatial transcriptomics tech-
nology, the sequencing-based Visium assay (10x Genomics). We
used two publicly available datasets for the mouse liver (Guilliams
et al, 2022) and kidney (Dixon et al, 2022), respectively, and con-
ducted the same correlation analysis as before. Because Visium is
not a single-cell technology, we reasoned that this bulk analysis
would be the best way to compare the two. For each Visium dataset,
we created a pseudo-bulk measurement by simply summing up all
of the detected RNA in the sample and then compared these data
with the bulk MERFISH results.

Fig 2E and F show the results of this pseudo-bulk comparison for
the mouse liver and kidney, respectively, with some marker genes
highlighted. Like before, each point represents the RNA count for a

single gene, averaged across different experimental samples for
the corresponding technology. In both tissues, bulk MERFISH results
correlated well with Visium (R = 0.65 and R = 0.69 for liver and
kidney, respectively). Thus, at the bulk level, we conclude that
MERFISH quantitatively agrees with both RNA-seq and Visium
technologies.

Analysis and quality control of single-cell MERFISH results

After image acquisition, we extracted 2D segmented cell boundaries
and decoded RNA transcripts positions as shown for sample
zoomed-in views at a single z-position in Fig 3A (liver) and Fig 3E
(kidney). Using the segmented boundaries in the median z-position
(i.e., 4th of 7), we assigned transcripts to cells by treating each cell’s

Figure 2. Comparison of multiplexed error-robust fluorescence
in situ hybridization (MERFISH) data with bulk RNA-seq from
Tabula Muris Senis.
(A, B) Bulk RNA counts per gene in the mouse (A) liver and (B)
kidney between MERFISH sample replicates. (C, D) Comparison
of bulk RNA counts per gene in the mouse (C) liver and (D) kidney
between MERFISH and RNA-seq. (E, F) Comparison of bulk MERFISH
RNA counts per gene with pseudo-bulk RNA counts from Visium
in the mouse (E) liver and (F) kidney. In (C, D, E, F), counts per gene
were averaged across replicates for each technology.
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2D boundary as a cookie cutter and associating every transcript in
the whole 3D volume that lay within the boundary’s xy coordinates
with that cell. Segmentation quality was variable, with some cells
possessing segmented boundaries that appeared quite reliable
and others possessing aberrant segmented boundaries. These
discrepancies were because of low-quality cell boundary and/or
DAPI stain signals, resulting in the image analysis software con-
structing segmented boundaries in the empty spaces between cells
(Fig 3A and E, white arrows). Not all detected RNA transcripts lay
inside segmented boundaries—the percentage of transcripts as-
signable to cells was around 70% for both the liver and kidney. The
remaining 30% likely consisted of both extracellular RNA and RNA

near the peripheries of cells that lay slightly outside the segmented
boundaries.

We developed a quality control protocol to filter out these low-
quality cells. From the data, we generated distributions of single-
cell 2D areas and total counts per cell (Fig 3B, C, F, and G). We
calculated a per-cell alignment metric with the DAPI signal which
we designate as the average DAPI score. This score is the average
DAPI intensity within the xy borders of each segmented cell in the
median (i.e., fourth) z-slice (Fig 3D and H). A well-segmented cell
would intuitively have a high-average DAPI score because of good
alignment between the segmentation and the DAPI signal, whereas
a poorly segmented cell would have a lower score.

Figure 3. Quality control of single-cell multiplexed error-
robust fluorescence in situ hybridization data.
(A) Sample cropped image of mouse liver tissue with segmented
cell boundaries (white, magenta), decoded RNA transcripts (gray),
DAPI nuclear stain (blue), and cell boundary antibody stain
(green). White boundaries indicate cells that have passed the
filtering stage, whereas magenta boundaries indicate cells that
have been thrown out. (B, C, D) Histograms of (B) cell areas, (C)
RNA transcript count per cell, and (D) average DAPI per cell for the
image in (A). Magenta indicates minimum or maximum cutoff
values for filtering criteria. (E) Sample cropped image of mouse
kidney tissue. (F, G, H) Histograms of (F) cell areas, (G) RNA
transcript count per cell, and (H) average DAPI per cell for the
image in (E). White arrows in (A) and (E) indicate examples of
poor cell segmentation.
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Quality control filters were established as follows: segmented
cells that were unreasonably small or large were discarded by
establishing low-area and high-area cutoffs of 200 and 3,000 μm2 in
the distribution of cell areas (Fig 3B and F). A minimum cutoff of
total RNA transcript count per cell of 80 was established to filter out
cells with sparse statistics (Fig 3C and G). Both the mouse liver and
kidney datasets exhibited bimodality in the median average DAPI
score per cell (Fig 3D and H), and a cutoff of 400 was established to
retain cells with a high score. This allowed us to filter out seg-
mented cells that were actually composed of an empty space (Fig 3A
and E, white arrows).

This quality control procedure resulted in 34,217 liver cells and
126,547 kidney cells being retained of 83,410 and 212,090 originally

segmented cells, respectively. This corresponds to yields of 41% and
60% for the liver and kidney datasets, respectively.

Comparison of single-cell MERFISH results with scRNA-seq

Using segmented data, we constructed single-cell RNA count
matrices to compare the single-cell MERFISH results with the 3-mo
Tabula Muris Senis scRNA-seq data (Tabula Muris Consortium,
2020). First, we examined the distribution of total RNA transcript
counts per cell shown in Fig 4A and B for themouse liver and kidney.
For a proper comparison, the Tabula Muris Senis data were reduced
to a subset containing the same 307 genes as the MERFISH gene
panel. In the liver, the MERFISH distribution quantitatively agreed

Figure 4. Comparison of single-cell multiplexed error-robust
fluorescence in situ hybridization (MERFISH) data with Tabula
Muris Senis.
(A, B) Histograms of total RNA transcript count per cell in the
mouse (A) liver and (B) kidney for the gene panel, for MERFISH
(blue) and scRNA-seq (orange). (C, D)Histograms of dropout rates
per cell in the mouse (C) liver and (D) kidney for the gene panel.
(E, F) Comparison betweenMERFISH and scRNA-seq of per-gene
fraction of total cells of the whole population of each dataset that
have nonzero counts for the mouse (E) liver and (F) kidney. Here,
each dot represents a single gene. (G, H) Mean transcript count
of pancreas marker genes in the mouse (G) liver and (H) kidney,
for MERFISH (blue) and scRNA-seq (orange). A liver marker gene
(Hmgcs2) and kidney marker gene (Kcnj1) are shown for
comparison. Standard error of the mean across cells was
negligible and too small to visualize.
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with scRNA-seq (Fig 4A). In the kidney, the distributions agreed up
to total counts of ~1,000 transcripts/cell, after which the MERFISH
distribution drops to zero, whereas the scRNA-seq distribution
continues.

We hypothesize that this is because of the fact that the gene
panel contained a few highly abundant genes in the mouse liver
and kidney such as C1qc and Gpx3, respectively (see the Materials
andMethods section and Fig S3). For theminority of cells containing
extremely high numbers of transcripts (i.e., over 1,000 per cell), the
smFISH spots in the MERFISH images would be too dense because
of overcrowding of RNA molecules, preventing accurate identifi-
cation of single-RNA transcripts. Examination of single-cell distri-
butions of these abundant genes verified this hypothesis as the
distributions resulting from MERFISH agreed with those from
scRNA-seq for cells with low overall transcript counts but not for
cells with high overall transcript counts (see the Materials and
Methods section and Fig S3). This effect was more pronounced in
the kidney than in the liver, reflecting the increased discrepancy in
overall RNA count distributions in the kidney (Fig 4B).

