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a b s t r a c t

As the COVID-19 pandemic sweeps across the world, it has been accompanied by a tsunami of
fake news and misinformation on social media. At the time when reliable information is vital for
public health and safety, COVID-19 related fake news has been spreading even faster than the facts.
During times such as the COVID-19 pandemic, fake news can not only cause intellectual confusion
but can also place people’s lives at risk. This calls for an immediate need to contain the spread of
such misinformation on social media. We introduce CTF, a large-scale COVID-19 Twitter dataset with
labelled genuine and fake tweets. Additionally, we propose Cross-SEAN, a cross-stitch based semi-
supervised end-to-end neural attention model which leverages the large amount of unlabelled data.
Cross-SEAN partially generalises to emerging fake news as it learns from relevant external knowledge.
We compare Cross-SEAN with seven state-of-the-art fake news detection methods. We observe that it
achieves 0.95 F1 Score on CTF, outperforming the best baseline by 9%. We also develop Chrome-SEAN,
a Cross-SEAN based chrome extension for real-time detection of fake tweets.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The increase in accessibility to Internet has dramatically
hanged the way we communicate and share ideas. Social media
onsumption is one of the most popular activities online. Nowa-
ays, it is a trend to rely on such platforms for news updates. The
bsence of a verification barrier allows misinformation on sites
nline. Due to the complexity of the issue, the definition of ‘‘fake
ews’’ is not well defined. A few definitions used in prior studies
re as follows: ‘A news article that is intentionally and verifiably
alse’ [1,2] relating to news that are deceptive in nature, ‘A news
rticle or message published and propagated through media,
arrying false information regardless of the means and motives
ehind it’ relating to various forms of false news and misinfor-
ation [3–7]. A few broader definitions by Zhou et al. [8] state,

Fake news is false news’, ‘Fake news is intentionally false news
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published by a news outlet.’ For our purpose, we define COVID-19
fake tweet as any tweet with information which contradicts the
statements released by the governmental health organisations,3
and genuine tweets to be the tweets obtained from their official
accounts.

On 30 January 2020, The World Health Organisation (WHO)
has declared COVID-19 to be a Public Health Emergency of In-
ternational Concern and issued a set of Temporary Recommen-
dations. A recent study observed 25% increase in average user
social media activity due to the global lockdown [9]. UNESCO
stated, ‘‘during this coronavirus pandemic, fake news is putting
lives at risk’’. Fake news, ranging from the speculations around
origin of the virus to baseless prevention and cures, is spreading
rapidly without any valid evidence. WHO has recently declared
the spread of COVID-19 related misinformation as an ‘Infodemic’;
according to their definition, ‘‘An infodemic is an overabundance
of information, both online and offline. It includes deliberate
attempts to disseminate wrong information to undermine the
public health response and advance alternative agendas of groups
or individuals’’. WHO, CDC (Centers for Disease Control and Pre-
vention) and other government bodies have set up specific web
pages in order to curb major misconceptions about the virus

3 https://en.wikipedia.org/wiki/List_of_health_departments_and_ministries.
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Fig. 1. An example of origin, propagation and social context of a popular misinformation. The responses for a tweet with misinformation seem to be coherent to it,
and could ultimately spread it wider and deeper into the follower networks. Both the tweets and responses contradict the reliable news source.
and to maintain public awareness. Any single false news that
gains enormous traction can negate the significance of a body of
verified facts. When a tweet with misinformation is retweeted by
an influential person or by a verified account, the marginal impact
grows largely. The analysis, identification, and elimination of fake
news thus have become a task of utmost importance. Therefore,
there is an immediate need to detect the fake news and stop their
spreading.

Till now, no verification barrier exists that can authenticate
the content being shared on social media platforms. Due to this,
quite often, general people are misinformed when an unreliable
news or information is shared irrespective of intentions. With
increase in reliance on social media platforms such as Twitter
and Facebook for information, the spread of misinformation also
tends to increase. Fake news is usually targeted for financial or
political gain with click-bait titles or advertisement links gaining
user attention. The spread of fake news is proven to be a threat
in the past during global events such as US 2016 elections and
the Brexit. Studies showed that automated bots are used for
spreading fake content [10]; however, all the posts of bots cannot
be considered as fake since they are devised to post non-fake
content too. Genuine users seldom fall prey to fake content, and
with uninformed knowledge sharing among their network makes
genuine users major contributors to its spread.

