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Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a life-
threatening disease with poor prognosis. Pyroptosis has been recently disclosed 
as a programmed cell death triggered by invasive infection, involved in cancer 
development. However, the prognosis role of pyroptosis-related genes in HNSCC 
has not been discussed.
Methods: The RNA sequence data of pyroptosis-related genes were obtained 
from The Cancer Genome Atlas (TCGA) database. Cox regression and the least 
absolute shrinkage and selection operator (LASSO) analysis were performed to 
screen the HNSCC survival-related signature genes. We established a HNSCC 
risk model with the identified prognostic genes, then divided the HNSCC patients 
into low- and high-risk subgroups according to median risk score. Moreover, we 
utilized Gene Expression Omnibus (GEO) dataset to validate the risk model. Go 
and KEGG analyses were conducted to reveal the potential function of differen-
tial expression of genes that identified between low- and high-risk subgroups. 
ESTIMATE algorithm was performed to investigate the immune infiltration of 
tumors. Correlation between signature gene expression and drug-sensitivity was 
disclosed by Spearman's analysis.
Results: We constructed a HNSCC risk model with identified seven pyroptosis-
related genes (CASP1, GSDME, IL6, NLRP1, NLRP2, NLRP6, and NOD2) as prog-
nostic signature genes. High-risk subgroup of HNSCC patients in TCGA cohort 
correlated with lower survival probability than patients from low-risk subgroup 
(p < .001), and the result is verified with GEO dataset. In addition, 161 genes were 
identified differentially expressed between the low- and high-risk subgroups in 
the TCGA cohort, mainly related to immune response. Higher PD-L1 expression 
level was found in the high-risk subgroup that indicated the possible employment 
of immune checkpoint inhibitors. IL6 was positively correlated with WZ3105 and 
MPS-1-IN-1 in the cancer therapeutics response portal database.
Conclusion: We built and verified a risk model for HNSCC prognosis using 
seven pyroptosis-related signature genes, which could predict the overall survival 
of HNSCC patients and facilitate treatment.
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1   |   INTRODUCTION

HNSCC comprises around 90% head and neck cancer, 
is an aggressive and common disease with an estimated 
890,000 new cases and 450,000 deaths in 2018. The inci-
dence rate of HNSCC continues to climb annually and 
would increase by 30% by 2030.1,2 The main treatment 
options for HNSCC are surgery and radiation with or 
without chemotherapy, while managing recurrent tumors 
require multimodality treatment including application of 
immune inhibitors.3 In spite of advances in therapies, the 
5-year survival rate of HNSCC patients remains 40–50%,1,4 
the prognosis is frustrating. Thus, establishing a reliable 
prognostic model may assist to guiding clinical treatments 
for HNSCC patients.

Pyroptosis is a newly discovered programmed cell 
death triggered by invasive infection, and it plays an im-
portant role in pathogen clearance. Morphologically, pyro-
ptosis results in cell swelling, plasma membrane rupture, 
chromatin fragmentation, leading to intracellular release 
of pro-inflammatory factors including IL1b, IL18, and 
other cellular contents.5,6 Pyroptosis can be induced via 
a canonical pathway with the activation of CASP1 and a 
noncanonical pathway with the activation of CASP4/5/11, 
and then a key protein gasdermin D (GSDMD) is cleaved, 
oligomerized and transported to membranes. Eventually, 
there are pores start to form in the cell membrane, lead-
ing to the secretion of cytokines and cell rupture.7,8 
Accumulating evidences elaborate the close relationship 
of pyroptosis and cancers. Pyroptotic tissues may release 
the inflammatory mediators and cause the chronic in-
flammation which increases the risk of cancer.9,10 For 
example, secreted high-mobility group box protein 1 
(HMGB1) induces colitis-associated colorectal cancer 
(CAC) proliferation through ERK1/2 pathway.11 On the 
contrary, pyroptosis may also inhibit the tumor develop-
ment. Higher expression of NAcht leucine-rich repeat 
protein 1 (NALP1) which mediates inflammasome activa-
tion, correlates with lower risk of metastasis, and longer 
survival of colon cancer patients.12 Downregulation of 
GSDMD slows down tumor proliferation and predicts a 
good prognosis in non-small cell lung cancer (NSCLC).13 
Therefore, a better understanding of the molecular pro-
filing and mechanism in different cancers would provide 
more information on clinical prognosis and treatments.