Next, we examined the dropout rate between the technologies,
shown in Fig 4C and D. For each cell in a given tissue, this was
defined as the fraction of genes with zero counts of the whole 307-
gene panel. For both technologies, the dropout rates were high
(>0.7) because of the fact that the gene panel contained marker
genes specific for the liver, kidney, and pancreas. Nevertheless, the
relative difference in the distribution between technologies was
informative. In both the liver and kidney, although both technol-
ogies possessed cells with high dropout rates (>0.8), MERFISH
possessed a larger fraction of cells with lower dropout rates (be-
tween 0.7 and 0.8) compared with scRNA-seq. Thus, we conclude
that MERFISH results in systematically lower dropout rates than
scRNA-seq.

We then investigated whether either technology was more
sensitive than the other (Fig 4E and F). Although the previous
analysis of dropout rates quantified the number of genes detected
per cell, we now quantified the number of cells in which each gene
was detected. To do so, we calculated the fraction of cells that had
nonzero counts for each gene. If the two technologies had identical
sensitivities, then a scatter plot of this fraction for each gene
between technologies would fall on the x = y line. Bias in either
direction would indicate that one technology wasmore sensitive. In
both the liver (Fig 4E) and the kidney (Fig 4F), MERFISH systemat-
ically detected genes in higher proportions of cells than scRNA-seq.
Thus, for this gene panel, MERFISH is more sensitive than scRNA-
seq.

Finally, we investigated possible detection of false positives (i.e.,
incorrectly decoded RNA transcripts) in MERFISH. To do so, we
reasoned that the pancreas marker genes in the panel could be
used as an effective control—substantial detection of these pan-
creas genes in the MERFISH data would indicate a nontrivial false-
positive rate. Fig 4G and H show the mean transcript count of six
pancreas marker genes (Ace2, Chga, Cldn3, Bambi, Hhex, and Pcsk2)
among cells with nonzero counts in both the MERFISH and Tabula
Muris Senis datasets. The SEs of the mean were also calculated but
were too small to visualize. For comparison, a liver and kidney
marker gene (Hmgcs2 and Kcnj1, respectively) are shown as well.
The values for both MERFISH and scRNA-seq were similar for the

pancreas genes with a few exceptions likely because of expected
dropouts in scRNA-seq (Ace2, Chga, and Pcsk2), indicating that both
technologies have comparable false-positive rates. In addition, the
expression levels of Hmgcs2 were high in the liver and low in the
kidney, and the expression levels of Kcnj1 were low in the liver and
high in the kidney, as expected. There was a slight discrepancy in
the measured expression of the highly expressed Hmgcs2 tran-
script in the liver between MERFISH and scRNA-seq, probably
because of the molecular-crowding effect already discussed.
Together, these data indicated that the effective false-positive rates
were low in MERFISH and scRNA-seq.

To investigate the statistical properties of MERFISH data more
deeply, we compared the mean RNA counts for each gene between
MERFISH and scRNA-seq, across cells that possessed nonzero
counts for that gene (Fig 5A and B for the liver and kidney, re-
spectively). We only considered genes that had at least 50 cells with
nonzero counts in each dataset, to filter out genes with ambiguous
means because of low sample size. In the liver (Fig 5A), there was a
decent concordance and correlation of the means betweenMERFISH
and scRNA-seq around the x = y line (R = 0.61), whereas in the
kidney (Fig 5B), the correlation was slightly worse (R = 0.48). Fur-
thermore, in the kidney, there was less concordance—the scRNA-
seq mean RNA counts were systematically higher across genes. We
hypothesized that this was because of a combination of the
overcrowding effect mentioned earlier, which would reduce the
number of cells in MERFISH detected with high RNA counts, with
the segmentation procedure performing worse in the kidney and
potentially failing to account for RNA transcripts located further
away from cell nuclei.

scRNA-seq RNA counts are well modeled by the negative bi-
nomial distribution (Grün et al, 2014; Kharchenko et al, 2014). Al-
though this has also been demonstrated to hold for smFISH (So
et al, 2011), similar analysis is more sparse for MERFISH, although
recent results suggest that MERFISH statistics are also over-
dispersed and captured with the negative binomial distribution
(Zhao et al, 2022). We investigated this by examining the mean–
variance relationship of RNA counts for both MERFISH and scRNA-
seq for the genes shown in Fig 5A and B, again only for cells with
nonzero counts. We opted to only examine cells with nonzero
counts because MERFISH and scRNA-seq possessed different
dropout rates (Fig 4C and D). Fig 5C and D show this relationship for
the liver and kidney, respectively. As a reference, the case where
RNA counts follow a Poisson distribution (i.e., the variance equals
the mean) is shown in the black dashed line. For both the scRNA-
seq (orange dots) and MERFISH (blue dots) data, the variance is
smaller than the mean for genes with low expression and higher
than the mean for genes with high expression. Thus, both scRNA-
seq and MERFISH possess overdispersed statistics for abundant
genes. Although this is expected for scRNA-seq, these results are
novel in the case of MERFISH.

This overdispersion is well captured with the negative binomial
distribution—the insets in Fig 5C and D show the full distribution of
RNA counts for the liver and kidney marker genes Hmgcs2 and
Kcnj1, respectively (blue bars), along with fits to the negative bi-
nomial distribution (red lines). In addition, the mean–variance
relationship for both MERFISH and scRNA-seq are remarkably
similar in both the liver and kidney. Together, the data indicate that
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for our gene panel, MERFISH and scRNA-seq RNA counts exhibit
quantitatively similar RNA count statistics that are well modeled by a
negative binomial distribution, for cells possessing nonzero counts.

Single-cell and spatial analysis of MERFISH results

We explored MERFISH’s ability to resolve distinct liver cell types on
its own using the segmented single-cell results. First, we visualized
a low-dimensional embedding using UMAP (McInnes et al, 2018)
and conducted unsupervised clustering using the Leiden algorithm
(Traag et al, 2019).

With just the 307-gene panel, we observed clear separation of
clusters corresponding to various liver cell types in the UMAP plot
(Fig 6A, left). By examining the most informative genes represen-
tative of each group, we were able to assign cell type identities to
the various clusters. The three right plots in Fig 6A show expression
levels of some marker genes for periportal hepatocytes (Cyp2f2),
endothelial cells (Ptprb), and Kupffer (Clec4f) cells.

As expected, the bulk of the cells were hepatocytes. Notably, the
data were able to resolve between different subpopulations of
hepatocytes with both periportal and pericentral hepatocytes
clearly represented in the data (Fig 6A, brown and pink). We were
also able to distinguish between periportal and pericentral en-
dothelial cells (Fig 6A, gray and olive). Finally, we detected a very
small number of bile duct epithelial cells (Fig 6A, cyan; 60 cells of
34,217 total cells).