Twitter is one of the largest micro-blogging platforms with
over 1.5M daily active users combating fake news since a long
time. The major exploitation of fake news is highlighted during
the 2016 U.S. presidential election campaign. The existence of
‘echo chamber effect’ on social media allows biased information
to be spread wider and deeper [11]. Tweets containing fake
content show far wider reach, spreading rapidly than normal
tweets, and such variations in propagation can be clearly ob-
served in tweets related to political news. Such tweet propagation
behaviour is partly due to the innate nature of users to retweet
content which is provocative, aligning to their beliefs, irrespective
of the truthfulness of the content. Social and psychological factors
with ‘valence effect’ [12] play an important role in the spread
of fake news. Studies also showed the involvement of bots to
create and spread fake news [10]. News involving any political
figure in power create huge fluctuations in stock markets and
trades economically. For example, a 2013 tweet ‘Breaking: Two
Explosions in the White House and Barack Obama is injured’,
from a hacked Associated Press account created a loss of $136
billion worth of stock value [13]. Twitter has a long history of
accounts getting stolen, and hackers with motivations to create
mass hysteria take control of verified accounts for wider spread
2

of hoax. Although the character limit helps the amount of textual
content being shared, other forms of content such as images,
videos and links are also exploited to spread false information.
Twitter usually deletes tweets and users that are flagged post-
verification; however, this is not a scalable solution for automated
fake news verification.

Due to the lockdown and work from home conditions during
COVID-19 pandemic, Twitter witnessed a 30% rise in daily average
usage. With isolation from the external world, users turn to social
media platforms for any updates related to the pandemic. Due to
uninformed knowledge, users tend to retweet content which may
not be totally accurate. At the beginning of the pandemic, very
limited information is available to the public on the realities of
the virus. Even verified users such as Elon Musk tweeted stating
that ‘‘Kids are essentially immune’’ which provides statistical
evidence in which there are no infected people below the age
19. Public health experts later released a statement debunking
his claim. We illustrate this in Fig. 1, showing the tweet with
misinformation by Elon Musk along with the ‘responses received
in Twitter’ and ‘reliable news sources statements’. We can notice
that the retweets are coherent to the misinformed tweet which
spread the misinformation across other networks, wider and
deeper. The news from verified sources state otherwise, clearly
debunking the said statement Due to the scarcity of reliable infor-
mation source, multiple fact checking sites depend on statements
released by Public Health bodies. Although few users tweet and
retweet false content without any ill-intention, there exist users
who create and spread false news for political gains. Diffusion
of fake tweets and genuine tweets vary in a pandemic setting
such as this [14]. Tweeting a political tweet with false information
multiple times from several accounts with various trending hash-
tags, called ‘Hashtag hijacking’ is also observed. Fig. 2(a) shows
the count of favourites and retweets for both genuine and fake
tweets, whereas Fig. 2(b) shows the friends and followers count
of users posting genuine and fake tweets. We can clearly observe
from Fig. 2(a) that genuine tweets tend to have higher favourite
count compared to retweet count whereas the fake tweets tend to
have higher retweet count, propagating the false information to a
wider range. We can also observe from Fig. 2(b) that users posting
genuine content have higher number of friends than followers,
and users posting fake content have higher number of followers
than friends – this setting again allows spread of fake news
towards larger audiences through the users posting fake content.

The rest of our paper is organised as follows. We discuss
related works on fake news detection and semi-supervised mod-
els for text classification in Section 2. Section 3 describes our
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Fig. 2. Correlations between (a) user features and (b) tweet features for genuine and fake tweets. In (b), note that a large number of samples are present close to
the origin.
four-stage dataset collection and annotation processes, which is
followed by further analysis of the dataset on various aspects in
Section 4. The proposed Cross-SEAN model and training strategies
are introduced in Section 5, while its evaluation and a detailed
ablation study are shown in Section 6. For real-time usage of
Cross-SEAN, the developed chrome extension, Chrome-SEAN and
the user study are described in Section 7. Finally, the paper is
concluded with discussions, shortcomings and future work in
Section 8.

