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Abstract 

Seeking spatiotemporal patterns about how citizens interact with the urban space is critical for understanding how 
cities function. Such interactions were studied in various forms focusing on patterns of people’s presence, action, 
and transition in the urban environment, which are defined as human-urban interactions in this paper. Using human 
activity datasets that utilize mobile positioning technology for tracking the locations and movements of individuals, 
researchers developed stochastic models  to uncover preferential return behaviors and recurrent transitional activ-
ity structures in human-urban interactions. Ad-hoc heuristics and spatial clustering methods were applied to derive 
meaningful activity places in those studies. However, the lack of semantic meaning in the recorded locations makes 
it difficult to examine the details about how people interact with different activity places. In this study, we utilized 
geographic context-aware Twitter data to investigate the spatiotemporal patterns of people’s interactions with their 
activity places in different urban settings. To test consistency of  our findings, we used geo-located tweets to derive 
the activity places in Twitter users’ location histories over three major U.S. metropolitan areas: Greater Boston Area, Chi-
cago, and San Diego, where the geographic context of each location was inferred from its closest land use parcel. The 
results showed striking spatial and temporal similarities in Twitter users’ interactions with their activity places among 
the three cities. By using entropy-based predictability measures, this study not only confirmed the preferential return 
behaviors as people tend to revisit a few highly frequented places but also revealed detailed characteristics of those 
activity places.
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1  Introduction
As the world is undergoing rapid urbanization cities 
become the main human settlements. Citizens navigate 
through the landscape of urban environments for various 
types of daily activities, such as staying at home, traveling 
to work/school, and shopping at grocery stores or malls. 
Understanding the spatiotemporal characteristics of 

citizens’ interactions with the urban environments helps 
gain valuable insights into how cities function and reveal 
the city image and its elements (Lynch, 1960). The rep-
resentations of such interactions vary in different forms. 
Based on the research themes identified in the existing 
literature, we propose a new concept, namely human-
urban interaction, to encapsulate the interactions as peo-
ple’s presence (visitation), action (activity), and transition 
(mobility) in urban space. Studies on human-urban inter-
actions offer insights into the interplays between human 
activities and the geospatial settings of urban environ-
ments, which is of great importance to urban planning 
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and its applications. For example, the agglomerations of 
citizens’ visited locations are used to identify meaningful 
urban places (Ahas et al., 2010); human activity patterns 
are used to reveal spatial–temporal urban structures (S. 
Jiang et al., 2012); and human mobility patterns are used 
to characterize the roles of street networks for predict-
ing traffic flows (B. Jiang et al., 2009). Studies on detailed 
human-urban interactions rely on data sources that are 
capable of tracking individuals staying and moving across 
the urban space (Q. Huang & Wong, 2016). Owing to 
the proliferation of mobile positioning technology, many 
recent studies started to utilize GPS units (Thierry et al., 
2013; Wan & Lin, 2016), mobile phones (Gonzalez et al., 
2008), Wi-Fi (Sapiezynski et  al., 2015), and Location 
Based Social Media (Grinberg et  al., 2013; Shaw et  al., 
2016) to track the locations of individuals and use them 
as proxies to characterize human-urban interactions.

On the one hand, human behaviors in interacting with 
urban space are complex and are expected to vary in 
different spatial, temporal, and even cultural urban set-
tings (Gutiérrez-Roig et  al., 2016). For example, human 
mobility behaviors are found to play an important role 
in influencing different city growth patterns by shaping 
urban morphologies (Xu et al., 2021). On the other hand, 
existing studies on uncovering human mobility and activ-
ity patterns in the urban environment suggest that such 
behaviors can be characterized by statistical models and 
are common, if not universal, in different urban settings. 
For example, by using mobile phone location data to 
track people’s movements, Gonzalez et al. (2008) uncov-
ered that human movements in urban environments 
show a high degree of temporal and spatial regularity, 
where people tend to return to a few highly frequented 
locations. Such patterns were also observed in intra- and 
inter-city travels when using geo-located Twitter data 
(Jurdak et al., 2015; Yin & Chi, 2021). Song et al. (2010) 
characterized the patterns as preferential returns and 
developed entropy-based predictability measures to 
show human movements are highly predictable. When 
representing people’s daily movements as mobility works, 
Schneider et al., (2013a, 2013b) uncovered that 17 unique 
networks, known as mobility motifs, are sufficient to rep-
resent up to 90% of daily urban movements in different 
countries. However, as most of the models are stochas-
tic, these studies have fixated on the dimensions of the 
movements, which completely neglect the differences 
among the underlying places. Indeed, deriving the actual 
places that people interact with from their location his-
tory, known as activity places, remains a challenging task. 
Ad-hoc heuristics and spatial clustering methods were 
applied to derive meaningful places from the collections 
of locations (Pappalardo et al., 2021). However, the lack 
of semantic meaning in those locations makes it difficult 

to infer activity places beyond home and workplaces 
(Vanhoof et al., 2020).

In this connection, emerging studies have attempted 
to utilize auxiliary datasets to first infer activity places by 
enriching the semantics of the recorded locations of indi-
viduals. In particular, the land use types of the locations 
are found to be tied to different human activities, such as 
residential, workplace, school, leisure, and others (Wid-
halm et  al., 2015). For example, Widhalm et  al. (2015) 
used land use data to understand the activity types of 
detected places from mobile phone location data; Huang 
and Wong (2016) derived activity zones classified from 
urban land planning maps to characterize Twitter user 
movement flows among them; Soliman et al. (2017) inte-
grated parcel-level detailed land use maps to understand 
the frequently visited places in Twitter users’ location 
history. Further, Yin and Chi (2021) inferred the activ-
ity types of Twitter users’ visited places and studied the 
transitional activity patterns. The integration of land use 
information essentially adds geographic context to the 
recorded locations, which is an important step to contex-
tualize a person’s presence, action, and transition in the 
urban space.