Considering the important role of pyroptosis in 
tumor development, recent researches identify the 
novel pyroptosis-related gene signatures for diagnose or 

prognosis of lung adenocarcinoma,14 ovarian cancer,15 gas-
tric cancer,16 and skin cutaneous melanoma.17 However, 
less studies are found in HNSCC. Hence, we applied the 
bioinformatic analysis to disclose the expression levels of 
pyroptosis-related gene in HNSCC and adjacent normal 
tissues, and evaluate the prognostic values of these genes, 
and investigate the relationships between pyroptosis and 
immune response in tumor microenvironment (TME).

2   |   MATERIALS AND METHODS

2.1  |  Data sources

The RNA sequence (RNA-seq) data of 502 HNSCC pa-
tients and 44 adjacent normal tissues, and corresponding 
clinical parameters were obtained from TCGA database 
on July 23, 2021. The RNA-seq data of 97 HNSCC patients 
and clinical parameters were obtained from GEO data-
base (ID: GSE41613).

2.2  |  Differentially expressed profile of 
pyroptosis-related genes

In total 33 pyroptosis-related genes were extracted from 
prior studies (Table S1).15 We distinguished the differen-
tially expressed pyroptosis-related genes between HNSCC 
and adjacent normal tissues via “limma” and “reshape2” 
packages. We uploaded the identified protein names to 
functional protein association networks STRING (https://
cn.strin​g-db.org/), and retrieved the protein–protein in-
teraction (PPI) profile.

2.3  |  Establishment and validation of 
prognostic signature

To develop the prognostic model, we first conducted uni-
variate Cox regression and LASSO analysis18 using the R 
package “glmnet” to filter the candidate genes, and we 
used the minimum parameters to confirm the penalty 
factor λ. Next, we adopted the following equation to cal-
culate the risk score: Risk Score = Gene1CoefixExpi + Gene2 
CoefixExpi + …GeneN CoefixExpi (Coef: coefficients, Exp: gene 
expression level). Five hundred and two HNSCC patients 
from TCGA dataset were divided into low- and high-risk 
subgroups based on the calculated median risk score. 
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Subsequently, we compared the overall survival curves 
between the subgroups via Kaplan–Meier analysis, and 
we also described 1-, 3-, and 5-year overall survival by 
means of time-dependent receiver operating character-
istic (ROC) analysis. Area under the ROC curve (AUC) 
curve is applied to evaluate the predictive power of the 
model. We prepared the principal component analysis 
(PCA) plot using the “prcomp” function in the “stats” R 
package. The nomogram model was constructed on the 
basis of risk score and clinical information (age, gender, 
grade, and stage) to predict the overall survival of HNSCC 
patients.

2.4  |  Independent prognostic analysis of 
risk score

We downloaded the clinical information (age, gender, 
grade, and stage) of patients separately from the TCGA 
and GEO cohort, and conducted univariate and multivari-
able Cox regression to analyze the independent prognos-
tic characteristics of these variables and risk score in the 
model.

2.5  |  Functional enrichment analysis

We first screened 161 differentially expressed genes be-
tween low- and high-risk HNSCC subgroups according 
to the criteria (|log2FC| > 1.5 and FDR < 0.001). Next, we 
performed Geno ontology (Go) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses.

2.6  |  Immune infiltration, gene 
variation, and drug-sensitivity analysis

To investigate the immune infiltration status of the tu-
mors, we used the Estimation of STromal and Immune 
cells in MAlignant Tumor tissues using Expression data 
(ESTIMATE) algorithm19 to analyze immune components 
and overall stroma in low- and high-risk subgroups in the 
TCGA cohort. Gene variations were compared between 
subgroups using maftools. Correlation between signature 
gene expression and drug-sensitivity was disclosed by 
Spearman's analysis in the cancer therapeutics response 
portal database.