Our contribution I: CTF- A COVID-19 fake news dataset and
its analysis. With the aforementioned concerns, it is evident that
more research is required to detect and neutralise fake tweets
and keep the users warned. Although research communities are
interested to work on the challenging task of COVID-19 fake news
detection which is one of the pressing issues of our time, the
absence of a publicly available labelled COVID-19 misinformation
dataset is a major bottleneck to design automated detection
models. Also, not everyone possesses the resources to collect such
a dataset, as it is cumbersome. We fill this gap by introducing
CTF, the first COVID-19 Twitter fake news dataset, consisting of
a mixture of both labelled and unlabelled tweets. Our dataset
contains a total of 45.26K labelled tweets, among which 18.55K
re labelled as ‘genuine’ and 26.71K as ‘fake’. In addition, it con-
ains 21.85M unlabelled tweets, which can be used to enrich the
iversity of the dataset, in terms of linguistic and contextual fea-
ures in general. A detailed analysis of the dataset unfolds many
nteresting observations. E.g., fake news content tends to – (i)
ccompany less URLs and more multimedia content, (ii) receive
uch lesser likes and retweets, (iii) exhibit mostly neutral and
egative sentiment, as compared to genuine content. Our dataset
ollection is a four stage process, starting from hydration of
weets, collection of supporting statements, usage of fine-trained
ransformer models such as BERT and RoBERTa, to manual an-
otation. As COVID-19 is an emerging topic, we rely on certain
overnment health organisations and fact checking sites such as
olitiFact, Snopes, TruthOrFiction, etc, which release statements
n widely popular misconceptions. We then use tweets on the
ollected facts using BERT and RoBERTa to identify supporting
r contradicting claims, which are then partially annotated. The
ajor part of our genuine tweets are taken from governmental
ealth organisations.
Our contribution II: Cross-SEAN. Two major issues in any

ake news detection task are the lack of labelled data to train
deep neural model and the inability to detect fake news that

re different from the training data (emerging fake news). To

3

address these issues, we propose Cross-SEAN, a cross-stitch based
semi-supervised attention neural model. Cross-SEAN works in a
semi-supervised way leveraging the vast unlabelled data to learn
the writing style of tweets in general. It considers user metadata,
tweet metadata, and external knowledge in addition to tweet text
as its inputs. External knowledge is collected on the fly in the
form of stances close to tweets from trusted domains and allows
a way for Cross-SEAN to not restrict to the train data, as external
knowledge can contain information which is absent in the train
data partially helping with early detection. When multiple inputs
are involved, simple concatenation of layers might undermine
few inputs’ significance on the model. We employ cross-stitch
mechanism which provides a way to find the optimal combi-
nation of model parameters that are used to pass the inputs to
various sections of the network. Attention mechanisms have the
ability of ‘attending to’ particular parts of the input when process-
ing the data, allowing Cross-SEAN to be capable of representing
the words which are being concentrated on, for a given tweet
text.

We compare Cross-SEAN with seven state-of-the-art models
for fake news detection. Experimental results show that Cross-
SEAN achieves 0.95 F1 Score on CTF, outperforming seven base-
lines by at least 9%. We show comparative evaluation of base-
lines with Cross-SEAN on various features and present a thor-
ough ablation study of Cross-SEAN to understand the importance
of different features and various components of the objective
function.

Our contribution III: Chrome-SEAN. For easy and real-time
usage by Twitter users, we finally introduce a chrome extension,
called Chrome-SEAN which uses Cross-SEAN to classify a tweet
while in the tweet page. To evaluate Chrome-SEAN, we collect
feedback from human subjects. We further perform online learn-
ing conditioned on the feedback and the confidence of model.
The extension is deployed and configured to handle concurrent
requests.

In summary, our major contributions are four-fold:

• CTF, the first labelled COVID-19 misinformation dataset.
• Cross-SEAN, a model to curb COVID-19 fake news on Twit-

ter. It is one of the few semi-supervised models introduced
for the task of fake news detection.

• Detailed analysis of the dataset to unfold the underlying
patterns of the COVID-19 related fake tweets.

• Chrome-SEAN, a chrome extension to flag COVID-19 fake
news on Twitter.
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Reproducibility: We have made the code and the CTF
dataset public at https://github.com/williamscott701/
Cross-SEAN. Section 6 describes more about the set-
tings to reproduce the results.

2. Related work

As our work revolves around fake news and semi-supervised
earning, we present the related work in two parts: (i) fake news
etection, and (ii) text-based semi-supervised learning. Due to
he abundance of literature in both these areas, we focus our
ttention to those studies which we deem as pertinent to the
urrent work.
Fake news detection: Fake news or misinformation on social