However, the existing studies have focused primarily 
on the human behavior aspect of human-urban interac-
tions. As activity places can vary drastically in different 
cities in terms of their spatial distributions and organi-
zations, little is known about whether or how people’s 
interactions with their activity places vary in different 
urban settings. Therefore, this study aims to provide a 
better understanding of the activity places in people’s 
daily life by connecting the underlying spatial and tem-
poral characteristics of human interactions. Consider-
ing the availability and effectiveness of using geo-located 
Twitter data for studying human activity patterns, we 
adopted the approach developed by Yin and Chi (2021) to 
obtain people’s activity places and the associated interac-
tions in the urban environment. To ensure consistency in 
our findings, we conducted case studies over three major 
U.S. metropolitan areas from the East Coast to Midwest 
and the West Coast: Greater Boston, Chicago, and San 
Diego. In this study, we constructed the location history 
of Twitter users’ activities over the study areas using the 
geo-located tweets covering the entire year 2014, where 
the geographic context of each location was inferred 
from its closest land-use parcel. The main contribu-
tion of this study is that we examined all three aspects 
of human-urban interactions over three different cities. 
To elaborate, this study uncovered Twitter users’ visita-
tion patterns to their activity places in the urban environ-
ment; it provided a detailed picture of the characteristics 
of those most frequently visited activity places; it also 
examined Twitter users’ preferential return behaviors in 
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the three cities by quantitatively measuring the predict-
ability of Twitter users’ transitions among these activity 
places. The results revealed striking spatial and temporal 
similarities in Twitter users’ interactions with their activ-
ity places across all three cities. The entropy-based pre-
dictability measures not only reaffirmed the existence of 
preferential return behaviors that Twitter users’ transi-
tions among different activity places are highly predict-
able but also suggested that such behaviors are consistent 
across all three cities despite the different urban settings. 
This study demonstrates that geographic-context aware 
Twitter data can be a new and effective tool for urban 
planners to understand the detailed characteristics of 
people’s activity places in the urban environment and 
how people interact with their activity places, which can 
be particularly useful when other data sources are scarce 
or not even available.

2 � Background and related work
Cities are complex urban systems. A growing body of 
literature has focused on seeking spatial and temporal 
interaction patterns between human activities and the 
geospatial settings of urban environments (Bassolas et al., 
2019). Such interactions are explored in various forms 
in the existing studies but can be generally summarized 
from three interconnected aspects of human activities 
in the urban environment: (1) visitation: citizens’ pres-
ence at physical urban locations (2) activity: actions tied 
to explicit activities, and (3) mobility: transitions among 
those urban locations or activities. Therefore, in this 
study, we define the term, human-urban interaction, to 
encapsulate the interactions as people’s presence (visita-
tion), action (activity), and transition (mobility) in urban 
space. Current studies on seeking spatial and temporal 
human-urban interaction patterns are often conducted 
at the collective (e.g., focusing on the aggregated form of 
human activities in urban environments) or at the indi-
vidual level (e.g., focusing on the activity patterns of indi-
viduals) (Barbosa et al., 2018).

At the collective level, a major research theme is to 
understand the agglomeration of spatial and temporal 
distributions of human activity locations and their con-
nections with the functions or structures of urban areas 
(Jenkins et  al., 2016; Liu et  al., 2015; Sun et  al., 2015). 
Multiple types of data sources were used to track peo-
ple’s activity locations (i.e., presence) in the urban envi-
ronment. For example, mobile phone location data were 
used to uncover spatial and temporal urban structures 
based on the density of aggregated user locations (S. 
Jiang et  al., 2012; Niu et  al., 2015). Geo-located Twitter 
data were used to get a collective sense of urban places 
by examining the alignment between the spatially clus-
tered Twitter user locations and the physical urban places 

(Jenkins et al., 2016); other Location Based Social Media 
data such as Facebook check-ins were used to identify 
the urban spatial structure and urban vibrancy (T. Chen 
et al., 2019) and Foursquare check-ins were used to gen-
erate user movement flow to identify city centers (Sun 
et al., 2015). The aggregated, or spatially clustered, human 
activity locations were further utilized for applications 
in uncovering land use types and socioeconomic  fea-
tures in the urban environment, known as urban sensing 
or social sensing approaches (Calabrese et al., 2014; Liu 
et  al., 2015). Studying human-urban interactions at the 
collective level offers insights into the interplays between 
human activities and the geospatial settings of urban 
environments. However, it is still difficult to dissect the 
agglomerations as the underlying human activities vary 
drastically by individuals. For example, an agglomeration 
can be a result of a temporary gathering for a festivity 
event, or it could be a commercial district, where people’s 
visitations to and movements from it are for different 
purposes.

