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OBJECTIVES: To determine the effect of the awake prone position (APP) on 
gas exchange and the work of breathing in spontaneously breathing patients with 
COVID-19–associated acute hypoxemic respiratory failure (AHRF) supported by 
high-flow nasal oxygen.

DESIGN: Prospective randomized physiologic crossover multicenter trial.

SETTINGS: Four ICUs in Marseille, France.

PATIENTS: Seventeen patients with laboratory-confirmed COVID-19 pneumonia 
and Pao2/Fio2 less than or equal to 300 mm Hg while treated with high-flow nasal 
cannula oxygen therapy.

INTERVENTIONS: Periods of APP and semirecumbent position (SRP) were 
randomly applied for 2 hours and separated by a 2-hour washout period.

MEASUREMENTS AND MAIN RESULTS: Arterial blood gases, end-tidal CO2. 
and esophageal pressure were recorded prior to and at the end of each period. 
Inspiratory muscle effort was assessed by measuring the esophageal pressure 
swing (∆PES) and the simplified esophageal pressure–time product (sPTPES). The 
other endpoints included physiologic dead space to tidal volume ratio (VD/VT) and 
the transpulmonary pressure swing. The APP increased the Pao2/Fio2 from 84 
Torr (61–137 Torr) to 208 Torr (114–226 Torr) (p = 0.0007) and decreased both 
the VD/VT and the respiratory rate from 0.54 (0.47–0.57) to 0.49 (0.45–0.53) (p = 
0.012) and from 26 breaths/min (21–30 breaths/min) to 21 breaths/min (19–22 
breaths/min), respectively (p = 0.002). These variables remained unchanged dur-
ing the SRP. The ∆PES and sPTPES per breath were unaffected by the position. 
However, the APP reduced the sPTPES per minute from 225 cm H2O.s.m–1 (176–
332 cm H2O.s.m–1) to 174 cm H2O.s.m–1 (161–254 cm H2O.s.m–1) (p = 0.049).

CONCLUSIONS: In spontaneously breathing patients with COVID-19–associ-
ated AHRF supported by high-flow nasal oxygen, the APP improves oxygenation 
and reduces the physiologic dead space, respiratory rate, and work of breathing 
per minute.

KEY WORDS: COVID-19; prone position; respiratory distress syndrome; 
respiratory insufficiency; work of breathing

Severe COVID-19 is associated with acute hypoxemic respiratory failure 
(AHRF), which frequently progresses toward acute respiratory distress 
syndrome (ARDS) and may require invasive mechanical ventilation (1). 

Although hypoxemia is a hallmark of the disease, the respiratory pattern may 
vary substantially between individuals, ranging from quiet breathing (i.e., silent 
hypoxemia) to tachypnea and respiratory distress (2).
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High-flow nasal oxygen (HFNO) therapy and con-
tinuous positive airway pressure (CPAP) are effective 
noninvasive respiratory techniques to support patients 
with COVID-19–associated AHRF (3–5). In addition, 
the awake prone position (APP) has attracted increas-
ing interest during the COVID-19 pandemic, as it 
markedly improves oxygenation, reduces the respira-
tory rate, and decreases the risk of endotracheal intu-
bation and death (3, 6). The mechanisms underlying 
these benefits may involve changes in the distribution 
of ventilation/perfusion (VA/Q) (7, 8) and a reduction 
in the work of breathing (WOB). In patients supported 
by CPAP, the APP failed to reduce inspiratory muscle 
effort but decreased the respiratory rate and WOB 
(9). As the effect of the APP on respiratory mechanics 
has not yet been determined in patients supported by 
HFNO, we investigated the short-term effects of the 
APP on gas exchange and the WOB.

MATERIALS AND METHODS

This physiologic randomized crossover study was 
conducted in four ICUs in Marseille, France. The pro-
tocol was approved by an independent national re-
view board on June 11, 2020 (Comité de Protection 
des Personnes Nord Ouest, ID 20.05.26.63610; title: 
“Effect of Prone Positioning Combined With High 

Flow Oxygen Therapy on Oxygenation During Acute 
Respiratory Failure Due to COVID-19”) and was reg-
istered on ClinicalTrials.gov (NCT04543760). Each 
patient signed an informed consent form prior to in-
clusion. All procedures performed in the present study 
were in accordance with the Declaration of Helsinki.