edia has gained a lot attention due to the exponential usage
f social media. Some of early studies tried to detect fake news
n the basis of linguistic features of text [15–17]. A group of
ecent approaches have used temporal linguistic features with
ecurrent neural network (RNN) [18] and modified RNN [19,20]
o detect fake news. Hybrid approaches by Kwon et al. [21]
ombined user, linguistic, structural and temporal features for
ake news classification. Lately, convolution networks have been
dopted along with recurrent networks to detect fake news [22,
3]. Malhotra and Vishwakarma [24] used the graphical convo-
utional networks and transformer-based encodings for the task
f rumour detection of tweets. They leveraged the structural and
raphical properties of a tweet’s propagation and tweet’s text.
ince satire can also lead to spread of misinformation, Rubin
t al. [25] proposed a classification model using 5 features to iden-
ify satire and humour news. Another study focused on detecting
ake news using n-gram analysis through the lenses of differ-
nt feature extraction methods [26]. Granik and Mesyura [27]
etected fake news using Naive Bayes classifier and also sug-
ested potentials avenues to improve their model. Ozbay and
latas [28] proposed a combination of text mining techniques
nd supervised artificial intelligence algorithms for the task of
ake news detection. They showed that the best mean values in
erms of accuracy, precision, and F-measure are obtained from
he Decision Tree algorithm. Apart from textual features, visual
eatures have also been employed for fake news detection. [29]
roposed a similarity-aware fake news detection method which
tilises the multi-modal data for effective fake news detection.
n the similar lines, Varshney and Vishwakarma [30] developed
click-bait video detector which is another prevalent form of
nline false content. Despite the success of supervised models,
ews spreads on social media at very high speed when an event
appens, only very limited labelled data is available in prac-
ice for fake news detection. Some studies such as [31,32] have
een involved around weakly supervised learning for fake news
etection. In similar directions, Yu et al. [33] used constrained
emi-supervised learning for social media spammer detection,
hile Guacho et al. [34] used tensor embeddings to form a semi-
upervised model for content based fake news detection. Dong
t al. [35] proposed a two-path deep semi supervised learning
or timely detection of fake news. They verified their system on
wo datasets and demonstrated effective fake news detection.
ishwakarma et al. [36] analysed the credible web sources and
roposed a reality parameter for effective fake news prediction.
arshney et al. [37] developed an automated system Hoax-News
nspector for real time prediction of fake news. They used con-
ent resemblance over web search results for authenticating the
redibility of news articles. Recently, Patwa et al. [38] prepared
n English COVID-19 fake news dataset [39] and a Hindi hostile
ost dataset [40]. A few recent studies [8,41,42] have provided
4

extensive literary surveys by investigating datasets, features and
models along with potential future research prospects for fake
news detection.

Semi-supervised models for text classification: Semi-
upervised learning (SSL) is proved to be powerful for leveraging
nlabelled data when we lack the resources to create large-
cale labelled dataset. Prior research on semi-supervised learning
an broadly be divided into three classes — multi-view, data
ugmentation and transfer learning [43]. The objective of multi-
iew approaches is to use multiple views of labelled as well
s unlabelled data. Johnson and Zhang [44] obtained multiple
iews for text categorisation by learning embedding of small text
egions from unlabelled data and integrating them to a supervised
odel. Gururangan et al. [45] and Chen et al. [46] leveraged
ariational autoencoders in the form of sequence-to-sequence
odelling on text classification and sequential labelling. Data
ugmentation approaches involve augmenting either the features
r labels. Nigam et al. [47] classified the text using a combination
f Naive Bayes and Expectation Maximisation algorithms and
emonstrated substantial performance improvements. Miyato
t al. [48] utilised adversarial and virtual adversarial training to
he text domain by applying perturbations to the word embed-
ings. Chen et al. [49] introduced MixText that combines labelled,
nlabelled and augmented data for the task of text classifica-
ion. They interpolated text in hidden space using Mixup [50]
o create a large number of augmented training samples. Xie
t al. [51] used advanced augmentation methods (RandAugment
nd back-translation) to effectively noise unlabelled examples.
ransfer learning approaches aim to initialise task-specific model
eights with the help of pre-trained weights on auxiliary tasks.
ai and Le [52] used a sequence autoencoder, which reads the
nput sequence into a vector and predicts the input sequence
gain to use unlabelled data for improving sequence learning
ith recurrent networks. Hussain and Cambria [53] employed
semi-supervised model based on the combined use of ran-
om projection scaling, and support vector machines to perform
easoning on a knowledge base. They showed a significant im-
rovement in emotion recognition and polarity detection tasks
ver the state-of-the-art methods. Howard et al. [54] proposed
he Universal Language Model Fine-tuning (ULMFiT), which has
een proved as an effective transfer learning method for various
LP tasks. Both studies [52,54] showed the improvement in the
erformance of text classification using transfer learning.
The most of the aforementioned methods for fake news de-

ection are tested on datasets with high volume of labelled data.
oreover, when multiple features are considered, their optimal
ombination is not explored. There is no published work related
o COVID-19 fake news detection. We strive to address these
ssues by first introducing the novel CTF dataset and then lever-
ging the unlabelled data in order to reduce the vast dependency
n the labelled data in our proposed Cross-SEAN model. We
lso employ cross-stitch for optimal combination of inputs into
arious sections of the model and show interesting analysis.