Projecting these cell type annotations onto the spatial plot of
mouse liver allowed us to observe clear spatial structure of the
different cell types (Fig 6B). In particular, the periportal and peri-
central hepatocytes and endothelial cells exhibited spatial seg-
regation via prominent maze-like patterning. Focusing on this
zonation revealed clear co-localization of periportal hepatocytes
and endothelial cells, as well as of pericentral hepatocytes and
endothelial cells (Fig 6B, inset; see the Materials and Methods
section; Fig S4). A DAPI stain of the sample is shown in Fig 6C for
reference.

To see if we could further enhance our signal quality, we inte-
grated the MERFISH liver dataset with the annotated Tabula Muris
Senis liver cell atlas (Tabula Muris Consortium, 2020) using scVI
(Lopez et al, 2018). To do so, we retained mice from the atlas that
were 3 mo old, in addition to non-hepatocyte cells from the 1-mo
dataset to increase cell diversity as the 3-mo data primarily con-
sisted of hepatocytes (see the Materials and Methods section).
Altogether, 2,321 liver cells from scRNA-seq were used. We then
subsetted these data to the same 307-gene panel as the MERFISH
data and then trained an scVI model to combine the two datasets.
Details of the analysis are given in the Materials and Methods
section, and the combined UMAP in the joint embedding is shown in
Fig S5A. Finally, we used scANVI (Xu et al, 2021) to predict cell type
labels in the MERFISH dataset from the annotations from Tabula
Muris Senis (Fig S5B). The resulting spatial plot with projected
scANVI cell type annotations (Fig 6D) qualitatively reproduced the
spatial results from the MERFISH data alone (Fig 6B).

Figure 5. Statistical analysis of single-cell multiplexed error-
robust fluorescence in situ hybridization (MERFISH) and
Tabula Muris Senis RNA count distributions.
(A, B) Comparison of mean RNA counts in MERFISH versus scRNA-
seq in mouse (A) liver and (B) kidney across cells with nonzero
counts. Each dot represents a gene, and only genes possessing at
least 50 cells with nonzero counts are shown for each tissue. The
dotted black line shows the x = y line, indicating one-to-one
concordance between MERFISH and scRNA-seq. (C, D)
Mean–variance relationship for RNA counts in MERFISH (blue) and
scRNA-seq (orange) for the mouse (A) liver and (B) kidney,
across cells with nonzero counts. Each dot represents a gene, and
only genes possessing at least 50 cells with nonzero counts are
shown for each tissue. The dotted line indicates the x = y line,
which represents the Poisson scenario where the mean equals
the variance. (C, inset) Distribution of MERFISH RNA counts across
cells with nonzero counts forHmgcs2, a liver hepatocyte marker
gene. The red line indicates the best fit to a negative binomial
distribution. (D, inset) Distribution of MERFISH RNA counts across
cells with nonzero counts for Kcnj1, a kidney loop-of-Henle cell
marker gene. Red line indicates the best fit to a negative binomial
distribution. Error bars in (A) and (B) represent the standard error
of the mean.
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Comparisons of cell type frequencies between the scRNA-seq
reference, MERFISH data, and scANVI integration are shown in Fig
6E. There was a discrepancy between scRNA-seq and MERFISH in
the frequencies of hepatocyte subpopulations, likely because the
tissue sample used here did not contain the whole liver and thus
lacked a globally representative population of hepatocytes. The
scRNA-seq reference contained other hepatocytes and endothelial
cells that were neither periportal nor pericentral. These cell types
were not readily detected in the manual annotation scheme used
for the MERFISH data. More notably, MERFISH detected substantially
fewer immune and Kupffer cells and more hepatic stellate cells
than the scRNA-seq reference, hinting at the fact that in situ hy-
bridization technologies could offer a more accurate estimate of

cell type proportions because scRNA-seq may overestimate im-
mune cell counts (Wu et al, 2019; Denisenko et al, 2020; Ding et al,
2020; Koenitzer et al, 2020; Slyper et al, 2020). In addition, bile duct
epithelial cells were not detected in the scRNA-seq reference and
thus were not predicted by scANVI. An independent integration
using Harmony and Symphony (Korsunsky et al, 2019; Kang et al,
2021) yielded similar results (see the Materials and Methods section
and Fig S6).

To directly compare the manual annotations with the predicted
annotations from scANVI, we calculated the confusion matrix of cell
annotations between the two methods. Each entry i, j in the matrix
was defined as the fraction of cells manually annotated with label i
that were predicted with label j in scANVI. Thus, perfect agreement

Figure 6. Single-cell and spatial analysis of
the multiplexed error-robust fluorescence
in situ hybridization (MERFISH) liver sample.
(A) UMAP plots of MERFISH data colored by
manually annotated clusters or by
normalized, log-transformed, and scaled
expression of example marker genes.
(B) Spatial plot of MERFISH dataset alone,
colored by manually annotated cell types in
(A). Inset highlights spatial co-localization of
periportal endothelial cells and
hepatocytes (gray and brown, respectively)
and pericentral endothelial cells and
hepatocytes (olive and pink, respectively).
(C) DAPI stain of the liver sample. White box
indicates the same inset region as in panel (C).
(D) Spatial plot of MERFISH dataset using
scANVI predicted cell type labels. Legend is
the same as in panel (B). (E) Cell type
composition for scRNA-seq and MERFISH
datasets. Each point in (A, B, D) represents a
single cell. (F) Confusion matrix of MERFISH cell
type annotations between the manual
method and scANVI predictions. The rows for
other endothelial cells and hepatocytes (“o-
EC” and “o-hep”) are blank because none of
the manual annotations were in these groups.
In addition, the row for bile duct epithelial cells
is noisy because none of the scRNA-seq
reference cells possessed this annotation.
Cell type abbreviations are as follows: “IC,”
“immune cell”; “o-EC,” “other endothelial
cell”; “KC,” “Kupffer cell”; “HSC,” “hepatic
stellate cell”; “o-hep,” “other hepatocyte”;
“PP-hep,” “periportal hepatocyte”; “PC-hep,”
“pericentral hepatocyte”; “PP-EC,” “periportal
endothelial cell”; “PC-EC,” “pericentral
endothelial cell”; “BD-EC,” “bile duct
epithelial cell.”
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would result in the diagonal elements possessing values of 1 and all
other off-diagonal elements possessing values of zero. For the
liver data, there was generally high agreement between the two
methods (Fig 6F). Because bile duct epithelial cells were not present
in the scRNA-seq reference, there was obviously no agreement
between scANVI and the manual MERFISH annotations. In addition,
the manual MERFISH annotations did not label any “other” en-
dothelial cells or hepatocytes, so those rows are blank.

We then repeated this analysis for the MERFISH kidney data. The
left panel in Fig 7A shows a UMAP plot of the MERFISH data alone
from a single tissue sample, where we could resolve distinct
clusters with the Leiden algorithm. Clusters were annotated as
before by examining the most informative genes in each cluster.
The three right plots in Fig 7A show the example marker genes Kcnj1,
Clu, and Podxl, which along with other marker genes allowed us to
detect loop-of-Henle epithelial cells, distal-convoluted-tubule

epithelial cells, and podocytes, respectively. Although the kidney
containsmanymore known cell types than the liver, we were able to
resolve broad categories of cell types, including endothelial cells,
various epithelial cell groups, and podocytes. We did not detect
fibroblasts via manual annotation; however, even in the scRNA-seq
reference, they were extremely rare (<1% of cells).