Existing studies on human-urban interactions at the 
individual level have mainly focused on seeking pat-
terns in individuals’ movements and activities in the 
urban environment. Conventional data sources for study-
ing human activity patterns are collected by conducting 
large-scale surveys, such as travel surveys (Fairnie et al., 
2016) and activity diaries (J. Chen et al., 2011). The data 
records often consist of information about the type, 
location, timing, duration, and sequencing of an activ-
ity (Kwan & Lee, 2003). For instance, travel diary data 
were used to (1) model individuals’ activity space (Susilo 
& Kitamura, 2005) (2) seek people’s daily mobility pat-
terns (Schönfelder & Samaga, 2003), and (3) assess envi-
ronmental exposures to individuals (Klepeis et al., 2001). 
Furthermore, the recorded activity sequence enables 
studies to examine transitions among different types of 
activities, which helps uncover the mobility motif struc-
ture in people’s daily travel networks (Schneider, Rudloff, 
et  al., 2013). However, collecting survey-based activ-
ity data is expensive and labor-intensive to reach a large 
group of people or monitor their movements for a rela-
tively long period.

Therefore, recent studies have turned to new data 
sources, where the locations of individuals are collected 
through GPS or mobile positioning technology. In par-
ticular, mobile phone location data and geo-located 
social media data are the two most commonly used data 
sources for studying human-urban interactions. The 
locations of mobile phone users are collected from Call 
Detail Records (CDR) or geolocation-enabled mobile 
applications. In comparison, the locations of social 
media users are collected when users post social media 
messages with the geolocation feature turned on or by 
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tagging a message with geolocation, such as geo-located 
tweets and check-ins. Both data sources were used to 
explore population dynamics across large spatial scales. 
For example, mobile phone location data were used for 
dynamic population mapping (Deville et  al., 2014) and 
for inferring internal migration patterns (Blumenstock, 
2012). Similar studies also use geo-located Twitter data 
for estimating migration patterns at regional, national, 
and even international scales (Hübl et al., 2017; Yin et al., 
2022; Zagheni et al., 2014). The ability to track the move-
ments of a large population has enabled studies to con-
nect human mobility with societal issues. Particularly, 
both data sources were utilized to assess the socioeco-
nomic impacts of the COVID-19 pandemic through the 
changes in human mobility patterns (Levin et  al., 2021; 
Chang et al., 2021; X. Huang et al., 2020).

A suite of human activity models was developed to 
quantitatively explain the complexity of human-urban 
interactions. Specifically, by using mobile phone location 
to track the movements of individuals, Gonzalez et  al. 
(2008) characterized the shape of individuals’ trajectories 
of movements by a single spatial probability distribution, 
which uncovered recurrent returns in people’s move-
ments in the urban space. The movement distances can 
be characterized by a truncated power-law distribution, 
which suggests the existence of far more short-distance 
movements than longer ones. Further, by treating the 
mobile phone users’ trajectories of movements as time 
series, Song et al. (2010) utilized entropy to measure the 
degree of predictability of movements among the visited 
locations, which suggested a 93% potential predictabil-
ity in user movements across the user population, also 
known as the preferential returns behaviors. Because the 
high predictability of user mobility is largely independent 
of the movement distances, the process of human move-
ments can be modeled by a set of Markov chain-based 
models (Lu et al., 2013).

2.1 � Activity location, place, and geographic context
For this study, we need to make an important distinction 
between two terms, namely activity location and activity 
place. Conceptually, the two terms are often used inter-
changeably. However, it will cause some confusion when 
dealing with different human activity datasets. For exam-
ple, a unique feature in survey-collected human activity 
datasets is that a person’s activity (e.g., home, work, or 
leisure activity) is associated with an address or a named 
place (Axhausen et al., 2002). In those scenarios, we refer 
to addresses or named places as activity places. In con-
trast, when people’s locations are represented by 2D geo-
graphical points, we refer to those locations as activity 
locations. Compared to survey-collected human activ-
ity data, an intrinsic limitation exists in most, if not all, 

data sources collected via mobile positioning technol-
ogy or GPS, that the collected locations are represented 
by simple 2D geographical points. The lack of semantic 
meaning in those locations makes it difficult to contex-
tualize an individual’s interaction with the urban space. 
A variety set of approaches and methods were developed 
to derive meaningful activity places from the collections 
of locations, such as ad-hoc heuristics and spatial clus-
tering methods, where the spatial clusters of the location 
history of individuals are deemed as significant places 
in people’s daily life (Pappalardo et al., 2021). For exam-
ple, to infer home and workplaces, the spatial statistics 
method Getis Ord G∗

i  was used on geo-located Twitter 
data (Steiger et  al., 2015), spatial kernel-based (Thierry 
et al., 2013), and visual-analytics based (Andrienko et al., 
2007) methods were applied to raw GPS data. Spatial 
clustering methods, such as K-means (MacQueen, 1967), 
DBSCAN (Ester et al., 1996), and Gaussian mixture mod-
els (GMM) were used on mobile phone location data 
and geo-located Twitter data (S. Jiang et al., 2018; Jurdak 
et al., 2015; Kang et al., 2005). Despite these approaches 
being likely to cause algorithmic uncertainty (Kwan, 
2016), the lack of semantic meaning in those locations 
makes it difficult to infer activity places beyond home 
and workplaces (Vanhoof et al., 2020).

Therefore, recent studies started to utilize auxiliary 
datasets to enrich the semantics of the recorded locations 
and differentiate the associated movements. In this line 
of research, human activities were found to have strong 
ties to the underlying land use, such as home activity 
(residential land use), work (commercial land use), school 
(educational land use), leisure (recreational land use), 
among others (Widhalm et  al., 2015). The integration 
of land use information essentially enriches geographic 
context to the recorded locations as semantic labels. 
For example, Widhalm et  al. (2015) used land use data 
to understand the activity types of detected places from 
mobile phone location data; Huang and Wong (2016) 
derived activity zones classified from urban land plan-
ning maps to characterize Twitter user movement flows 
among them; Soliman et al. (2017) integrated parcel-level 
detailed land use maps to reveal what kind of places do 
people tweets in Chicago, and Yin and Chi (2021) utilized 
parcel-level detailed land use maps to infer the activity 
types of Twitter users’ visited locations and studied the 
recurrent transitional activity patterns.