. Dataset collection and annotation

In this section, we introduce our novel dataset, called CTF
COVID-19 Twitter Fake News). The formation of this dataset
nderwent four stages mentioned below.
Stage 1. Segregating COVID-19 related tweets: Multiple

OVID-19 Twitter datasets (unlabelled) have recently been made
ublic on Kaggle and other sources; among them, we used the
atasets released by [55,56], and [57]. Alongside, there exist a few
ublicly available datasets containing COVID-19 related tweet
Ds being released everyday in chronological order. We collected
he tweet IDs from [58] and [59]. Due to the hydrating process

https://github.com/williamscott701/Cross-SEAN
https://github.com/williamscott701/Cross-SEAN
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ifferent attributes including keywords, hashtags, and sources of statements and URLs along with the respective number of tweets they are responsible for. The
able compiles the numeric details of Section 3. Here, WHO: World Health Organisation, CDC: Centers for Disease Control, NIH: National Institute of Health, CPHO:
entral Public Health Office, PHE: Public Health England, HHS: Human and Health Services.

Dataset collection and labelling

Using hashtags and keywords Using statements and tweets from organisations Using URLs

Major keywords No. of tweets Major sources No. of tweets Major services No. of tweets

Fake Genuine Fake Genuine Fake Genuine

bioweapon 4978 0 WHO 3395 4700 Snopes 1696 1650
vaccine 3620 221 CDC 1649 2195 PolitiFact 1484 2250
trump 2874 439 NIH 2231 1705 FactCheck 1060 1500
china 2677 515 CPHO 582 470 TruthOrFiction 1042 1895
WHO 493 4018 PHE 391 425 – – –
at home 0 4552 HHS 405 2255 – – –
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a

(which is time consuming) and the non-existence of fake tweets
(as Twitter deletes them upon identification), the tweet IDs did
not turn out to be very useful. However, we still considered
them in our dataset to learn the language semantics explained
in the subsequent sections. We also collected tweets using the
Twitter API based on some predefined hashtags (e.g., ‘WHO’,
‘covid19’, ‘wuhan’, ‘bioweapon’, etc.). Since the genuineness of
news correlates to the credibility of the source, we collected
tweets published by the aforementioned governmental health
organisations and gathered their official Twitter IDs. We extracted
tweets from these accounts and considered them genuine.

Stage 2. Collecting COVID-19 supporting statements: There
xist fact checking sites which analyse popular news across so-
ial media and label them as fake or genuine based on ver-
fied sources. We crawled various fact-checking sites such as
nopes, PolitiFact, FactCheck and TruthOrFiction for content related
o COVID-19. We extracted URLs, the content of URLs and their
orresponding labels (genuine or fake) from the fact checking
ebsites. To support this data, more genuine URLs were ex-
racted from the Twitter accounts of the official health bodies. To
ncrease public awareness about any widely accepted misinfor-
ation, governmental bodies across the world have setup specific
eb pages,4 ,5 ,6 which are also scraped. This stage resulted in a

bulk amount of data related to the content and URLs which are
known to be fake/genuine and act as the supporting statements
for the next stage.

Stage 3: Filtering genuine and fake tweets: We assumed
hat when a fake or genuine URL is being shared, all the tweets
ccompanying the URL also belong to the same class as URLs
re generally added in support to the text. Based on this, a
otal of 5.3K and 7.5K tweets were labelled as fake and gen-
ine, respectively. Although this assumption may garner some
nwanted noise since a tweet might contradict the opinion pre-
ented to the referred URL, on manual inspection we found out
hat this assumption surprisingly held true for most of the cases,
s elaborated in the next section. In addition, all the tweets
osted by governmental health organisations related to COVID-
9 with specific hashtags as mentioned above, form a majority
f our genuine data. This is based on the assumption that such
ealth organisations post content which either curb fake news or
re genuine in itself. We gathered 10K genuine tweets via this
ethod. Next, we used the pre-processed tweet texts with two
ransformer models, BERT [60] and RoBERTa [61], to populate
he dataset further. BERT is used to generate embeddings of
oth tweet text and the supporting statements collected and
osine distance is computed with a high threshold of 0.9 to label
he tweet into genuine or fake based on the polarity. This step