Fig 7B shows the correspondingmouse kidney spatial plot, with cell
type labels projected from this annotation process. We observed clear
stratification of the kidney into different layers—epithelial proximal
tubule cells were localized to the cortex (Fig 7B, pink); loop-of-Henle
epithelial cells were localized to the medulla (Fig 7B, red). Endothelial
cells were more uniformly distributed throughout the kidney sample
(Fig 7B, blue). Notably, we also discovered clusters of podocytes (Fig 7B,
olive), a cell type that only exists in glomeruli (Brunskill et al, 2011),
multicellular structures that exist dispersed throughout the kidney
cortex. A DAPI stain is shown for reference in Fig 7C.

Figure 7. Single-cell and spatial analysis of
multiplexed error-robust fluorescence in
situ hybridization (MERFISH) kidney sample.
(A) UMAP plots of MERFISH data colored by
manually annotated clusters or by
normalized, log-transformed, and scaled
expression of example marker genes.
(B) Spatial plot of MERFISH dataset alone,
colored by manually annotated cell types in
(A). Inset shows an example of a podocyte
cluster in the kidney cortex region (olive,
black arrow). (C) DAPI stain of kidney sample.
White box indicates the same inset region as in
panel (C). (D) Spatial plot of MERFISH
dataset using scANVI predicted cell type
labels. Black arrow indicates falsely predicted
podocytes distributed in a ring-like
structure around the medulla. Legend is the
same as in panel (B). (E) Cell type composition
for scRNA-seq and MERFISH datasets. Each
point in (A, B, D) represents a single cell.
(F) Confusion matrix of MERFISH cell type
annotations between the manual method
and scANVI predictions. Cell type
abbreviations are as follows: “EC-PT,”
“epithelial cell of proximal tubule”; “IC,”
“immune cell”; “per,” “pericyte”; “KLH-EC,”
“kidney loop-of-Henle epithelial cell”; “KCD-
EC,” “kidney collecting-duct epithelial cell”;
“KDCT-EC,” “kidney distal-convoluted-tubule
epithelial cell”; “EC,” “endothelial cell”; “pod,”
“podocyte.”
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We then again used scVI to integrate the kidney MERFISH data
with the Tabula Muris Senis kidney scRNA-seq reference atlas.
Because the reference scRNA-seq kidney data were more com-
prehensive than the liver data, we used only 3-mo-old mouse data.
2,327 kidney scRNA-seq cells were used in total. This resulted in the
joint UMAP plot shown in Fig S5C.

Using scANVI, we then predicted cell types in the MERFISH data
from the annotations in Tabula Muris Senis (Fig S5D). Although the
spatial kidney plot with predicted scANVI cell type labels exhibited
qualitatively similar spatial structure (Fig 7D) to the spatial results
from MERFISH alone (Fig 7B), it did produce some clear artifacts. For
example, podocytes only exist in spatial clusters concentrated in
glomeruli in the cortex, but the integration predicted the existence
of a large podocyte population that lay in themedulla (Fig 7D, olive).

A comparison of the relative cell type frequencies between the
scRNA-seq reference, MERFISH results, and scANVI integration is
shown in Fig 7E. The kidney sample here covered the entire organ
unlike the liver sample in Fig 6; therefore, the agreement between
MERFISH and scRNA-seq was much more quantitatively apparent
(Fig 7E, blue and green). The major differences were that MERFISH
detected more endothelial cells, loop-of-Henle epithelial cells, and
collecting-duct epithelial cells than scRNA-seq, as well as fewer
podocytes. The scANVI integration produced many more discrep-
ancies (Fig 7E, orange), such as an abnormally high podocyte and
pericyte count compared with scRNA-seq.

Examining the confusion matrix clarified these aberrations (Fig
7F). Although most cell type annotations agreed well between the
manual and scANVI annotations, both pericytes and podocytes
were poorly predicted by scANVI compared with the manual an-
notation. In particular, more podocytes were predicted by scANVI to
be endothelial cells compared with those podocytes that were
correctly labeled. Integration with Harmony and Symphony
reproduced the scVI and scANVI results, including these discrep-
ancies (Fig S6).

Fig S7 explores the basis of this mislabeling in further detail. To
summarize, for certain cell types (e.g., podocytes), the MERFISH data
are systematically different enough from the same cell types in the
scRNA-seq reference that any integration method likely would fail.
In other words, the integration performs well for matching cells with
similar gene expression profiles together, but the two dataset types
themselves are fundamentally different enough that the integra-
tion is not well posed. We refer the reader to see the Materials and
Methods section for a more detailed description of this investi-
gation and conclude that the MERFISH-alone manual annotation is
more reliable than computational integration for these cell types.

Discussion

MERFISH and other evolving spatial transcriptomic technologies
offer a paradigm shift in transcriptomic analysis by combining
subcellular spatial resolution with single-cell segmentation ability.
Although MERFISH promises to extend single-cell transcriptomic
analysis to the spatial domain, it is unclear as to what extent
MERFISH measurements are quantitatively comparable to those
from traditional RNA sequencing technologies. A technical

comparison with existing RNA sequencing data is necessary to fully
understand the similarities and differences between the two mo-
dalities. An important question is if MERFISH independently enables
cell type identification or if it requires computational integration with
more comprehensive reference scRNA-seq databases.

Here, we used MERFISH to measure the RNA profiles of 307 liver,
kidney, or pancreas cell type marker genes in the mouse liver and
kidney. By using a fixation and clearing protocol in conjunction with
an automated microfluidics setup and fluorescence microscopy, we
measured single-molecule positions of the various genes in large
(~1-cm2) sections of fresh-frozen tissue. Combining cell segmen-
tation based on membrane antibody and DAPI stains, we obtained
bulk and single-cell RNA counts (Fig 1) that were then compared
with the preexisting Tabula Muris bulk and single-cell RNA datasets.

We assessed technical noise by comparing RNA counts between
technical replicates of mouse liver and kidney samples and found
extremely high correlation between them (Fig 2A and B). Bulk
comparisons with Tabula Muris Senis and publicly available Visium
spatial transcriptomics data indicated relatively good agreement
(Fig 2C–F). MERFISH typically produced bulk RNA counts that were
several orders of magnitude higher than RNA sequencing, an im-
portant point in its favor for the measurement of sparse genes.

We then investigated the single-cell RNA counts from our
MERFISH measurements. We first developed a quality control
protocol to filter out poor cells based on metrics involving spatial
morphology, transcript counts, and alignment with DAPI nuclear
fluorescence (Fig 3). From this perspective, imaging-based tran-
scriptomics methods such as MERFISH allow for easily interpretable
quality control as these metrics can be ultimately derived from raw
images rather than from downstream quantities. The predominant
factor influencing signal quality was cell segmentation. After quality
control, about half of detected cells were filtered out from a com-
bination of low transcript count, extremal segmented cell areas, and/
or poor alignment with DAPI nuclear fluorescence. Although this
conservative filtering strengthens downstream signal quality, it also
poses the need for improved computational segmentation in the
future to fully harness the massive amounts of data contained in the
raw images. Recent methods that boost cell segmentation quality by
using information fromRNA transcript positions (Petukhov et al, 2021)
or prior knowledge of cell type–specific gene expression (Littman
et al, 2021) may further refine segmentation quality and allow for
improved construction of single-cell RNA count matrices from sub-
cellular MERFISH signals. Such advances are necessary, as not all cell
types may be equally affected by quality control—for example, more
oddly shaped cells such as fibroblasts may likely be more difficult to
segment and thus could systematically be excluded during quality
control. Improvements in protein antibody staining could also boost
segmentation quality in this regard and enable more robust de-
tection of diverse cell types.