2.2 � Geo‑located Twitter data for human–environment 
interactions

Although many studies have used mobile phone loca-
tion data to study human-urban interactions, access to 
such data sources is still limited to the research commu-
nity due to privacy concerns (Crawford & Finn, 2015; Q. 
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Huang & Wong, 2016). Because mobile service provid-
ers or data brokers have proprietary rights to the data-
sets, it is difficult to conduct comparative studies across 
different regions. In addition, the location accuracy of 
mobile phone location data relies on the spatial distribu-
tion of the cell towers and can be low in the order of sev-
eral kilometers (Deville et al., 2014). Many recent studies 
utilize publicly accessible Location Based Social Media 
data, such as geo-located Twitter messages (i.e., tweets) 
and check-in records to exploit human activity patterns, 
such as human travel and mobility behaviors (Hasan 
et al., 2013). In addition to mining social media content 
for social science applications, geo-located social media 
data are considered important sources of ambient geo-
graphical information (Stefanidis et  al., 2013) and have 
been exploited as proxies for studying human and urban 
dynamics.

Among different social media platforms, Twitter offers 
publicly accessible data streams using Twitter Stream 
API (https://​dev.​twitt​er.​com/​api). A geo-located tweet is 
a regular tweet tagged with a real-world geographic loca-
tion. Such a location is represented by a pair of latitude 
and longitude coordinates, which are usually derived 
from location-based service enabled smartphones via 
integrated GPS and Wi-Fi positioning. The geographic 
locations are considered to have high spatial resolution 
down to 10  m (Jurdak et  al., 2015). Geo-located Twit-
ter data were used to better describe the characteris-
tics of Twitter user visited urban places (Jenkins et  al., 
2016). The data were proven useful for studying human 
mobility patterns at regional, national, and even inter-
national scales (Hawelka et al., 2014; Jurdak et al., 2015; 
Yin et al., 2016), and the identified mobility patterns are 
comparable to the ones from using mobile phone loca-
tion data (Jurdak et al., 2015). The data were also used to 
study people’s daily activities in the urban environment 
by revealing the recurrent transitional activity structures 
(Yin & Chi, 2021). Note that there are certain limitations 
to using geo-located tweets as a means of tracking peo-
ple’s whereabouts and exploring their activity patterns 
(e.g., data sampling and representativeness issues, which 
are discussed in the next section). However, given the 
spatial coverage of geo-located Twitter data, it is suitable 
for conducting comparative studies over different urban 
settings to examine detailed characteristics of actual 
activity places and the spatiotemporal patterns of people 
interacting with their activity places.

3 � Data and methods
3.1 � Study areas and geo‑located Twitter data
In this study, we used two sets of geographic-context 
aware Twitter data used in Yin and Chi (2021), which 
were already generated for Greater Boston and Chicago. 

To ensure the approach for generating geographic-
context aware Twitter data is valid in other regions, we 
selected San Diego as an additional case study area with 
the following two considerations. First, because Greater 
Boston is a metropolitan city on the East Coast of the U.S. 
and Chicago is in the Midwest, the third city is preferred 
to be a metropolitan city on the West Coast. Second, as 
this study intended to use parcel-level detailed land use 
maps to infer the geographic context of the tweet loca-
tions, the complex land use in densely built metropolitan 
areas can induce significant uncertainty. For example, 
a tall building in a downtown area can have different 
usages from the ground floor and up, whose land use 
type is often classified as “urban mix”. For this considera-
tion, we did not choose Los Angeles or San Francisco as 
a study case as the mentioned situation can be severe in 
the two cities, whereas it is relatively less complicated in 
San Diego.

The data were collected using the Twitter Streaming 
API by setting a geographical bounding box over San 
Diego to retrieve all the geo-located tweets that fall in. 
The bounding boxes covered the three cities using the 
lower left and upper right coordinates for Greater Bos-
ton (41.41, -72.66; 43.12, -69.45), Chicago (41.20, -88.70; 
42.49, -87.52), and San Diego (32.44, -117.49; 33.15, 
-116.76). Because the data collection was carried out at 
the city level, it did not exceed the data volume limit (i.e., 
1% of the entire real-time tweet sets generated on twitter.
com) mentioned in (Hawelka et al., 2014). In other words, 
almost all available geo-located tweets over San Diego 
from January 1st to December 30th, 2014, which was the 
same timeframe used for the other two cities. The data 
collection contains over 12.5 million, 10.2 million, and 8 
million geo-located tweets over Greater Boston, Chicago, 
and San Diego, respectively.