Patients

All adult patients admitted to the ICUs for less than 
72 hours with a laboratory-confirmed diagnosis of 
COVID-19 pneumonia were screened. Patients were 
eligible for enrollment if they were spontaneously 
breathing and fulfilled the criteria for AHRF, as de-
fined by a Pao2/Fio2 ratio less than or equal to 300 mm 
Hg while receiving HFNO, had evidence of bilateral 
pulmonary infiltrates on a chest radiograph or a CT 
scan, and had an acute onset (< 1 wk) of respiratory 
distress. The exclusion criteria are presented in the 
Supplemental Digital Content (http://links.lww.com/
CCX/B95).

Interventions

The settings of HFNO are detailed in the Supplemental 
Digital Content (http://links.lww.com/CCX/B95). 
Each patient was placed in semirecumbent position 
(SRP) and prone position (PP) for 2 hours, and the 
sequence order was determined by randomization. A 
washout period of 2 hours was applied to prevent a 
carryover effect. The use of sedative or analgesic agents 
that may interfere with the breathing pattern was not 
allowed during the study period. Further details on the 
interventions are available in the Supplemental Digital 
Content (http://links.lww.com/CCX/B95).

Prior to randomization, an esophageal balloon 
catheter (Cooper Surgical, Trumbull, CT, USA) was 
inserted to measure esophageal pressure (PES) (10, 11). 
End-tidal CO2 (ETCO2) was obtained by capnometry 
while the patients breathed through a mouthpiece 
using a mainstream CO2 sensor (CAPNOSTAT 5; 
Hamilton Medical AG, Bonaduz, Switzerland) con-
nected to the ventilator.

Measurements

Demographics and clinically relevant data were col-
lected at inclusion. All available chest CT scans were 
reviewed to determine the CT-based lung extension 

  KEY POINTS

Question: Does the awake prone position (APP) 
reduce the work of breathing in spontaneously 
breathing patients with COVID-19–associated 
acute hypoxemic respiratory failure supported by 
high-flow nasal oxygen?

Findings: In this randomized multicenter cross-
over trial, a 2-hour period of the APP significantly 
reduced the physiologic dead space, respiratory 
rate, and work of breathing per minute but not 
per breath compared with a 2-hour period of the 
semirecumbent position.

Meanings: APP effectively reduces the work of 
breathing mainly by decreasing the respiratory rate 
in spontaneously breathing patients with COVID-
19–associated acute hypoxemic respiratory failure 
supported by high-flow nasal oxygen.
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severity (Supplemental Digital Content, http://links.
lww.com/CCX/B95). Physiologic variables and self-
assessed symptoms (dyspnea, discomfort, and pain) 
were assessed at baseline and at the end of each inter-
vention (PP and SRP) in the following order: clinical 
data (respiratory rate, Spo2, arterial pressure, and heart 
rate); self-assessed symptoms (through adapted Visual 
Analog Scales ranging from 0 to 100 points) (10); and 
a 2-minute continuous recording of PES. Subsequently, 
arterial blood gases were analyzed, and the ETCO2 
was recorded over ten breathing cycles. Additionally, 
intermediary arterial blood gases were sampled at 
30 minutes and 1 hour after the beginning of each 
intervention.

We measured the following PES-related variables: 
the respiratory rate, the inspiratory effort (∆PES), the 
simplified PES–time product (sPTPES) as a surrogate of 
the WOB per breath and per minute, and the dynamic 
transpulmonary driving pressure (∆PL). From ETCO2 
and Paco2, we computed the Paco2 to ETCO2 differ-
ence (Paco2–ETCO2) to estimate the physiologic dead 
space to tidal volume ratio (VD/VT) (12) as an index 
of ventilatory inefficiency (13). Additional details are 
provided in the Supplemental Digital Content (http://
links.lww.com/CCX/B95).

Clinical Follow-Up

After the study procedure, the patients were followed 
for 2 months to record the vital status (60-d mortality), 
the need for intubation, and the duration of mechan-
ical ventilation.