4 https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
5 https://www.cdc.gov/coronavirus/2019-ncov/index.html.
6 https://www.coronavirus.gov/.
 s
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resulted in 9.7K tweets labelled as fake. For RoBERTa, we used the
ine-tuned version on the Stanford Natural Language Inference
SNLI) Corpus [62]; this allowed to take in a pair of sentences and
heck if they are contradicting, neutral or entailing. We formed
airs of tweets and supporting statements to identify genuine
r fake tweets based on contradicting and entailing results. This
pproach gave us an extensive set of 10.6K fake tweets.
Stage 4: Human annotation: We performed manual verifi-

ation of a part of 45,261 labelled tweets (26,706 fake, 18,555
enuine) obtained from Stage 3. We employed three human
nnotators, who are experts in social media and have significant
xpertise in fact verification, to verify the labels. The annotators
nded up annotating 16,000 tweets (8000 fake and 8000 genuine)
ith an inter-annotator’s agreement of 0.82 (Krippendorf’s α)
ith the following instructions provided:

• A tweet is considered to be ‘fake’ if and only if:

– It contradicts or undermines facts from a pre-defined
list. Note that a combined list was made from the
aforementioned genuine sources.

– It supports or elevates a commonly identified misinfor-
mation.

– It is written in the form of sarcasm or humour, but
promotes a misleading statement.

• Other tweets which do not satisfy any of the above, would
be either unlabelled or genuine, as per the annotator’s dis-
cretion.

• If the tweet text in itself does not provide enough context
to annotate with confidence, the annotators could refer to
the tweet and user features.

On further observation, it is found that an average of
2% labels given by the automated techniques from Stage-3
atched the labels given by the human annotators for 16,000
amples. Thus, despite using a fully-automated and fast annota-
ion pipeline, which allowed us to have a relatively large labelled
orpus, only a noise of 8% exists.
During cross-validation, we use 20% of the human-verified

weets for testing, and remaining 80% tweets along with the
nverified tweets7 constitute the training set. We maintain the
ame distribution of fake and genuine tweets present in the entire
ataset in both the training and test sets.

. Dataset analysis

In Table 1, we show major keywords, statements and tweets
rom organisations and URLs used and the number of tweets that
re labelled as fake and genuine.

7 It may plant some noise in the training set which a sophisticated classifier
hould ignore while being trained.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.coronavirus.gov/
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Fig. 3. (a), (b) and (c) show the distribution of hashtags, sentiment and likes across the tweets, respectively.
l
w
8

Presence of hashtags: Hashtags have long been an important
ool on Twitter to organise, sort, follow and spread tweets. Our
ataset consists of a total of 955 and 2,231 unique hashtags
n genuine and fake tweets, respectively. We tabulate the dis-
ribution of hashtags for tweets in Fig. 3(a). It is evident that
#WHO’ is more prominent in genuine tweets. The vast number
f tweets containing ‘#china’ and ‘#bioweapon’ are fake tweets.
nterestingly, the appearance of ‘#trump’ hashtag in the fake
weets is much higher than the genuine tweets, pointing towards
he tendency of politicisation amongst fake tweets. Even though
he vaccine for COVID-19 is still under development, the recur-
ent use of ‘#vaccine’ in fake tweets may suggest the tendency
f spreading rumours with false remedies. The dominance of
ashtags such as ‘#togetherathome’, ‘#stayhome’ and ‘#sociald-
stancing’ in the genuine tweets suggests that they might have
een used to spread positive social messages.
Presence of URLs: To account for prevalence of misinforma-

tion, we analyse the URLs present in our entire dataset. A total of
14,830 genuine and 8,761 fake tweets contain at least one URL,
thus averaging to 0.87 and 0.35 URLs per genuine and fake tweet,
respectively. The contrast between the numbers may suggest that
in general, genuine tweets have a higher tendency of supporting
the claims.

Presence of multimedia: Twitter supports three types of me-
dia formats in a tweet– photo (P), video (V) and GIF (G). However,
it supports only one type of media in a particular tweet with a
limit of four photos and only one video/GIF. In our dataset, fake
tweets contain a total of 2,491 media files (2036P, 381 V, 74G)
across 2,344 tweets, with an average of 0.0988 per tweet, while
genuine tweets contain 1,473 media (1129P, 339 V, 5G) with an
average of 0.0834.