For each geo-located tweet, we extracted the following 
information: User ID, location, and timestamp, which is 
denoted by a tuple 〈id, loc, t〉 , where id is a unique string 
assigned to a user’s Twitter account; loc is the recorded 
location of the tweet represented by a pair of geographi-
cal coordinates 〈latitude, longitude〉 ; t is the timestamp 
of when the tweet was posted. To protect Twitter users’ 
privacy, the id field was replaced by a randomly gener-
ated unique number. We then constructed a location his-
tory for each Twitter user ( Trajid ) by appending all the 
recorded locations (with the same id ) in chronological 
order (sorted by timestamps), which is denoted by:

We applied the same perdures employed by Yin and 
Chi (2021) for data cleaning and preparation. Specifi-
cally, we removed non-human users based on unusual 
relocation speeds by examining all of the consecutive 

Trajid ≡

�
id;⟨loc1, t1,⟩, ⟨loc2, t2⟩,… ⟨loci , ti⟩… , i = 1,2, 3… n

�

https://dev.twitter.com/api
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locations of each user and excluded those with relocat-
ing speeds over the threshold of 240  m/s (Jurdak et  al., 
2015). To reflect the activity patterns of residents rather 
than tourists in the three cities, we imposed a condi-
tion that the time interval between a user’s first and last 
recorded tweets should be more than 30  days. In other 
words, a user that is identified to have stayed in the study 
region for more than 30 days is considered a citizen. At 
this stage, the data contain 98,024, 87,866, and 61,238 
individual Twitter users from Great Boston, Chicago, and 
San Diego, respectively. The spatial coverages of the fil-
tered geo-located tweets are shown in Fig. 1, where the 
location of each geo-located tweet is plotted as a point. 
Note that the visualization reveals the geography of the 
three cities.

The parcel-level detailed land use maps of San Diego 
were downloaded from the Planning Department of San 
Diego (https://​www.​sandi​ego.​gov/). As the geo-located 
tweets were collected in 2014, we extract land use par-
cels from the same year. The details of the parcel-level 
land use maps for Greater Boston and Chicago can be 
found in (Yin & Chi, 2021). Because land use maps are 
produced by local authorities, different classes and cat-
egories may be used for labeling the land use. To reflect 

the activities at those land use parcels, we followed the 
activity scheme used for Greater Boston and Chicago. 
Note that the “school” activity was separated into “K-12” 
schools and “universities/colleges” as these two activities 
can be vastly different from each other. The “urban mix” 
land use parcels, such as the residential-commercial mix, 
were labeled as “mixed-use”. Because the “Hotel/Resort” 
activities were not in travel surveys, they were listed as an 
individual activity class. The spatial coverage of the land 
use parcels of San Diego, with corresponding activity 
classes, are shown in Fig. 2. The relationships between the 
activity code and land use category and the percentage of 

each type of land use parcels are shown in Table 1. Note 
that residential land use parcels are the most prominent 
urban features in all three datasets.

3.2 � Identifying Twitter users’ activity places
In the current form, the locations in each Twitter user’s 
location history are still represented by 2D geographi-
cal coordinates. To derive actual activity places from 
each user’s location history, we first overlaid all the Twit-
ter user locations with the parcel-level detailed land 
use maps. Each user location was assigned to its clos-
est land use parcel. To account for the spatial inaccu-
racy of the geographical coordinates, which shifts from 
approximately 10  m to 250  m (Jurdak et  al., 2015), we 
only considered candidate land use parcels that were 
within a 250-m search radius of the user location. The 
corresponding land use parcel ( pi ) and activity code ( ai ) 
assigned to each user location were derived from its clos-
est land-use parcel (based on the shortest distance to the 
boundary of the closest land use parcel). If there were no 
parcels within the radius, the activity code assigned to 
the location is set to 12 as unknown (i.e., “other”). Every 
Twitter user’s location history is now transformed into an 
activity sequence, which is denoted as follows:

Because each location was already anchored to the 
nearest land use parcel, instead of using spatial clustering 
methods to determine spatial clusters from a user’s loca-
tion history, the actual activity places are those land use 
parcels: (1) only those land use parcels with the tweets 
counts above the average number of tweets in a user’s tra-
jectory will be considered as activity places (2) the popu-
larity of those activity places are ranked by the number 
of tweets at each parcel. Essentially, this approach serves 
as a de-facto spatial clustering method without arbitrarily 
using the geometry of a spatial cluster as a place. Note 
that most tweeted activity places are not necessarily 

Trajid ≡ id; �loc1, t1,p1, a1�, �loc2, t2, p2, a2�, . . . �loci, ti, pi, ai� . . . , i = 1, 2, 3 . . . n

Fig. 1  The spatial coverage of geo-located tweets over three US cities (left to right: Greater Boston Area, Chicago, and San Diego)

https://www.sandiego.gov/
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users’ home places. In this study, we are not fixated to 
identify Twitter users’ “home” places but simply focus-
ing on understanding the characteristics of those activity 
places. At this stage, the land use parcel ( pi ) and activ-
ity code ( ai ) in each user’s activity sequence is updated as 
a corresponding activity place ( pj ) and the activity code 
( aj ) of the place, which is denoted by:

Trajid ≡
{

id; �loc1, t1,p1, a1�, �loc2, t2, p2, a2�, . . . �loci, ti, pj , aj� . . . , i, j = 1, 2, 3 . . . n
}

3.3 � Predictability of Twitter users’ activity places
Given the collection of Twitter users’ activity sequences 
across three different urban settings, it allows us to exam-
ine, and seek patterns from, all three aspects of human-
urban interactions. In particular, we aim to employ 
quantitative measures to examine whether the pref-
erential return behaviors still exist among the derived 

Fig. 2  Spatial coverage of the land use parcels reclassified into 12 activity categories over San Diego

Table 1  The activity code and percentage of the land use parcels in the three cities in this study

Activity Code Land Use Category Boston Chicago San Diego

1 Residential 92.65% 74.15% 78.91%

2 Hotel/Resort 0.04% 0.12% 0.48%

3 Mixed use 0.80% 12.36% 3.31%

4 K-12 Schools 0.10% 0.79% 0.67%

5 University/College 0.11% 0.15% 0.06%

6 Office/Workplace 1.36% 2.71% 3.90%

7 Services 0.56% 0.50% 0.89%

8 Civic/Religious 0.26% 1.91% 1.15%

9 Shopping/Retail 0.99% 0.07% 2.76%

10 Recreation/Entertainment 0.66% 0.85% 2.46%

11 Transportation 0.55% 3.49% 1.21%

12 Others 1.94% 2.90% 4.18%

Total number of parcels 1,117,027 164,619 108,148
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activity places, and if so, how predictable are the transi-
tions among these activity places.