Endpoints

The primary endpoint of this study was the difference 
in the Pao2/Fio2 ratio between positions at the end of 
the period. The secondary objectives were the absolute 
and relative variations in the Pao2/Fio2 while patients 
were lying in the different positions. The proportion of 
responders, as defined by a relative increase in Pao2/
Fio2 greater than or equal to 20% during the PP, was 
evaluated. The other endpoints included the absolute 
and relative variations in blood gas variables, esopha-
geal-related variables, self-assessed symptoms, and ad-
verse events (see Supplemental Digital Content, http://
links.lww.com/CCX/B95).

In an exploratory analysis, we evaluated whether 
some physiologic variables that were measured prior 

to any interventions (i.e., at study entry) would differ-
entiate intubated from nonintubated patients.

Statistical Analysis

Details regarding the sample size calculation are pro-
vided in the Supplemental Digital Content (http://
links.lww.com/CCX/B95). Qualitative data are pre-
sented as counts and proportions (%), and quantita-
tive data are presented as medians and interquartile 
ranges. Referring to the crossover design, we used 
a mixed model analysis with nested random effects 
to simultaneously test the effect of the sequence 
(PP-SRP and SRP-PP), period (first and second), 
and position (PP and SRP) on the quantitative vari-
ables. Crude comparisons within positions (base-
line vs 120 min) were performed using the Wilcoxon 
signed-rank test, which did not account for the 
crossover effect. We used a Kruskal-Wallis anal-
ysis to compare the changes in Pao2/Fio2 during the 
PP at multiple time points with Conover post hoc 
comparisons. The proportions of patients breathing 
with high inspiratory efforts were compared using 
the chi-square test. Correlations between the vari-
ables were assessed by calculating Pearson’s corre-
lation coefficient (r). A univariate analysis between 
intubated and nonintubated patients was performed 
at study entry using the Mann-Whitney U test. We 
then analyzed the receiver operating characteristic 
curve to determine the area under the curve, and 
the optimal cutoff value was obtained by calculating 
Youden’s index. All tests were two-sided, and p values 
less than or equal to 0.05 were considered signifi-
cant. Statistical analyses were performed using SAS 
V9.4 (SAS Institute, Cary, NC), and graphics were 
created with MedCalc v20.015 (MedCalc Software 
Ltd., Ostend, Belgium).

RESULTS

From October 2020 to January 2021, 18 patients were 
included (eFig. 1, http://links.lww.com/CCX/B95). 
One patient had to be intubated immediately after ran-
domization and was subsequently excluded from the 
study. The demographics and most relevant clinical 
characteristics of the patients are presented in Table 1. 
The CT-based lung extension severity is presented in 
eTable  1 (http://links.lww.com/CCX/B95). Among 
the 17 patients who completed the trial, nine received 
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PP first, and eight received SRP first. No differences in 
the studied variables were observed at baseline. Five 
patients (29%) were intubated during their ICU stay, 
and one of those patients died. The main physiologic 
variables that were recorded during the study are dis-
played in Table 2.

Gas Exchange
The Pao2/Fio2 ratio increased during the PP from 84 
Torr (61–137 Torr) to 208 Torr (114–226 Torr) (p < 
0.001) but did not change during the SRP. The Pao2/
Fio2 at the end of the periods was significantly higher 
in patients placed in the PP than in the SRP (208 

TABLE 1. 
Main Characteristics of the Study Population

Variables, Units 
Overall,  
N = 17 

Prone Position 
First, N = 9 

Semirecumbent  
Position First, N = 8 

Age, yr 61 (57–71) 61 (55–77) 63 (56–68)

Sex, male, n (%) 15 (88) 8 (89) 7 (88)

Body mass index, kg/m² 27 (25–31) 27 (26–31) 27 (25–31)

Simplified Acute Physiologic Score II, at inclusion 29 (22–33) 27 (22–33) 30 (24–33)

Comorbidities, n (%)    

  Cancer 7 (41) 4 (44) 3 (38)

  Diabetes 2 (12) 1 (11) 1 (13)

  Hypertension 10 (59) 6 (67) 4 (50)

  Chronic obstructive pulmonary disease 1 (6) 1 (11) 0

  Chronic heart diseases 3 (18) 3 (33) 0

  Chronic liver diseases 0 0 0

  Chronic renal failure 1 (6) 0 1 (13)