The filtered single-cell MERFISH results were then compared
with the Tabula Muris Senis scRNA-seq database (Fig 4). We ex-
amined summary statistics in the mouse liver and kidney, starting
with the total RNA counts per cell (Fig 4A and B). For the most part,
MERFISH quantitatively reproduced the statistics from scRNA-seq.
However, for the kidney, MERFISH was unable to resolve a minority
of cells that possessed about 1,000 or more total RNA counts from
the 307-gene panel (Fig 4B).
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We hypothesized that this was because of the presence of highly
abundant genes resulting in crowding of RNA molecules, bringing
the density of fluorescent spots to a level exceeding that of the
diffraction limit of the microscope and thus obscuring the ability to
resolve them. Because MERFISH uses a barcode labeling scheme,
this would then reduce signal quality in many genes in the panel for
these highly expressing cells. Our experience recommends that
future MERFISH experiments avoid highly expressing genes in the
gene panel to ameliorate this issue. Although the gene panel design
implemented here included a filtering step based on overall bulk
RNA measurements (see the Materials and Methods section for
description), future selection criteria could incorporate total RNA
counts from single-cell reference data as well (see the Materials
and Methods section and Fig S3). We expect the dynamic range of
MERFISHmeasurements in the mouse liver and kidney to be limited
to cells that have under ~1,000 labeled transcripts overall.

We also investigated measurement sensitivity by quantifying the
number of genes measured per cell and the number of cells that
measured each gene. First, we calculated the dropout rate in the
liver and kidney, defined as the fraction of genes in the panel
possessing zero counts per single cell (Fig 4C and D). The distri-
bution of dropout rates was shifted to lower values for both the
liver and kidney compared with scRNA-seq, suggesting that MER-
FISH was more sensitive than scRNA-seq in those tissues. We then
quantified per-gene sensitivity by examining the fraction of cells
that possessed nonzero counts for each gene in the 307-gene
panel, for both MERFISH and scRNA-seq (Fig 4E and F). In both the
liver and kidney, this fraction was systematically larger for MERFISH
than for scRNA-seq, again indicating MERFISH’s increased sensi-
tivity. Taken together, these results suggest that in situ hybrid-
ization technologies like MERFISH can measure a more intrinsically
correct view of RNA statistics than a dissociative technology such as
scRNA-seq.

Next, we undertook an effective negative control by investigating
several genes in the panel that were marker genes for pancreas cell
types. Examining the mean transcript count for these genes
revealed similarly low values for both MERFISH and scRNA-seq
compared with expression levels for positive marker genes (Fig 4G
and H), indicating that MERFISH possessed low false-positive de-
tection rates at a similar level to scRNA-seq. Overall, we conclude
that MERFISH possesses quantitatively similar overall statistical
behavior to scRNA-seq, with minor discrepancies such as the dy-
namic range issue discussed above.

To more deeply investigate the single-cell statistics of MERFISH,
we examined the concordance and correlation of mean RNA counts
among cells with nonzero counts between MERFISH and scRNA-seq
(Fig 5A and B). In the liver, the concordance and correlation were
decently high, whereas in the kidney, the correlation was weaker
and scRNA-seq produced systematically higher counts (likely be-
cause of a combination of cell segmentation flaws and the over-
crowding effect mentioned earlier). Nevertheless, this quantitative
correspondence prompted us to investigate if MERFISH RNA counts
could be modeled with similar statistics as scRNA-seq. Examining
themean–variance relationship of the genes studied in Fig 5A and B
indicated that among cells with nonzero counts, MERFISH and
scRNA-seq indeed possessed similar statistics (Fig 5C and D).
Furthermore, like scRNA-seq, MERFISH RNA count distributions

were well modeled by a negative binomial distribution (Fig 5C and
D, inset). Such analysis sheds further light on questions of noise in
transcriptomic measurements (Grün et al, 2014) as the statistical
agreement between MERFISh and scRNA-seq suggest that distri-
butions such as the negative binomial actually capture true bio-
logical variability in cellular transcription rather than technical
noise because of the measurement error.

Finally, we investigated MERFISH’s ability to resolve distinct cell
types in the mouse liver and kidney and if computational inte-
gration of MERFISH data with a scRNA-seq reference atlas could
boost this resolving potential. Single-cell analysis of the MERFISH
data using UMAP and Leiden clustering indicated reasonably good
separation of cell types in both liver and kidney (Figs 6A and 7A).
These unsupervised clustering results were clean enough to enable
manual annotation of cell types based on representation of marker
genes in the panel. After projecting these single-cell annotations
onto a spatial plot, we were able to resolve clear spatial structure in
both mouse liver and kidney samples (Figs 6B and 7B). The MERFISH
data were able to distinguish between different liver hepatocyte
and endothelial cell populations, exemplified by different spatial
patterning of periportal and pericentral hepatocytes and endo-
thelial cells (Fig 6B). Notably, although canonical marker genes for
pericentral and periportal endothelial cells such as Wnt2 and Dll4
were not present in our gene panel, our MERFISH results could still
identify these cells mainly on the basis of their spatial co-
localization with the pericentral and periportal hepatocytes (Fig
6B, inset; see the Materials and Methods section; Fig S4). Thus, the
incorporation of spatial information into analysis can greatly aid in
annotation of cell types by comparing the annotations with ex-
pected spatial patterning.

Interestingly, computational integration of the MERFISH data
with the Tabula Muris Senis scRNA-seq atlas using scVI did not
noticeably improve cell type identification ability. The joint UMAP
plots for both the liver and kidney were fairly noisy, especially for
the kidney (Fig S5A and C), suggesting that MERFISH and scRNA-seq
exhibit systematically different statistics at the individual RNA
species level that hinder efficient harmonization. An additional
complicating factor is in the throughput of cells as the individual
MERFISH datasets used here possessed tens of thousands of cells,
whereas the Tabula Muris Senis possessed only a few thousand
total cells for each organ. Therefore, future investigations of this
sort of computational integration should include a nuanced ac-
counting of the imbalance in throughput between different tech-
nological modalities.

After using scANVI to predict cell type labels in the MERFISH data
from the annotations in the Tabula Muris Senis dataset, we gen-
erated spatial plots of the mouse liver and kidney with these
automatically generated labels (Figs 6D and 7D). Although the
spatial patterning in the liver was qualitatively similar to the results
from the manual annotation, the spatial results of the scANVI in-
tegration in the kidney produced a few artifacts. Direct comparison
of cell type annotations between the manual method and scANVI
indicated quantitative agreement for the liver (Fig 6F) and semi-
quantitative agreement in the kidney (Fig 7F) with some exceptions
for cell types such as podocytes. These results and discrepancies
were reproduced by integration using Harmony and Symphony (Fig
S6), suggesting that the underlying cause of the annotation
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disagreement lay in the data rather than the integration method.
Indeed, a deeper investigation into cell type RNA profile similarities
and differences between MERFISH and scRNA-seq indicated that
this was indeed the case (Fig S7). Thus, although computational
integration works for the most part, we caution researchers to also
annotate MERFISH data manually and check for potential dis-
crepancies between annotation methods.