First, the Twitter users’ activity sequences are time series. 
To incorporate the temporal features associated with the 
movements/transitions among different activity places, we 
employed the measure of first passage time introduced in 
(Jurdak et al., 2015), also known as return time, to measure 
the time interval between a user’s return to the same activ-
ity place after a period of �tfp . It is worth pointing out that 
because we used geo-located tweets to track Twitter user 
movements, people could post multiple messages consec-
utively with the same geo-location, thereby simply meas-
uring the time interval between two activity locations can 
distort the time distribution. Instead, we only consider the 
return time between two different activity places.

To capture Twitter users’ interaction behaviors with their 
activity places, we examined the predictability (or random-
ness) of the activity sequences. To do so, we used the 
entropy-based measures developed by Song et al. (2010) to 
quantify the predictability of movements among activity 
places in Twitter user’s activity sequence, where entropy 
was used to measure the degree of predictability (or ran-
domness) in a time series. Three types of entropy measures 
were introduced by Song et al. (2010): (1) random entropy 
Srand : Srandi = log2N , where N  is the number of distinct 
places in a user’s activity sequence. It implies the predicta-
bility of a Twitter user’s activity place if the activity places 
are visited with equal probability. (2) the unconditional 
entropy Srand : Sunci = −

∑

x∈Xi
pi(x)log

2
pi(x) , where pi(x) 

is the probability at which a Twitter user visited the ith 
place out of Ni places in the activity sequence. It measures 
the predictability based on the frequency of each activity 
place within the activity sequence; and (3) the real entropy 
Sreal : 

Sreal
i

= −
∑

xi∈Xi
pi
�
X

�
�
log

2
pi
�
X

�
�
= −

∑
xt∈Xi

∑
xt−1∈Xi∩Z

pi
�
xt−1, xt

�
log

2
pi
�
xt �xt−1

� , 
where  pi

(

X
′
)

 is the probability of finding a time-ordered 
subsequence X ′ in the time series. The real entropy not only 
considers the occurring frequency of each activity place but 
also the order in which the activity places are visited, which 
is deeply linked to the spatiotemporal characteristics of 
Twitter users’ presence and transitions among their activity 
places. Intuitively, Sreali ≤ Sunci ≤ Srandi  . Song et al. (2010) 
utilized Fano’s inequality to calculate the predictability 

∏

 
associated with each entropy. The maximum bound of a 
user’s predictability 

∏

i ≤ −
∏max

i (S,Ni) , where 
∏max

i  is 
given by S = H

(
∏max

i

)

+
(

1−
∏max

i

)

log2(Ni − 1) , and 
the binary entropy function  H  is given by: 
H
(
∏max

i

)

= −
∏max

i log2
(
∏max

i

)

−
(

1−
∏max

i

)

log2   ) . 
Considering the assumption made for calculating random 
entropy, it is unlikely to be the case for practical human 
activities in the urban environment. Therefore, we only 
considered the unconditional entropy and the real entropy 
in this study.

4 � Results
Every citizen is a unique individual. Intuitively, the activ-
ity places people interacted with on a daily basis or over 
time should vary drastically by individuals as well. It may 
be the case when we took a first glance at the number of 
activity places in each Twitter user’s activity sequence. 
Yet, when plotting the probability density function of the 
number of visited activity places over the three cities in 
2014, there is a clear bimodal distribution that divides the 
user base into two distinct groups (illustrated in Fig. 3). 
Specifically, for the first group of Twitter users with less 
than 20 activity places in their activity sequences, the 
numbers of visited activity places tend to follow a Gauss-
ian distribution with a peak value of 3. Note that the 
visited activity places are the land use parcels at which 
Twitter users posted more than the average of all the land 
use parcels in 2014. It does not mean Twitter users only 
tweet at those activity places. However, the situation is 
far more dispersed for the second group of Twitter users 
with more than 20 activity places, where the numbers of 
visited activity places tend to follow an exponential dis-
tribution. Interestingly, the probability density functions 
are very similar over the three cities. It suggests that there 
are drastic variations involved in individuals’ behaviors 
regarding how many activity places people visit, but there 
are also strong similarities collectively (i.e., city-wide) 
when viewing the overall trend as a whole.

To explore the temporal characteristics of Twitter 
users’ transitions among their activity places, we plotted 
the probability distributions of the first passage time in 
Fig. 4, which measures the probability of finding a Twit-
ter user at the same activity place after a period of t. To 
assess whether the return time was the result of a random 
process, we added a time series generated from a random 
walk model as a reference. Figure 4 shows the probabil-
ity distribution of Twitter users’ return time to the same 
activity place across the three cities. The probability dis-
tributions show that Twitter users’ behaviors in returning 
to the same activity place are not a random process but 
exhibit an apparent periodical shift with approximately a 
24-h interval. In addition, the first passage time patterns 
are remarkably similar across the three cities. This not 
only reaffirms the existence of preferential return behav-
iors that were observed in the mentioned studies using 
mobile phone location data but also suggests that such 
behaviors are prevalent despite different urban settings.