2.7  |  Statistical analysis

We applied Student t-test and one-way ANOVA to com-
pare the differences of continuous variables between the 

HNSCC and normal tissues. Chi-squared test was applied 
to compare the categorical variables. The survival curves 
of Kaplan–Meier analysis were compared by the log-rank 
test. The hazard ratio (HR) and 95% confidence interval 
(CI) of pyroptosis-related genes and clinical parameters 
were calculated along with the application of univariate 
and multivariate Cox regression. R software (v4.0.2) was 
used to perform the statistical analysis. p < 0.05 was con-
sidered significant level.

3   |   RESULTS

3.1  |  Identification of differential 
pyroptosis-related genes in HNSCC

We first compared 33 pyroptosis-related gene expres-
sions in TCGA HNSCC dataset (n  =  502) and normal 
samples (n  =  44), followed by identification and anal-
ysis. The workflow was shown in Figure  1A. We had 
identified 21 genes that displayed different expression 
levels in the tumor group versus normal group, and the 
RNA levels of these genes were presented as heatmap 
(adjusted p < 0.05, Figure 1B). Next, we performed PPI 
analysis in order to reveal the potential interaction net-
work of these 21 pyroptosis-related genes (Figure  1C), 
and we found AIM2, CASP1, CASP5, CASP8, GSDMD, 
IL1B, PYCARD, NLRC4, and NLRP1, were hub genes. 
The correlation analysis of these 21 pyroptosis-related 
genes was shown in Figure 1D.

3.2  |  Cluster analysis based on 
pyroptosis-related genes

To reveal the potential connections of 21 differentially 
expressed pyroptosis-related genes to HNSCC subtypes, 
we applied k-means consensus clustering method to an-
alyze 502 HNSCC patients in TCGA dataset. We found 
that when the clustering variable k = 2, the points in the 
same group are similar, and dissimilar in different groups, 
which mean the 502 HNSCC patients could be separated 
into two clusters on the basis of these 21 differentially 
expressed genes (Figure  2A). Then, the probability of 
survival in given length of time was compared between 
these two clusters using Kaplan–Meier survival curve 
(Figure 2B), but no differences were observed (p = .613). 
A total of 33 pyroptosis-related gene expressions and the 
clinical characteristics including age (≤60 or >60), gender 
(female or male), tumor differentiation (G1-G3), tumor 
node metastasis classification (TNM), and survival status 
(alive or dead) were displayed in the heatmap (Figure 2C), 
but no obvious differences were seen.
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3.3  |  Development of prognostic 
biomarkers of pyroptosis-related genes

To evaluate the effect of 33 pyroptosis-related genes 
on survival of HNSCC patients, univariate Cox regres-
sion and the LASSO analysis were applied (Figure 3A-
C). Up to seven genes (CASP1, GSDME, IL6, NLRP1, 
NLRP2, NLRP6, and NOD2) were selected as survival-
related signature genes according to the optimum pen-
alty factor λ value. Among them, NLRP1, NLRP6, and 
NOD2 were regarded as good prognostic biomarkers 
(HR < 1), while IL6, NLRP2, GSDME, and CASP1 were 
bad prognostic biomarkers (HR > 1). A HNSCC risk 

model consisting of these seven prognosis-related genes 
was generated (risk score  =  (0.197 × CASP1 exp.) +  
(0.145 × GSDME exp.) + (0.096 × IL6 exp.) + (−0.392 
× NLRP1 exp.) + (0.116 × NLRP2 exp.) + (−1.359 × NL
RP6 exp.) + (−0.237 × NOD2 exp.)). We further inves-
tigated the survival status of the HNSCC patients by 
using Kaplan–Meier method on this risk model. In 
total 502 HNSCC patients were equally divided into 
two subgroups according to the median risk score, and 
it was observed that patients in high-risk subgroup ap-
parently correlated to shorter survival time (p < .001, 
Figure  3D–F). Then, we measured the ability of our 
constructed model by means of time-dependent ROC 