To more quantitatively investigate MERFISH’s cell type resolving
ability with and without computational integration, we compared
cell type proportions between Tabula Muris Senis, MERFISH, and the
integrated dataset in both the mouse liver and kidney (Figs 6E and
7E). Especially for the kidney, MERFISH resulted in cell type pro-
portions that were generally closer to Tabula Muris Senis than the
integrated dataset, further highlighting MERFISH’s potential as a
standalone technology. Interestingly, MERFISH detected far fewer
immune cells than scRNA-seq in both organs (Figs 6E and 7E),
supporting the hypothesis that scRNA-seq might overestimate
immune cell counts and thus may not produce the most accurate
reflection ofminority cell types (Wu et al, 2019; Denisenko et al, 2020;
Ding et al, 2020; Koenitzer et al, 2020; Slyper et al, 2020). This was
further highlighted by the fact that MERFISH detected more hepatic
stellate cells in mouse liver compared with scRNA-seq (Fig 6E). In
combination with the increasedmeasurement sensitivity discussed
above (Fig 4C–F), our results anchor MERFISH as a technique that
offers equivalent, if not better, overall biological signal compared
with scRNA-seq. MERFISH and other spatial technologies provide a
more complete representation of tissue cell types as fragile and
rare cells may be lost in conventional tissue dissociation protocols.

We conclude that with efficient gene panel design, MERFISH
cleanly resolves cell types and spatial structure alone and that
computational integration with scRNA-seq reference datasets
provide similar signal with varying quality depending on cell type.
Although here we opted to use scVI and scANVI as well as Harmony
and Symphony, many other computational methods exist, such as
Seurat (Stuart et al, 2019), Tangram (Biancalani et al, 2021), and
Giotto (Dries et al, 2021) to name a few examples. Further work
should be undertaken to systematically compare these various
integration methods for different tissue types and spatial mea-
surement technologies, especially in light of the discovered sys-
tematic differences between MERFISH and scRNA-seq (Fig S7).

Substantial care should be taken regarding the design and in-
terpretation of the gene panel. Because of the use of a scRNA-seq
reference in creating the list of genes for the panel, the strength of
MERFISH is heavily reliant on the quality of the reference and the
method of panel construction. For example, the reference scRNA-
seq dataset should be of sufficient sequencing depth to avoid
creating a gene list based on noisy data. The method of choosing
marker genes should also be robust. Although here we used simple
differential expression analysis for picking marker genes, several
recent software packages have been released that enable more
nuanced approaches for marker gene panel creation (Aevermann
et al, 2021; Missarova et al, 2021; Chen et al, 2022).

Importantly, because of the bespoke nature of these panels,
MERFISH data are best examined in comparison to their parent
scRNA-seq references. Comparing with other scRNA-seq datasets
should be taken with caution because of the strong batch effects
between various scRNA-seq datasets. In addition, MERFISH data will

only be informative for the genes existing in the panel. Here, we
used a panel consisting only of marker genes, so investigations of
other biological effects such as cell state or metabolic activity are
not possible. For future MERFISH experiments interested in such
properties, relevant genes for study should be added to the list of
marker genes already present in the panel. Because of the limited
size of MERFISH gene panels, there hence will always be a con-
straint on the number of genes available for study, and efficient
panel design is of paramount importance. For example, a follow-up
study for the experiments here could use a single panel for each
tissue of interest, freeing up space on the panels for non-marker
genes relevant for effects such as cell cycle or state.

In light of these findings, we envision MERFISH primarily as a
targeted approach for following up on preexisting scRNA-seq
studies. Because the overall statistics of MERFISH measurements
are quantitatively comparable to those from scRNA-seq, and be-
cause MERFISH data alone appear sufficient to robustly identify cell
types and reproduce spatial structure, there appears to be no
urgent need for computational integration between the two mo-
dalities, at least in the context of cell type identification in the liver
and kidney.

Materials and Methods

Mouse tissue sample

The mice in this study were C57Black6 females and harvested at the
age of 3 mo. The tissues of interest were fresh-frozen, embedded in
an optimal cutting temperature compound, and stored at −80°C
until cryosectioning. Tissues were collected by Patrick Neuhoefer in
the Stanford Cancer Institute, Stanford Medical School. All animal
care and procedures were carried out in accordance with insti-
tutional guidelines approved by the Stanford Medical School
Committee on Animal Research.

RNA quality measurement

To investigate the relationship between MERFISH signal quality and
RNA integrity in the tissue, we measured the RNA integrity number
(RIN) (Schroeder et al, 2006) in each of our tissue samples. The
QIAGEN RNeasy Mini Kit was used to isolate RNA from tissue
samples, and the RIN score wasmeasured for each using the Agilent
TapeStation system. As a metric for MERFISH signal quality, we
calculated the transcript density, defined as the total number of
detected RNA transcripts divided by the number of FOVs imaged
using the microscope. The results of this investigation are shown in
Fig S2.

Design of gene panel

The MERFISH gene panel consisted of 307 genes, requiring 22 bits
per barcode and eight rounds of three-color hybridization. The
gene panel was designed by selecting the top 10 differentially
expressed genes in each cell type according to Tabula Muris Senis
cell atlas scRNA-seq data (Tabula Muris Consortium, 2020). Initially,
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the list included 424 genes across 19 kidney, 19 liver, and 11 pan-
creas cell types. Genes with fewer than 30 target regions per
transcript or higher than an abundance threshold of 800 FPKM
(Fragments Per Kilobase of transcript per Million mapped reads)
were removed from the list. The final 307 targetable genes pos-
sessed a total abundance of ~9,000 FPKM.

Cryosectioning, staining, and hybridization

Frozen optimal cutting temperature–embedded tissue was sec-
tioned at −15°C to a thickness of 10 μm and mounted onto a
functionalized 20-mm coverslip treated with yellow green (YG)
fluorescent microspheres. The mounted tissues were then fixed
with 4% PFA in 1× PBS, washed with 1× PBS, and stored in 70%
ethanol at 4°C for at least 1 d and no more than 1 mo before
proceeding. Next, the cell boundary was stained using the Vizgen
Cell boundary Staining Kit (Cat. no.: 10400009), a protein-based
staining reagent consisting of a Blocking Buffer Premix (PN:
20300012), a Primary Staining Mix (PN: 20300010, 0.5 mg/ml), and a
Secondary Staining Mix (PN: 20300011, 0.33 mg/ml) that can label 3
plasma membrane proteins in the cell. To perform the cell
boundary staining, samples are first incubated with blocking so-
lution supplemented with an RNase inhibitor for 1 h at room
temperature. Then the sample is incubated with Primary Staining
Solution diluted in Blocking Buffer (1:100 dilution) at room tem-
perature for 1 h. The sample is washed three times with 1× PBS,
5 min each time, and then incubated with Secondary Staining
Solution diluted in Blocking Buffer (1:33 dilution) at room tem-
perature for 1 h. After washing with 1× PBS three times, 5 min each
time, the sample is post fixed with 4% PFA at room temperature for
15 min and washed with 1× PBS. The sample was then treated with
30% formamide in 2× SSC (saline sodium citrate, formamide buffer)
before the encoding probe hybridization buffer mix (MERFISH li-
brary mix) was applied. The sample was incubated for 36–48 h in a
37°C cell culture incubator while submerged in the MERFISH library
mix.

