Table 2.
Prediction results of all the models.
| Case | Model | MAE | RMSE | MAPE (%) | WIA |
|---|---|---|---|---|---|
| Case 1 | ① SED-DDP-TVFEMD-ConvLSTM | 1.5068 | 2.0332 | 0.7209 | 0.9866 |
| ② SED-DDP-TVFEMD-LSTM | 2.1629 | 3.2654 | 1.0444 | 0.9657 | |
| ③ SED-DDP-ConvLSTM | 1.9021 | 2.5782 | 0.8985 | 0.9808 | |
| ④ SED-DDP-LSTM | 2.6234 | 3.3312 | 1.2542 | 0.9633 | |
| ⑤ SED-ConvLSTM | 2.4902 | 3.0527 | 1.1908 | 0.9694 | |
| ⑥ ConvLSTM | 2.2587 | 2.9644 | 1.0568 | 0.9705 | |
| ⑦ SVR | 5.9349 | 6.9635 | 2.7454 | 0.8268 | |
| ⑧ ARIMA | 9.3035 | 11.6494 | 4.4684 | 0.2080 | |
| Case 2 | ① SED-DDP-TVFEMD-ConvLSTM | 1.8607 | 2.4502 | 0.8872 | 0.9796 |
| ② SED-DDP-TVFEMD-LSTM | 2.3514 | 3.0941 | 1.1289 | 0.9667 | |
| ③ SED-DDP-ConvLSTM | 3.1509 | 4.0562 | 1.5147 | 0.9495 | |
| ④ SED-DDP-LSTM | 3.4039 | 4.2216 | 1.6074 | 0.9327 | |
| ⑤ SED-ConvLSTM | 4.1079 | 5.3361 | 1.9730 | 0.9097 | |
| ⑥ ConvLSTM | 3.7394 | 4.4973 | 1.7763 | 0.9292 | |
| ⑦ SVR | 9.1966 | 10.3618 | 4.3166 | 0.6704 | |
| ⑧ ARIMA | 9.1321 | 10.9896 | 4.3730 | 0.3980 |
The best results are bold.