  Immunodepression 3 (18) 2 (22) 1 (13)

Time from symptom onset to hospital admission, d 9 (5–10) 9 (6–10) 9 (3–10)

Time from symptom onset to ICU admission, d 9 (6–11) 9 (6–11) 9 (7–10)

Time from symptom onset to enrollment, d 10 (8–12) 10 (8–12) 11 (8–12)

High-flow nasal O2 gas flow at enrollment, L/min 30 (30–50) 30 (30–50) 30 (30–55)

Arterial pH at enrollment 7.45 (7.44–7.5) 7.44 (7.44–7.5) 7.47 (7.44–7.5)

Paco2 at enrollment, mm Hg 32 (30–33) 32 (29–33) 33 (31–34)

Pao2/Fio2 at enrollment, mm Hg/% 115 (88–139) 130 (107–151) 96 (74–128)

Respiratory rate at enrollment, breaths/min 25 (20–33) 22 (20–26) 32 (23–39)

Heart rate at enrollment, beats/min 75 (69–88) 75 (67–89) 76 (71–89)

Mean arterial pressure at enrollment, mm Hg 76 (58–99) 90 (63–132) 66 (58–77)

Length of ICU stay, d 15 (9–27) 14 (9–31) 16 (11–23)

Need for endotracheal intubation after enrollment, 
n (%)

5 (29) 2 (22) 3 (38)

Length of mechanical ventilation after intubation, d 24 (17–36) 36 (20–51) 24 (11–29)

60-d mortality, n (%)    

  Overall 1 (6) 0 1 (13)

  Intubated patients 1 (6) 0 1 (13)

  Nonintubated patients 0 0 0

Data are expressed as the median (interquartile range, 25–75%) unless otherwise specified.
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Figure 1. Effects of the semirecumbent position (SRP) and prone position (PP) on the Pao2/Fio2 ratio. A, Dot plots and lines of Pao2/
Fio2 at baseline and the end (120 min) of each period during the SRP and PP. The horizontal line indicates the median value. B, Dot 
plots and lines of the relative variation in Pao2/Fio2 during the SRP and PP, which was computed as 100 × (end value–baseline value)/
baseline value. The baseline of each period was normalized to the reference level (zero). The horizontal line indicates the median value. 
C, Dot plots of the absolute variation in Pao2/Fio2 during the PP in the responders and nonresponders, which was computed as the end 
value–baseline value. The horizontal lines indicate the median values and the 25–75th percentiles. Among the six nonresponders, three 
had a ∆Pao2/Fio2 greater than 20 mm Hg.

[114–226] vs 91 Torr [64–120 Torr]; p < 0.001) (Fig. 
1A). The relative variations during the SRP and PP 
were –8% (–22% to 3%) and 34% (12–147%), respec-
tively (p < 0.001) (Fig. 1B). During the PP, Pao2/Fio2 
increased above 20% in 11 patients (65%), and these 
patients were classified as responders. The time course 
of the Pao2/Fio2 ratio among responders in the PP is 
presented in eFigure 2 (http://links.lww.com/CCX/
B95). Further data on oxygenation in responders are 
available in the Supplemental Digital Content (http://
links.lww.com/CCX/B95).

Paco2 remained remarkably constant and did not dif-
fer between the different positions. In contrast, ETCO2 
increased during the PP by 2.8 mm Hg (0.3–7 mm Hg) 
but did not change during the SRP (0.1 mm Hg [–1.3 
to 0.8 mm Hg]). Thus, the VD/VT ratio decreased dur-
ing the PP from 0.54 (0.47–0.57) to 0.49 (0.45–0.53)  
(p = 0.012) but did not change during the SRP (Fig. 2A), 

and the relative variations were significantly different 
between the positions (Fig. 2B). Notably, the decrease 
in VD/VT was correlated with the increase in Pao2/Fio2 
during the PP session (r = –0.67; p = 0.004) (Fig. 2C).

Esophageal-Related Variables

The PES measurements were available for 16 of the 17 
patients (one patient had an inaccurate PES signal). 
The gas flow applied during HFNO and the result-
ing airway pressure are reported in the Supplemental 
Digital Content (http://links.lww.com/CCX/B95).