F I G U R E  1   Identification of differentially expressed pyroptosis-related genes. (A) The flow chart of data analysis. (B) Heatmap revealed 
that 21 pyroptosis-related genes expressed differently between HNSCC and normal samples. (C) PPI network of 21 differentially expressed 
genes. (D) Correlation plot of 21 differentially expressed genes
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method to predict future risk. As shown in Figure 3G, 
AUC for 1-, 3-, and 5-year survival were 0.678, 0.670, 
and 0.706 separately. The distribution of patients in 
two subgroups was shown in the PCA plot (Figure 3H).

Furthermore, we built a predictive nomogram con-
sisting of clinical parameters and risk score to predict 
the 1-, 3-, and 5-year survival rates of HNSCC patients 
(Figure 4A). The calibration curves of the nomogram in-
dicated the relatively good prediction of overall survival 
rates (Figure 4B–D). In addition, the predictive ability of 
model and the clinical characteristics of patients were 
shown in Figure S1.

3.4  |  Validation and clinical value of 
prognostic signature

GEO dataset was utilized to validate our established 
model. Based on the calculated median risk score, the 97 
HNSCC patients from the dataset (GSE41613) were di-
vided into two subgroups, and it was obviously seen that 
patients in the high-risk subgroup had lower probability of 
survival and shorter survival time when compared to the 
patients in the low-risk subgroup (p < .001, Figure 5A-C). 
Moreover, time-dependent ROC curve disclosed that AUC 
for 1-, 3-, and 5-year survival were, 0.699, 0.724, and 0.609 

F I G U R E  2   Molecular subtype based on differentially expressed pyroptosis-related genes. (A) Cluster analysis (k = 2). (B) Kaplan–Meier 
curves of two clusters. (C) Heatmap displayed the expression levels of 33 pyroptosis-related genes and the clinical characteristics of two 
clusters
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separately (Figure 5D), which was consistent to our pre-
vious analysis with TCAG dataset, exhibiting a good pre-
diction using our model. The PCA plot of two subgroups 

was shown in Figure 5E. Considering limited data of GEO 
were available to verify our model, we had conducted 
internal validation by dividing patients from TCGA into 

F I G U R E  3   Development and assessment of prognostic signature based on pyroptosis-related genes in the TCGA cohort. (A) Forest 
of univariate Cox regression-related overall survival prognosis. (B) Cross-validation for identifying parameters in the LASSO. (C) LASSO 
regression identified seven prognosis-related genes. (D) Kaplan–Meier curves of low- and high-risk subgroups based on risk score. (E) 
Scatterplot of relationship between risk scores and survival time/survival outcomes. (F) Risk score of HNSCC patients were presented based 
on the low- and high-risk subgroups. (G) ROC curves of prognostic signature in HNSCC patients. H PCA analysis of patient distributions 
from low- and high-risk group

F I G U R E  4   Establishment of a predictive nomogram. (A) Nomogram to predict 1-, 3-, and 5-year survival rate of HNSCC patients. 
(B) Calibration curves of the nomogram predicting survival rate of HNSCC patients in the validation cohort (x-axis: predicted survival 
probabilities; y-axis: actual observed survival probabilities)
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train set and validate set to measure the accuracy of our 
model, and the results were good and shown in Figure S2.

3.5  |  Independent prognostic analysis for 
risk score

To confirm the risk score determined by the seven-gene 
signature model in prognosis could act as an independ-
ent prognostic factor, we employed univariate and mul-
tivariate Cox regression analysis. In TCGA cohorts, both 
analyses verified that the risk score was independent 

for prediction of poor survival in HNSCC patients (uni-
variate analysis, HR  =  2.245 95% CI: 1.685–2.990 and 
multivariate analysis, HR = 2.134 95% CI: 1.595–2.855, 
Figure  6A, B), and in GEO cohort, the same conclu-
sion was drawn (univariate analysis, HR  =  1.146 95% 
CI: 1.095–1.200 and multivariate analysis, HR  =  1.195 
95% CI: 1.139–1.253, Figure 6C, D). A heatmap of clini-
cal characteristics and signature genes for the TCGA co-
hort was generated in Figure 6E, and we discovered that 
expressions of all seven signature genes as well as the 
survival status (alive or dead) had statistical differences 
between the two subgroups.