Gel embedding and tissue clearing

After hybridization of encoding probes to mRNA transcripts was
complete, the sample was washed twice with a formamide buffer
and embedded in an acrylamide/bis-acrylamide gel. Polymeriza-
tion catalyzed by ammonium persulfate and NNN’tetramethyl-
ethylenediamine (TEMED) took ~1.5 h. Once gel formation was
confirmed, the sample was rinsed briefly with 2× SSC and then
incubated at 37°C in proteinase K–supplemented clearing solution
(2% SDS, 0.5% Triton-X 100 in 2× SSC). After 1 d, the tissue became
transparent and was ready for imaging.

Imaging

The gel-embedded and cleared sample was washed repeatedly
with 2× SSC to reduce autofluorescence from residual SDS in the gel.
Then the first set of fluorescent probes (hybridization buffer A1) was
pre-hybridized to the cell boundary. After 15 min, the sample was
incubated in Wash Buffer from the Vizgen Imaging Reagent Kit for
10 min and gently assembled into the flow cell (Bioptechs, FCS2).

The reagents (Wash buffer, Imaging Buffer, Rinse Buffer, and
Extinguishing Buffer) and hybridization buffers (up to 8) were
loaded into the fluidic system, which was controlled by a user
interface on a desktop computer. After priming the system, the flow
cell was inserted into the fluidic path and Imaging Buffer was
delivered to the sample.

Using a Nikon Eclipse Ti2 inverted microscope equipped with a
10× objective and 405-nm laser channel, a low-resolution mosaic
was constructed from the resulting DAPI signal. Then the region of
interest was selected, generating a text file containing a list of
position coordinates. This position list, along with the corre-
sponding fluidics recipe configuration file, was inputted to the
automated fluidics and imaging control program. Using a 60× oil
immersion objective, eight rounds of three-color imaging were
performed. The cell boundary and DAPI stains were imaged at seven
focal planes on the z axis for each tiled FOV. Imaging was followed
by incubation in Extinguishing Buffer, Rinse Buffer, Hybridization
Buffer (corresponding to the subsequent round of MERFISH readout
probes), Wash Buffer, and Imaging Buffer. In each round, fluores-
cent probes were imaged at seven focal planes on the z axis using
749-, 638-, and 546-nm laser illumination. In addition, a single
image of the fiducial beads was acquired at each FOV using 477-nm
illumination. The resulting raw images stack was saved in vari-
ous.dax files. As a point of reference, the raw images from a single
run of MERFISH for a ~1-cm2 tissue sample contain about 1 TB of
data.

Image analysis

To process the raw image files from the MERFISH experiments, we
used the MERlin image analysis pipeline (Emanuel et al, 2020). Here,
we briefly describe the pipeline. Initially, image stacks obtained
from different MERFISH rounds are aligned to correct for micro-
scope stage drift by maximizing their cross-correlation with fiducial
bead images. The aligned images are then passed through a high-
pass filter to remove background noise and a deconvolution
process to clarify the RNA spots in preparation for bit-calling,
that is, decoding a bit as 1 or 0 based on fluorescence detection
(Guo et al, 2019 Preprint).

Individual RNA molecule barcodes are then decoded from using
a pixel-based decoding algorithm that uses filters based on the
area and intensity. Then, an adaptive barcoding scheme is used to
correct misidentified barcodes that do not correspond to any
barcodes in the codebook. The level of correction can be set to a
user-specified final misidentification rate. Here, we set the mis-
identification rate to 5%.

Then, cells are segmented by using the information from the
nuclear DAPI and cell membrane antibody stains with the cellpose
software package (Stringer et al, 2021). The decoded RNA molecules
are partitioned into individual cells to generate single-cell RNA
count matrices. To do so, the xy segmentation from the median
z-slice was used (the 4th position out of 7). After projecting this
segmentation up and down through all z-positions, all detected
transcripts in all z-positions that lay within the xy boundaries of a
cell were assigned to that cell. Note that the whole pipeline is run
for each imaging field of view and then tiled over the entire sample
imaging area of ~1 cm2.
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Investigation of molecular crowding in MERFISH measurements

To assess the impact of molecular crowding of RNA transcripts
obscuring fluorescent signal, we reasoned that such an effect
would be most apparent in the most abundant genes in the gene
panel. Fig S3A and B show distributions of themedian count of each
gene in the MERFISH panel, calculated from cells in scRNA-seq that
registered nonzero counts for that gene. Although most genes
possess median counts fewer than 5, there are some genes with
median counts over 10. The top two most abundant genes in the
MERFISH panel from scRNA-seq were C1qc and C1qa in the mouse
liver and Gpx3 and Tmem27 in the mouse kidney.

We then hypothesized that molecular crowding should only
occur in the regime of high transcript count. Thus, for cells with high
overall numbers of transcripts, MERFISH measurements may be-
come unreliable because of the high density of fluorescent spots
making reliable single-molecule detection difficult. In contrast, for
cells with low overall numbers of transcripts, MERFISH measure-
ments should be more reliable.

To investigate this hypothesis, we examined the distribution of
detected counts per cell for these two most abundant genes in the
mouse liver and kidney, between MERFISH and scRNA-seq. Fig S3C
and D show the results, where we split the analysis by overall
transcript count. The top row shows these distributions for cells
with total transcript count over 100, whereas the bottom row shows
these distributions for cells with total transcript count under 100. In
both the liver and kidney, we notice that the MERFISH and scRNA-
seq distributions differ substantially for higher count values in cells
with over 100 total transcripts. In contrast, the distributions are
more similar in cells with under 100 total transcripts, particularly for
the kidney.

Thus, we concluded that our MERFISH measurements were
entering the molecular crowding regime, causing the quantitative
agreement in statistics between MERFISH and scRNA-seq to diverge
for cells with high overall RNA count number.

Quantifying co-localization of periportal and pericentral
endothelial cells and hepatocytes in the mouse liver

To quantify the co-localization of periportal and pericentral en-
dothelial cells and hepatocytes (Fig 6B inset), we computed the co-
occurrence probability likelihood of finding each cell type. To do so,
we calculated the cluster co-occurrence ratio R provided in the
squidpy package with the squidpy.gr.co_occurrence function (Palla
et al, 2022). Briefly, the ratio describes the probability of locating a
cell type i in a radius of size d, conditioned on the existence of a cell
type j:

RðdÞ = Pðijj; dÞ
Pði;dÞ

The ratio is computed at varying length scales d. Thus, higher
values of R correspond to higher likelihoods of co-localization and
lower values to lower likelihoods of co-localization. In the case of
spatial independence of two cell types, the ratio then takes a value
of one. The co-occurrence probability likelihood results are shown
in Fig S4.

Comparison with Tabula Muris Senis reference cell atlas

Comparisons of bulk and single-cell MERFISH results were done
with the bulk and droplet-based single-cell RNA-seq results in
Tabula Muris Senis (Schaum et al, 2020; Tabula Muris Consortium,
2020). To remove the effects of age, we subsetted both reference
datasets to mice that were 3 mo old.