The respiratory rate decreased during the PP from 
26 breaths/min (21–30 breaths/min) to 21 breaths/
min (19–22 breaths/min) (p = 0.002) but did not 
change during the SRP. The respiratory rate was sig-
nificantly lower at the end of the PP than at the end 
of the SRP (21 [19–22] vs 28 breaths/min [20–33 

http://links.lww.com/CCX/B95
http://links.lww.com/CCX/B95
http://links.lww.com/CCX/B95
http://links.lww.com/CCX/B95
http://links.lww.com/CCX/B95
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breaths/min]; p < 0.001) (Fig. 3A). The relative respi-
ratory rate variations were also significantly different 
(Fig. 3B). At the individual level, 13 patients (76%) 
decreased their respiratory rate during the PP period 
with a median reduction of –5 breaths/min (–10 to 
–4 breaths/min). The change in the respiratory rate 
during the PP was inversely correlated (r = –0.74; p < 
0.001) with the baseline respiratory rate level. We also 
observed a correlation (r = –0.8; p < 0.001) between 
the relative variations in the respiratory rate and 
Pao2/Fio2 during the PP session (p < 0.001) (Fig. 3C).

The inspiratory effort per breath, as assessed 
by calculating the ∆PES and sPTPES, did not sig-
nificantly change with the position (Fig. 4A; and 
eFig.  3a, http://links.lww.com/CCX/B95). However, 
the changes in these variables during the PP were 
inversely correlated with their corresponding base-
line values (r = –0.72 and p = 0.002 for both) (Fig. 

4B; and eFig. 3b, http://links.lww.com/CCX/B95).  
The proportion of patients breathing with an inspir-
atory effort above the median baseline level (10.9 cm 
H2O) was not significantly lower at the end of the APP 
compared with the SRP (38% vs 56%; p = 0.18). The 
∆PL displayed a similar pattern to the ∆PES (eFig. 3, 
c and d, http://links.lww.com/CCX/B95). The sPTPES 
per minute decreased during the PP from 225 cm 
H2O.s.min–1 (176–332 cm H2O.s.min–1) to 174 cm 
H2O.s.min–1 (161–254 cm H2O.s.min–1) (p = 0.049) 
but did not change during the SRP, resulting in signifi-
cantly different variations with the positions (Fig. 4C). 
However, the change in the sPTPES per minute during 
the PP was not correlated with the baseline level (Fig. 
4D). Finally, we did not observe any significant cor-
relations between PP-induced variations in the esoph-
ageal-related variables and the change in the Pao2/Fio2 
ratio.

Figure 2. Effects of the semirecumbent position (SRP) and prone position (PP) on the physiologic dead space to tidal volume ratio 
(VD/VT). A, Dot plots and lines of VD/VT at baseline and the end (120 min) of each period during the SRP and PP. The horizontal line 
indicates the median value. B, Dot plots and lines of the relative variation in VD/VT during the SRP and PP, which was computed as 100 
× (end value–baseline value)/baseline value. The baseline of each period was normalized to the reference level (zero). The horizontal 
line indicates the median value. C, Scatter plot and regression analysis of the relative variation in VD/VT and the relative variation in Pao2/
Fio2. The dashed lines indicate the 95% CI of the regression line.

http://links.lww.com/CCX/B95
http://links.lww.com/CCX/B95
http://links.lww.com/CCX/B95
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Hemodynamics, Self-Assessed Symptoms, and 
Adverse Events

The hemodynamic variables, dyspnea, and pain were 
not affected by the position. Discomfort was signifi-
cantly lower at the end of the SRP than the PP (20 [18–
40] vs 31 [25–62]; p = 0.023).

We did not observe any adverse events, except for 
one episode of desaturation, in each of the positions.

The results for respiratory variables associated 
with the need for intubation are available in the 
Supplemental Digital Content (eFigures 4 and 5, 
http://links.lww.com/CCX/B95).

DISCUSSION

The main findings of this study are as follows: 1) APP 
improves oxygenation in two thirds of patients and 2) 
APP decreases the physiologic dead space, respiratory 
rate, and WOB.