F I G U R E  5   External validation of prognostic signature genes in the GEO cohort. (A) Kaplan–Meier curves of low- and high-risk 
subgroups based on risk score. (B) Risk score of HNSCC patients was presented. (C) Scatterplot of relationship between risk scores and 
survival time/survival outcomes. (D) ROC curves of prognostic signature in HNSCC patients. (E) PCA analysis of patient distributions from 
low- and high-risk subgroup
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3.6  |  Functional enrichment analysis 
indicates the different pathways in 
low- and high-risk subgroups

To further investigate the different mechanisms that 
might affect the survival status of patients in two sub-
groups, we first identified 161 genes that expressed dif-
ferently between two subgroups in the TCGA cohort, 
and then performed functional enrichment analysis (Go 
and KEGG). We found that the low- and high-risk sub-
groups had diverse relationship with immunity and im-
mune response (Figure 7A, B). Go analysis revealed that 
these genes enriched in regulation of humoral immune 
response, lymphocyte-mediated immunity, and adaptive 
immune response, etc. While KEGG result identified an 
important pathway, IL-17 signaling pathway that has 
been related to cancer progression.20

3.7  |  Immune filtration analysis

Next, we used ESTIMATE algorithm to calculate the im-
mune and stromal scores in low- and high-risk subgroups 
in the TCGA cohort. High-risk subgroup consisted of es-
pecially higher level of naïve B cells, plasma cells, CD8+ T 
cells, activated memory CD4+ T cells, T follicular helper 
cells, monocytes, M1 macrophages, resting dendritic cells, 
and resting mast cells, but lower level of M0 macrophages 
and activated mast cells. It was shown that high-risk sub-
group had significant higher immune score than that of 
low-risk subgroup (Figure  8A), which suggested that in 
TME, high-risk subgroup might have more immune cell 
infiltration. In addition, we also analyzed the expression 
level of PD-L1 in two subgroups, and found higher level 
of PD-L1 in patients of high-risk subgroup (Figure  8B), 
indicating the potential clinical benefit of medication of 
immune checkpoint inhibitors.

3.8  |  Gene variation and drug-
sensitivity analysis

Cancer cells always harbor numerous genome muta-
tions, including gene sequence (single nucleotide poly-
morphism, nucleotide insertion, nucleotide deletion, and 
sequence substitution) and structural (copy number vari-
ation, sequence inversion, and translocation) variants. A 
picture of genomic variation profile would provide us with 

more information on drug screening.21 We first analyzed 
the gene mutations in low-risk subgroup (Figure 9A, C) 
and high-risk subgroup (Figure  9B, D) separately, and 
not much differences between two subgroups were seen 
concerning to variant classification and types. However, 
the mutations frequencies of CDKN2A, NOTCH1, and 
CASP8 were significantly higher in high-risk subgroup 
than in low-risk subgroup. We further investigated if our 
seven pyroptosis-related signature genes could serve as 
biomarkers for drug screening. The result revealed that 
the expressions of NOD2, CASP1, IL6, and NLRP6 were 
negatively correlated with some or most drugs, while IL6 
was also positively correlated with WZ3105 and MPS-1-
IN-1 in the cancer therapeutics response portal database 
(Figure 9E).

4   |   DISCUSSION

The abilities to escape from deaths is one of the most es-
sential characters of cancer cells that would probably 
cause unsatisfactory therapeutic outcomes.6 As an inflam-
matory cell death program, pyroptosis is triggered by vari-
ous pathological stimuli, and its inflammatory features 
distinguish it from apoptosis and necroptosis.22 Numerous 
studies have well described the mechanisms of apoptosis 
and necroptosis, but the role of pyroptosis is little eluci-
dated in HNSCC.