There are two major benefits of using land use par-
cels to enrich the geographic context of the locations in 
geo-located tweets. First, the activity places are land use 
parcels. Second, each activity place is assigned an activ-
ity code. Therefore, we can examine the detailed char-
acteristics of those activity places. Specifically, we can 
decompose both the land use and activity types of the 



Page 9 of 15Yin and Chi ﻿Urban Informatics            (2022) 1:20 	

Fig. 3  Probability density function of the number of activity places visited by Twitter users

Fig. 4  The probability distribution of the return time. Note that there are apparent periodical return behaviors in Twitter users’ return to the same 
activity place
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frequently visited activity places. Figure 5 illustrates the 
decomposition of land use categories in the top 10 most 
frequently visited activity places (ranked by the number 
of tweets per activity place) across the three cities. The 
results show that majority of all the most frequently vis-
ited activity places are residential, which is not surprising 
considering the land use maps show that residential land 
use parcels are the most prominent urban features in all 
three cities. Particularly, in the most frequently visited 
(or equivalently, the most tweeted) activity places across 
the three cities, over 75% of them are residential places 
(over 85% in the case of San Diego). This provides some 
evidence to support the assumption of using spatial clus-
tering methods for detecting users’ activity places, where 
the most significant spatial cluster is assumed to be a 
user’s “home” place. Note that these residential places 
are not necessarily a Twitter user’s “home” place (e.g., it 
could be a vacation home). Nevertheless, we can observe 
that some Twitter users do tweet the most at non-resi-
dential places, such as universities and workplaces, which 

suggests the user base in this study does cover a diverse 
Twitter user population. As the rank decreases, the per-
centages of other non-residential activity places increase 
indicating that Twitter users do tweet regularly or sub-
stantially at a diverse collection of urban places.

It is worth pointing out that the activity sequences not 
only capture the whereabouts of Twitter users, which is 
tied to 1 out of 12 activities, but also the timing of the 
whereabouts. Therefore, we utilized the intensity of Twit-
ter users’ weekday activities (measured by tweets vol-
ume) at different times of the day to get a better sense of 
the temporal characteristics of people’s activities in the 
urban environment. The weekday hourly distribution 
of tweets volumes at Twitter users’ activity places clas-
sified by different land use types is shown in Fig. 6. The 
tweet volumes were normalized within each land use 
category. The intensity of Twitter users’ activities fluctu-
ates throughout the day and varies among different types 
of activity places and appears to be tightly connected to 
the function of the activity places. For example, activities, 

Fig. 5  Decomposition of the top 10 most frequently visited activity places in the three cities
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such as at work, university, and K-12 school, reach the 
peak before mid-day, and gradually decrease afterward 
(except for K-12 school activity, which drops sharply after 
3:00 PM as most students are off school then). In con-
trast, several activities are observed to reach the peak in 
the evening, such as activities related to civic, urban mix, 
recreation, and shopping, which are mostly observed 
between 6:00 PM and 8:00 PM, whereas the activities at 
residential places reach the peak at the latest at 10:00 PM. 
Notice that activities related to transportation have two 
peaks with a smaller one around 8:00 AM and a larger 
one around 6:00 PM (it is less apparent in San Diego), 
which may suggest its correspondence to rush hours in 
the cities.

The results provide insights into the connections 
between human activities and the geospatial setting 
of the urban environment. Importantly, a remarkable 
resemblance of the temporal characteristics of the activ-
ity places is observed across all three cities. However, 
there are some apparent discrepancies in the temporal 
signals derived from using geo-located Twitter data. First, 
the inference of Twitter users’ whereabouts is strongly 
influenced by varying human behaviors. For example, 
there are significantly fewer activities observed in the 
early morning. It does not mean people are not staying at 
home (or other places), but simply are not posting tweets. 

In the case of work activities peaking around mid-day, it 
seems that the signals from tweet volumes are delayed 
because people are less likely to tweet during early work-
ing hours but during breaks (e.g., lunch breaks).

The calculation of real entropy Sreal requires continu-
ous observation of people’s activity places (e.g., hourly, 
or daily), as it not only considers the occurring frequency 
of each activity place but also the order in which the 
activity places were visited in a given period. However, 
the whereabouts of a Twitter user can only be observed 
when this user posts, which is similar to how mobile 
phone location data are collected. The varying tweeting 
behaviors will lead to a significant number of incomplete 
movements/transitions among these activity places not 
to be considered in the calculation. Therefore, we relaxed 
the time requirement and only considered the order in 
which an activity place was visited. The real entropy was 
estimated by using a Lempel–Ziv algorithm for searching 
repeated sequences as suggested by Jurdak et al. (2015).

The probability density functions P(
∏

) of the predict-
ability of Twitter users’ activity places are shown in Fig. 7, 
where the dash lines represent the predictabilities 

∏unc 
estimated from the unconditional entropy Srand and 
the solid lines represent the predictabilities 

∏real esti-
mated from the real entropy Sreal . The results show that 
both P(

∏unc
) and  P(

∏real
) reach the peak at a center 

Fig. 6  Weekday hourly distribution of tweets volumes at Twitter users’ activity locations classified by different land use types
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predictability value. In all three cities, P(
∏unc

) has a 
broader shape than P(

∏real
) with a majority of the pre-

dictability values around a center predictability value at 
0.6. It suggests that, if only considering the occurring 
frequency of activity places in a Twitter user’s activity 
sequence, the potential predictability for the next activ-
ity place these users would visit is 0.6 (the highest pre-
dictability is 1). In comparison,  P(

∏real
) has a tighter 

shape with a majority of the predictability values around 
a center predictability value at 0.85, which highlights the 
importance of the additional consideration of the order 
of visitation sequences in predicting the next activity 
places. The probability density functions P(

∏

) are con-
sistent across the three case study cities, even though the 
Twitter users’ activity sequences were generated from 
different user bases and different urban settings.