In nonintubated patients with COVID-19–associ-
ated AHRF, several studies have reported an increase 
in oxygenation during the APP, but discrepancies 
have been documented regarding the oxygenation 
endpoints, the duration of the PP, and the underlying 
respiratory support devices (6, 14–18). In the present 
study, we confirmed a significant increase in Pao2/
Fio2 after 2 hours of the APP compared with the SRP. 
Consistent with other studies, the increase in oxygen-
ation during the APP was not related to the baseline 
level of Pao2/Fio2, suggesting that the implementation 
of the APP should not be guided by the level of Pao2/
Fio2. Furthermore, a clinically significant increase 
in Pao2/Fio2 (≥ 20%) was observed during the APP 
in only 65% of the population. A higher proportion 
of responders (85%) was reported when the patients 
were supported by helmet CPAP with a median pos-
itive end-expiratory pressure (PEEP) of 10 cm H2O 
(9); however, the level of PEEP provided by the HFNO 

Figure 3. Effects of the semirecumbent position (SRP) and prone position (PP) on the respiratory rate (RR). A, Dot plots and lines of the RR 
at the baseline and the end (120 min) of each period during the SRP and PP. The horizontal line indicates the median value. B, Dot plots and 
lines of the relative variation in the RR during the SRP and PP, which was computed as 100 × (end value–baseline value)/baseline value. The 
baseline of each period was normalized to the reference level (zero). The horizontal line indicates the median value. C, Scatter plot and regression 
analysis of the relative variation in the RR and the relative variation in Pao2/Fio2. The dashed lines indicate the 95% CI of the regression line.

http://links.lww.com/CCX/B95
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in our study was much lower. The present study also 
provides original results for the temporal variation 
in Pao2/Fio2 over the 2 hours of the APP. Among the 
responders, Pao2/Fio2 was significantly higher after 30 
minutes of the APP, suggesting that a rapid improve-
ment is awaited. However, the time at which the Pao2/
Fio2 reached its maximum level varied substantially 
between individuals.

Arterial hypoxemia is the main feature of severe 
COVID-19 pneumonia and seems to result more from 
the hyperperfusion of poorly ventilated lung areas 
(providing low VA/Q regions) than from true shunts. 
On the other hand, many patients had perfusion 
defects on CT angiography. These multiple occlusions 
of vessels provide high VA/Q regions with increased 
dead space ventilation (19–22). In the present study, 

we confirmed that severe hypoxemia in the context of 
COVID-19 pneumonia is accompanied by a high level 
of physiologic dead space (23). Most importantly, we 
found that the APP decreases both the physiologic 
dead space and the respiratory rate without affecting 
the Paco2 level, which supports an effective reduction 
in ventilatory inefficiency (i.e., wasted minute venti-
lation) (13). As the improvement in oxygenation cor-
related with the reduction in physiologic dead space, 
we hypothesize that the APP acts mainly through the 
homogenization of the VA/Q ratio.

The effect of the APP on the WOB in nonintubated 
patients is poorly described. In children with severe 
bronchiolitis who are supported by nasal CPAP, 1 hour 
of the APP decreased not only the PES–time product 
(PTP) per minute but also the PES swing (∆PES) and the 

Figure 4. Effects of the semirecumbent position (SRP) and prone position (PP) on inspiratory muscle effort. A, Dot plots and lines of 
the relative variation in the esophageal pressure swing (∆PES) during SRP and PP, which was computed as 100 × (end value–baseline 
value)/baseline value. The baseline of each period was normalized to the reference level (zero). The horizontal line indicates the median 
value. B, Scatter plot and regression analysis of the baseline ∆PES and the relative variation in ∆PES during the PP. The dashed lines 
indicate the 95% CI of the regression line. C, Dot plots and lines of the relative variation in the simplified esophageal pressure–time 
product per minute (sPTPmin) during the SRP and PP, which was computed as 100 × (end value–baseline value)/baseline value. The 
baseline of each period was normalized to the reference level (zero). The horizontal line indicates the median value. D, Scatter plot and 
regression analysis of the baseline sPTPmin and the relative variation in sPTPmin during the PP. The dashed lines indicate the 95% CI of 
the regression line.
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esophageal PTP per breath (24). In adult patients with 
severe COVID-19 pneumonia who were supported by 
helmet CPAP, 3 hours of the APP reduced the modi-
fied esophageal PTP per minute but not the ∆PES (9). 
To the best of our knowledge, the present study is the 
first to investigate the effect of the APP on the WOB 
in spontaneously breathing patients with COVID-19 
supported by HFNO. We report a reduction in the 
esophageal PTP per minute but no significant varia-
tion in the inspiratory muscle activity per breath.