In this study, we first evaluated the RNA expression 
level of 33 pyroptosis-related genes in HNSCC and adja-
cent normal tissues in TCGA cohort, we distinguished 21 
genes expressing differently between HNSCC and normal 
tissues. Using k-means consensus clustering method, we 
divided 502 HNSCC patients equally into two subgroups, 
but no survival differences for patients from two sub-
groups were observed. To further evaluate the potential 
role of pyroptosis-related genes in predicting survival 
status of HNSCC patients, we conducted Cox regression 
and LASSO analysis, and identified seven-gene signature 
(CASP1, GSDME, IL6, NLRP1, NLRP2, NLRP6, and NOD2) 
and built a HNSCC risk model. A significant survival dif-
ference was observed between low- and high-risk sub-
groups of HNSCC patients. Additionally, the risk model 
was verified in GEO dataset, and it worked well. However, 
limited patient data were contained in GEO dataset, we 
need to further verify our model when more relevant data 
become available. Of note, CASP1 is an essential cysteine 
protease protein which induces pyroptosis in response to 

F I G U R E  6   Independent prognostic analysis for risk score. (A) Univariate Cox regression analysis of risk score in the TCGA cohort. 
(B) Multivariate Cox regression analysis of risk score in the TCGA cohort. (C) Univariate Cox regression analysis of risk score in the GEO 
cohort. (D) Multivariate Cox regression analysis of risk score in the GEO cohort. (E) Heatmap for association between clinical parameters 
and identified prognostic signature genes
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F I G U R E  7   Functional enrichment analysis of identified differential expressed genes between low- and high-risk subgroups. (A) Bubble 
plot for GO analysis. B Barplot of KEGG pathway analysis
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pathological stimuli. After activation, CASP1 cleaves N-
terminal of GSDMD, and allowing its transportation to 
cell membrane to form pores. CASP1 gene is identified as 
a prognostic factor for breast cancer, hepatocellular carci-
noma, and pancreatic cancer, and it may influence tumor 
checkpoint inhibition by assisting T-cell immunity regula-
tion.23 In HNSCC, we found that CASP1 is upregulated in 
tumor tissues (Table S2, p < .01), and it seemed to be a bad 
prognostic biomarker (HR > 1), indicating CASP1 might 
be a tumor-promoting gene in HNSCC. GSDME is another 
pore forming molecule which is activated in caspase-3-
mediated pyroptosis, and its methylation is a potential 
biomarker in breast cancer. In addition to methylation, 
the expression of GSDME is positively correlated with a 
better prognosis in squamous esophageal cancer, while no 
difference of GSDME expression was observed between 
tumor and normal tissues in some other cancers.24,25 It 
is difficult to draw a uniform conclusion about the bio-
marker role of GSDME expression. We found GSDME 
expression is high-regulated in HNSCC tumor tissues 

(Table S2, p < .001), and considered it as a poor prognostic 
biomarker (HR > 1). IL6 is one of the pro-inflammatory 
cytokines which is secreted by various types of cells in-
cluding cancer cells, and it is involved in regulating pro-
liferation and differentiation of cancer cells, and found to 
be high in serum or tumor tissues of various cancers, such 
as breast cancer, prostate cancer, pancreatic cancer, etc. 
Inhibiting IL6 downstream signal pathway may augment 
therapeutic efficacy in those cancers with elevated level 
of IL6.26,27 Our findings in HNSCC distinguished IL6 as 
a good prognostic biomarker, but lower expression level 
of IL6 was detected in tumor tissues compared to normal 
tissues (Table S2). This is probably due to the secretion of 
IL6, further investigation of TME is needed. Another bad 
prognostic biomarker we screened is NLRP2 gene. NLRP2 
belongs to the NACHT leucine-rich repeat (NLR) family 
that plays a crucial role in inflammasomes. Common vari-
ants in NLRP2 gene are strongly associated with prognosis 
after stem cell transplantation.28 Additionally, previous 
study has already identified NLRP2 as one of the signature 