Sentiment of tweets: To obtain overall sense of public opinion
related to COVID-19, we analyse sentiment of the tweets [63]
using the texblob8 tool. Fig. 3(b) shows that in the highly negative
(-2) and neutral (0) sentiment zones, fake news are grouped
more than the genuine news. The average sentiment polarity for
fake tweets is 0.05 compared to 0.096 in genuine tweets, on a
scale of −2 to 2, as shown in Fig. 3(b). [Similar results were
also obtained from latest state-of-the-art polarity classification
methods for long reviews and short tweets [64–66]].

Likes and retweets: The existing propagationbased approaches
[27,67] showed the significance of likes and retweets for fake
news detection. The average number of likes per genuine tweet
is found to be 142.65, which is significantly higher than that
(4.25) of fake tweet. The tweet-wise data of likes is summarised
in Fig. 3(c). The large number tweets of popular public health
organisation explains the higher average likes per genuine tweet.
About 64% of fake tweets in our dataset are retweets of some

8 https://textblob.readthedocs.io/en/dev/.
6

other tweet, 8% of the fake retweets are quoted with the com-
ments, and 35% of genuine tweets are retweets with 8% of them
being retweets with comment.

Visual representations: We show t-SNE visual representa-
tions of labelled and unlabelled tweets on tweet text, tweet
features and user features in Figs. 3–5. Fig. 3 shows tweet text
representations on labelled and unlabelled data. Sentence BERT
is used to convert the tweet text to vector form. While the
overlap of genuine and fake tweets can be observed from Fig. 4(a),
the polarisation of topics can be observed from the unlabelled
data from Fig. 5(a). Certain user features and tweet features are
identified and are mentioned in Section 5.1; these are in turn used
for the visualisations on labelled and unlabelled data in Figs. 4
and 5 respectively. The polarisation in Fig. 5 supports the same
in Fig. 5(a). The labelled representation shows high non-linear
overlap and indicates the complexity of the classification task.

5. Cross-SEAN: Our proposed method

In this section, we describe Cross-SEAN9 for fake news detec-
tion. We explain individual components of the model, followed by
the training strategy. Fig. 6 shows the architecture of Cross-SEAN
and Fig. 7 shows the cross-stitch unit.

5.1. Explicit tweet and user features and external knowledge

Monti et al. [68] showed that content, social context or prop-
agation in isolation is insufficient for neural models to detect
fake news. Hence, we employ additional features related to both
the users and tweets along with the content of the tweets. For
the tweet features (TFs), we consider the attributes available
in the tweet object and some handcrafted features from the
tweet, amounting to a total of 10 features – number of hashtags,
number of favourites, number of retweets, retweet status, number
of URLs present, average domain score of the URL(s), number of
user mentions, media count in the tweet, sentiment of the tweet
text, counts of various part-of-speech tags and counts of various
inguistic sub-entities. Polarisation of users on similar beliefs is
idely observed on Twitter [69]. To capture this, we extract
features for each corresponding user (UFs) – verified status,

follower count, favourites count, number of tweets, recent tweets per
week, length of description, presence of URLs and average duration
between successive tweets.

These features can provide additional information of the user
characteristics and their activities. These not only help the model
identify bots and malicious fake accounts, but also help recognise
a pattern amongst users who post false and unverified informa-
tion.

On visualising the tweet and user features on labelled and
unlabelled data in Fig. 3, we observe the formation of clusters

9 Cross-Stitch based Semi-Supervised End-to-End Attention Neural Network.

https://textblob.readthedocs.io/en/dev/
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Fig. 4. (a), (b) and (c) show the t-SNE visual representations of tweet text, tweet features and user features of the labelled data, respectively. Here, TF → Tweet
eatures, UF → User Features and L → Labelled Data.
Fig. 5. (a), (b) and (c) show the t-SNE visual representations of tweet text, tweet features and user features of the unlabelled data, respectively. Here, TF → Tweet
Features, UF → User Features and UL → Unlabelled Data.
of similar tweets, indicating the polarity of the tweets. From
Fig. 4(c), we also observe that users posting fake tweets tend to
form a cluster, and users posting genuine tweets are scrambled
across the whole feature space. Few features of user posting
genuine tweets are highly similar to the features of users posting
fake tweets, thus overlapping with the fake tweet cluster. From
Fig. 5, the unsupervised user features show the dense polarity
across the whole latent space, while the tweet features are wide
spread, showing the diverse set of attributes in our unlabelled
data. These features are further used in the classification.