The inspiratory effort of patients with COVID-19–
related AHRF seems to be lower than that of patients 
with other causes of AHRF, as suggested by a retro-
spective propensity-matched analysis (25). In our pop-
ulation, the median ∆PES at the study entry was low 
(10.9 cm H2O), despite evidence of an increased respi-
ratory drive (respiratory alkalosis), and this result was 
concordant with the value of 12.5 cm H2O reported by 
Tonelli et al (25) in a similar population. However, our 
patients were already supported by HFNO at the time 
of study entry, which per se yields a reduction in in-
spiratory effort and respiratory rate (26). Nevertheless, 
the low levels of dyspnea and inspiratory effort corrob-
orate the concept of silent hypoxemia during COVID-
19 (2, 27).

In the present study, the APP did not reduce the 
proportion of patients breathing with an inspiratory 
effort above the median baseline level (10.9 cm H2O). 
However, the patients with the highest inspiratory 
effort at baseline achieved the greatest reduction in 
inspiratory effort. Nevertheless, the APP effectively 
reduces the PTP per minute, which is a surrogate of 
the energy that is dissipated by the respiratory mus-
cles over time. This finding is mainly attributed to the 
reduction in the respiratory rate, which was also con-
sistently observed in other studies (6, 9). Similarly, 
the patients with the highest respiratory rate at base-
line were those who achieved the greatest reduction 
during the APP, suggesting that despite tachypnea or 
high inspiratory effort, the APP should be attempted 
with close monitoring of respiratory function and 
maintained, provided a rapid clinical improvement is 
observed.

In patients with non-COVID-19–related AHRF, the 
need to switch from noninvasive support to invasive 
mechanical ventilation seems to be correlated with the 
magnitude of the inspiratory effort (28). In our popula-
tion, the five patients (29%) who required subsequent 

intubation already had a significantly higher inspira-
tory effort and PTP per minute at the time of study 
entry. A ∆PES greater than 11.4 cm H2O best predicts the 
need for intubation. Although this finding strengthens 
the relevance of monitoring the inspiratory efforts of 
patients with AHRF, further confirmation in a larger 
population is needed.

Our study has some limitations. The sample size 
was calculated to detect an improvement in oxygena-
tion, but it seems underpowered to detect a reduction 
in the inspiratory effort per breath. Furthermore, the 
measurements of the respiratory mechanic param-
eters relied on some assumptions that may be subject 
to errors. First, the airway pressure was not meas-
ured but was estimated from the HFNO settings (29) 
and was presumed to be constant during tidal venti-
lation. Second, similar to other studies (10, 26), we 
neglected the WOB and the inspiratory effort due to 
the elastic recoil of the chest wall. Nevertheless, we 
did not measure the transdiaphragmatic pressure and 
thus cannot exclude the possibility that expiratory 
muscle activity affected our results (30). Additionally, 
we used a predictive equation to estimate the VD/VT 
(12) that was not validated in nonintubated patients. 
Nevertheless, the range of physiologic dead space that 
we reported is consistent with those of mechanically 
ventilated patients with COVID-19 (31), and the sig-
nificant reduction observed during the APP was not 
achieved with the SRP. Finally, the results of this study 
should not be extrapolated to patients receiving respi-
ratory support other than HFNO.

CONCLUSIONS

In patients with AHRF related to severe COVID-19 
pneumonia who are supported by HFNO, the APP 
improves oxygenation and reduces ventilatory inef-
ficiency, resulting in a decrease in the WOB, which 
mainly occurs by lowering the respiratory rate. The in-
spiratory effort was unaltered by the APP, but approx-
imately half of the patients had a low baseline ∆PES. 
In contrast, the patients with the highest respiratory 
rate or inspiratory effort at baseline were those who 
achieved the greatest reduction during the APP. Our 
findings provide novel pathophysiologic insights into 
the short-term effect of the APP and enhance the ra-
tionale for its early use in the process of care of patients 
with COVID-19–related AHRF.
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