F I G U R E  8   Analysis of immune cell 
infiltration in low- and high-risk groups. 
(A) Boxplot for immune cells comparisons 
between low- and high-risk subgroups. (B) 
Violin plot for PD-L1 expression between 
low- and high-risk subgroups
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F I G U R E  9   Gene variation and drug-sensitivity analysis. (A, C) Gene variation analysis in low-risk subgroup. (B, D) Gene variation 
analysis in high-risk subgroup. (E) The correlation between four prognostic pyroptosis-related genes and drug-sensitivity
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genes for predicting of survival in HNSCC patients.29 Our 
findings confirmed this result. Besides, we have discov-
ered three good prognostic biomarkers, NLRP1, NLRP6, 
and NOD2. NLRP1 was identified as a first NLR-family 
protein and its function related to inflammation has been 
well studied.30 NLRP1 is demonstrated to promote mela-
noma development via improving inflammasome activa-
tion,31 and overexpression of NLRP1 in breast cancer cells 
promotes proliferation, tumorigenesis in nude mice.32 
Inversely, some other researches pointed that NLRP1 in-
flammasome decreased colitis and colitis-associated tum-
origenesis.33 It is likely that the function of NLRP1 differs 
in various cancers. In our analysis of HNSCC, NLRP1 gene 
tended to be a good prognostic biomarker. NLRP6 inhib-
ited gastric cancer development by promoting the ubiq-
uitination of a heat shock protein GRP7834 and another 
study of gastric cancer cells also demonstrate the tumor 
suppressing role of NLRP6.35 The study of hepatocellular 
carcinoma indicates that NOD2 is an innate immune sen-
sor initiates the immune response against pathogens, and 
acted as a tumor suppressor by directly activating AMPK 
pathway.36 These results support the potential good prog-
nostic role of NLRP6 and NOD2 identified in our study of 
HNSCC.

To further clarify the gene functions and pathways 
in our established risk model, we unrevealed 161 differ-
ential expressed genes between the low- and high-risk 
subgroups. Functional enrichment analysis disclosed 
these genes were mainly connected to immune response, 
suggested the participation of pyroptosis in TME regula-
tion. Our ESTIMATE algorithm results suggested more 
infiltration of immune cells in TME in high-risk sub-
group compared to low-risk subgroup. Noteworthy, much 
higher levels of antitumor immune cells (CD8+ T cells, 
monocytes, and M1 macrophages) were found in high-
risk subgroup. To our knowledge, CD8+ T cells have long 
been regarded as an essential antitumor lymphocytes 
for immune defense to eliminate infections malignant 
cells.37 Monocytes fight against infections, help removing 
dead cells, boost the immune response.38 Uncommitted 
(M0) macrophage is thought to polarize to M1 and M2 
macrophage upon various stimuli, and M1 macrophage 
executes antagonizing tumor function by producing pro-
inflammatory cytokines.39 We speculated this might pro-
vide a good opportunity to harness the immune cells to 
fight the cancer cells by applying immune checkpoint in-
hibitors.40 Another report has manifested that head and 
neck patients with higher frequencies of PD-1high CD8+ 
tumor-infiltrating lymphocytes correlated with signifi-
cantly worse disease-free survival.41 It is a big challenge 
that when and how to choose the proper cancer immu-
notherapy approaches. Furthermore, we have listed the 
possible connection between pyroptosis-related signature 

genes and drug-sensitivity. Considering little research ex-
plaining proptosis mechanisms in HNSCC,42,43 more in-
vestigations were required.

Our findings revealed the pyroptosis was closely con-
nected to HNSCC, and 21 pyroptosis-related genes were 
differentially expressed between tumor and normal tissues. 
We also built and verified a risk model for HNSCC progno-
sis using seven pyroptosis-related signature genes in TCGA 
and GEO cohorts. Additionally, we described a different 
gene expression profile between low- and high-risk sub-
groups on the basis of our model, and verified those genes 
were associated with tumor immunity. We further dis-
cussed the correlations between signature genes and drug 
sensitivities. Further in vitro and in vivo experiments are 
needed to elucidate the gene function pathways.
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