5 � Discussions and conclusions
It is the rhythm in everyday citizens’ daily activities that 
forms the heartbeat of the city. The ability to capture and 
understand how citizens interact with the urban space 
can provide important insights to reveal how cities func-
tion. With the increasing availability of various forms of 
human activity data, such as surveys, mobile phone loca-
tion data, and geo-located social media data, many stud-
ies have been conducted to seek different types of human 
activity patterns in the urban environment. However, 
specific to citizens’ interactions with the urban space, 

most of the existing studies have focused on seeking pat-
terns either from the human aspect or from the urban 
space aspect of the interactions. In this connection, we 
proposed a new concept, namely human-urban interac-
tion, which takes the literal meaning of the term “interac-
tion” to encapsulate the interactions as people’s presence 
(visitation), action (activity), and transition (mobility) in 
urban space. Using this concept, this study aims to gain 
insights into the interplays between human activities and 
the geospatial settings of urban environments.

Abundant research efforts have utilized mobile phone 
location data and geo-located social media data for 
tracking the locations and movements of individuals 
to study human activities in the urban environment. 
However, the actual places that people interact with 
were often overlooked, where the activity places were 
inferred by applying ad-hoc heuristics and spatial clus-
tering methods. The inability to identify different types 
of activity places from single-layered location data is 
mainly attributed to the absence of geographic context 
in the recorded locations. In this study, we utilized geo-
graphic context-aware Twitter data to investigate the 
spatiotemporal characteristics of people’s interactions 
with their activity places in different urban settings. Spe-
cifically, we used geo-located tweets and parcel-level 
detailed land use maps to derive activity places from 
their location history and constructed activity sequences 
over three major U.S. metropolitan areas from the East 

Fig. 7  The probability density functions of the predictability of Twitter users’ activity places
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Coast to Midwest and the West Coast: Greater Boston, 
Chicago, and San Diego.

The results showed remarkable spatial and temporal 
similarities and consistencies in Twitter users’ interac-
tions with their activity places across three different cities. 
First, the identified bimodal distribution in the number of 
activity places in Twitter users’ activity sequences divided 
the user base into two distinct groups. Second, Twitter 
users’ behaviors in returning to the same activity place 
exhibited a clear periodical shift with approximately a 
24-h interval, which supported the existence of preferen-
tial return behaviors in human-urban interactions. Fur-
ther, we examined the detailed characteristics of Twitter 
users’ activity places. By decomposing the top 10 most 
frequently visited activity places in the three cities, we 
found that Twitter users do tweet regularly or substan-
tially at a diverse collection of urban places. Each type 
of activity place seems to show an almost unique signal 
to reflect the corresponding human activity in the urban 
environment. Using the temporal signals as indicators to 
understand the urban environment is very much in aline-
ment with the concept of social sensing (Liu et al., 2015). 
The predictability of Twitter users’ activity sequence 
calculated by real entropy suggests that Twitter users’ 
transitions among different activity places are highly pre-
dictable. For the majority of the Twitter user base in this 
study, the potential predictability for predicting the next 
activity place they would visit is as high as 0.85 (the high-
est predictability value is 1).

A simple takeaway message for the tale of three cities 
about human-urban interactions is that although citi-
zens’ activities in the urban environment vary drastically 
by the individual, however, the way they interact with the 
urban space may be more similar/common than people 
think. Yet, this study provides several significant implica-
tions for urban scientists and planners for understanding 
how citizens interact with their surrounding urban envi-
ronments. First, this study demonstrates that geographic-
context aware Twitter data can be a new and effective 
data source for understanding the detailed characteris-
tics of people’s activity places in the urban environment 
and how people interact with and transition among these 
activity places, which can be particularly useful when 
other data sources are scarce or not even available. Sec-
ond, considering that people tend to return to previously 
visited activity places, urban planners can better plan 
future transportation options by evaluating the visita-
tion patterns to existing urban infrastructures. Finally, 
as the transitions among different activity places are 
highly predictable despite different urban settings, urban 
scientists can consider it for smart city applications, 
such as for developing a universal simulation model for 

better resource allocations or for developing effective cri-
sis response plans.

However, this study also shows some limitations in 
using geo-located Twitter data as proxies to track people’s 
whereabouts. Specifically, the inference of Twitter users’ 
whereabouts is strongly influenced by the variations in 
people’s behaviors when using mobile phones or Twitter. 
For example, people may not use the Twitter app dur-
ing certain times of the day, which will result in delayed 
signals (e.g., in workplaces) or missing signals (e.g., in 
the early morning). More importantly, neither mobile 
phone data nor geo-located Twitter data can track user 
locations continuously, which means the intermediate 
user locations between two tweets may not be recorded. 
This will significantly affect our ability to derive actual 
or timely movements from users’ location history, which 
is demonstrated by calculating the real entropy value of 
Twitter users’ activity sequences. Although the Twitter 
user base in this study covers different groups of people 
in the urban environment, studies have shown that there 
is a mismatch between the Twitter user population and 
the real population. Particularly, the Twitter user popula-
tion is skewed toward younger users (Greenwood et al., 
2016). Therefore, the identified human-urban interaction 
patterns from this study are likely not fully applicable to 
the whole city population.
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