Comparison with publicly available Visium dataset

Comparisons of pseudo-bulk counts between Visium and MERFISH
results were done with publicly available Visium datasets for the
mouse liver and kidney (Dixon et al, 2022; Guilliams et al, 2022). The
pseudo-bulk counts computed per each dataset were averaged
over replicates for five Visium datasets for the mouse liver. For the
mouse kidney Visium dataset, we used one sham dataset that Dixon
et al (2022) used in their study as a control (healthy mouse).

Single-cell bioinformatics analysis

Single-cell MERFISH and RNA-seq results were analyzed using
scanpy (Wolf et al, 2018). All results were preprocessed by filtering
out cells with low counts, extremal segmented areas, and low
average DAPI scores as mentioned in the main text (Fig 3). The
comparative analyses in Figs 4 and 5 used the raw counts that
resulted from the preprocessing. For the single-cell analysis in Figs
6 and 7, the data were further normalized to a total count of 10,000
transcripts per cell, log-transformed, and scaled such that each
gene possessed zero mean and unit variance across cells.

For cell type identification and annotation of MERFISH results
alone, principal components were first computed using scanpy’s
tl.pca() function with default settings. Then, neighborhood graphs
were computed using scanpy’s pp.neighbors() function. UMAP plots
and Leiden clustering were calculated using tl.umap() and tl.lei-
den(). To annotate the computed clusters, we examined the top
differentially expressed genes in each cluster using the tl.rank_
genes_groups() function and compared with known marker genes
for the various cell types.

Integration of MERFISH data with scRNA-seq reference using scVI
and scANVI

For integrated analysis with scVI and scANVI, the Tabula Muris Senis
scRNA-seq data were subsetted to retain the same 307 genes as the
MERFISH data. For the mouse liver, the 3-mo data did not possess
many non-hepatocyte cells, so we included non-hepatocyte data
from the 1-mo data to increase cell diversity. For the mouse kidney,
we used only 3-mo data. TheMERFISH and scRNA-seq datasets were
concatenated, and then we trained a joint model using scVI’s
default settings. The resulting neighborhood graph and UMAP plots
were computed on the scVI latent space. For cell type annotation
transfer, scANVI was run using 20 epochs and 100 samples per label.

The liver cell type annotations in Tabula Muris Senis were revised
after consultation with tissue experts. Furthermore, the kidney cell
type annotations were overly specific, so we coarse-grained them
into broader categories.
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Integration of MERFISH data with scRNA-seq reference using
Harmony and Symphony

To integrate MERFISH data with Tabula Muris Senis using Harmony
and Symphony, we subsetted the scRNA-seq first using the same
method mentioned above (“Integration of MERFISH data with
scRNA-seq reference using scVI and scANVI). We then used Har-
mony and Symphony on the subsetted scRNA-seq to build a ref-
erence using the function symphony::buildReference with the
following settings: 100 Harmony clusters, 100 variable genes to
choose per group, and 20 principal components. The cell type
annotations of MERFISH data were then predicted using the
functionsmapQuery with default settings and knnPredict with k = 5
neighbors.

Investigation of systematic differences between MERFISH and
scRNA-seq data

Thediscrepancies producedby both scANVI and Symphony integration
for cell types such as podocytes led us to investigate if the integration
methods were at fault or if the issue lay within the data itself. To do so,
we strove to quantify the similarity in RNA count profiles between
different cell types to see if systematic differences between MERFISH
and scRNA-seq were a possible source for the integration errors.

We reasoned that perhaps MERFISH RNA count profiles for a
certain cell type were more similar to a different cell type in the
scRNA-seq reference than for the same cell type. For example, in
our kidney data, both integration methods consistently mis-
classified podocytes as endothelial cells (Figs 7F and S7D). To
quantify the source of this error, we used the cosine similarity to
compare the similarity of MERFISH podocytes with scRNA-seq
podocytes and endothelial cells. Specifically, for each MERFISH
podocyte, we calculated a mean cosine similarity value, defined
thusly. For a given cell type pair (e.g., MERFISH podocyte versus
scRNA-seq podocyte), we calculated the cosine similarity between
each individual pair of MERFISH/scRNA-seq cells. We then averaged
across scRNA-seq cells, generating a mean cosine similarity value
for each MERFISH cell and a distribution of mean cosine similarity
values across MERFISH cells.

Fig S7A shows the distribution of mean cosine similarity values
betweenMERFISH kidney podocytes and scRNA-seq kidney podocytes
(blue) or scRNA-seq kidney endothelial cells (orange), calculated by
using the cosine similarity across all 307 genes in the panel. Sur-
prisingly, the distribution for kidney endothelial cells possesses
larger values than for podocytes, suggesting that MERFISH
podocytes may actually have more similar gene expression with
scRNA-seq kidney endothelial cells. Even if we compute the mean
cosine similarity using just the podocyte marker genes in the panel
(Wt1, Actn4, Synpo, Dag1, Foxc1, Podxl, and Mme), the MERFISH
podocytes appear just as similar to scRNA-seq kidney endothelial
cells as to scRNA-seq podocytes (Fig S7C). We note that this may
stem from technical errors such as mis-segmentation of MERFISH
podocytes or inaccurate annotation in the reference; nevertheless,
we conclude that this is themain reason for the inaccurate cell type
annotation prediction from integration.

As a control, we then compared mean cosine similarity values
between MERFISH liver periportal hepatocytes and scRNA-seq liver

periportal hepatocytes or pericentral hepatocytes (Fig S7B). These
were cells that were very accurately classified with the integration
methods (Figs 6F and S6C). After considering only marker genes (Fig
S7D), the MERFISH liver periportal hepatocytes were much more
similar to scRNA-seq liver periportal hepatocytes than to scRNA-
seq liver pericentral hepatocytes.

Data Availability

Raw MERFISH data are available for download on AWS s3 at https://
registry.opendata.aws/czb-tabula-muris-senis/spatial-transcriptomics/
MERFISH-data/. The gene panel codebook, RIN scores, FISH probe
target region sequences, and processed data including decoded
MERFISH transcript information, cell boundaries, bulk RNA statis-
tics, and single-cell RNA counts with cell type annotations are
available for download from figshare at https://figshare.com/projects/
MERFISH_mouse_comparison_study/134213 (Pisco, 2022a, 2022b, 2022c,
2022d, 2022e, 2022f, 2022g, 2022h, 2022i). A Github repository con-
taining the code needed to reproduce the figures is available at
https://github.com/czbiohub/MERFISH-mouse-comparison.

Supplementary Information

Supplementary information is available at https://doi.org/10.26508/lsa.
202201701.
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Schaum N, Lehallier B, Hahn O, Pálovics R, Hosseinzadeh S, Lee SE, Sit R, Lee
DP, Losada PM, Zardeneta ME, et al (2020) Ageing hallmarks exhibit
organ-specific temporal signatures. Nature 583: 596–602. doi:10.1038/
s41586-020-2499-y

Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M,
Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: An RNA
integrity number for assigning integrity values to RNA measurements.
BMC Mol Biol 7: 3. doi:10.1186/1471-2199-7-3

Slyper M, Porter CBM, Ashenberg O, Waldman J, Drokhlyansky E, Wakiro I,
Smillie C, Smith-Rosario G, Wu J, Dionne D, et al (2020) A single-cell
and single-nucleus RNA-seq toolbox for fresh and frozen human
tumors. Nat Med 26: 792–802. doi:10.1038/s41591-020-0844-1
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