Feature based neural models learn a generalised function from
a limited manifold of the training data, and thus have a tendency
to perform poorly when the topics are variant. To overcome this
in Cross-SEAN, we use external knowledge, for the content relat-
ing to tweet text, as an input to the model. We use classical text
processing techniques to find a shortened contextual form of the
tweet text and use it as a query to retrieve the top Google Search
results, sorted in accordance to relevance [24,36,37]. From each
web-article returned from the search, a particular number of text
sentences are retrieved which are the closest to the original tweet
text, as measured using cosine similarity of the BERT Sentence
Embeddings [60] of the two. This is done until k (=10, by default)
sentences are retrieved for the tweet.

In addition to this, we make use of the large amount of
unlabelled data (21.85M) available in CTF–

• We use one-half of the unlabelled data to fine-tune word
embeddings to encode the tweet text. We expect this to
help the model learn the linguistic, syntactic and contextual
composition of not only general Twitter Data but also the
domain data, i.e., the COVID-19 pandemic in case of CTF.
7

• We leverage the other half of the unlabelled data for un-
supervised training using an additional adversarial loss. Ex-
perimental results presented in Section 6.2 show that doing
this reduces stochasticity and makes the model more robust
with the nature of adversarial training.

We elaborate on various components of the model architec-
ture and the training intricacies in the following sections.

5.2. Model architecture

Our entire training data is composed of labelled and unlabelled
samples, denoted by XL and XU respectively. XL consists of a total
of nL data points: (x1L , y

1
L ), (x

2
L , y

2
L ), · · ·, (xnLL , ynLL ), where xiL is the

ith tweet and yiL is its label. XU consists of a total of nU unlabelled
data points: x1U , x

2
U , . . . , x

nU
U . In both the cases, each input sample,

xiK (for K ∈ (L,U)) comprises four input sub-sets — tweet text
(xiTT ), external knowledge text (xiEK ), tweet features (xiTF ) and user
features (xiUF ).

In each pass through our model, these four inputs are encoded
separately as described below.

Encoding textual data: The tweet text of sequence length
N is represented as a one-hot vector of vocabulary size V . A
word embedding layer E ∈ RV×D transforms the one-hot vector
into a dense tensor e ∈ RN×D consisting of (e1, e2, . . . , eN ). These
token vectors are further encoded using a Bidirectional LSTM, the
forward and backward layers of which process the N vectors in
opposite directions.

The forward LSTM emits a hidden state hft at each time-step,
which is concatenated with the corresponding hidden state h of
bt
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Fig. 6. A schematic diagram of Cross-SEAN.

he backward LSTM to produce a vector ht ∈ R(2×H),

t = hft ⊕ hbt , ∀t ∈ [1,N] (1)

where H is the hidden size of each LSTM layer.
At each layer, a final state output fk ∈ RH is also obtained (∀

k ∈ (f , b)).
At this stage, a net hidden vector h containing N hidden

vectors from the two LSTM layers is combined with the final state
vector f using attention across the hidden states, given as:

v =

N∑
j=1

αijhj; αij = Softmax(hi • fj) (2)

where,

f = ff ⊕ fb, f ∈ R2×H (3)

h = h1 · · · ⊕ · · · hN , h ∈ RN,(2×H) (4)

We refer vector v obtained after attention across the hidden
states as vTT , representing the encoded feature of the tweet text.

In addition to this, we use Sentence BERT [60] to find con-
textual embedding eEK of the external knowledge corresponding
to each input batch. We do this considering the vast difference
between our tweet text input and the external knowledge text.
The eEK vector is then passed through a linear layer to obtain an
encoded representation vEK of the external knowledge.

Encoding tweet and user features: As shown in Fig. 3, we
follow a highly concurrent yet distinct mechanism to encode both
tweet and user features. Firstly, xTF ∈ RKt and xUF ∈ RKu are passed
through separate linear layers which interpolate them to higher
dimensional dense feature vectors vTF ∈ RKT and vUF ∈ RKU ,
respectively. As both xTF and xUF are handcrafted, we employ
cross-stitch units, which not only allow the model to learn the
8

Fig. 7. Working of a cross-stitch unit. Here, the notation is as defined in Eq. (5).
Note that the weights of the linear layers in the Cross-stitch unit are initialised
with a unit matrix.

best combination of inputs from both the features and share
across multiple layers in the network, but also introduce a com-
mon gradient flow path through the non-linear transformation.
The transformation produced by cross-stitch is as follows:

v′

j = αij • vj + βi, ∀i, j ∈ (1, KT + KU ) (5)

here αij and βi denote the weights of the fully connected layer
erforming the cross-stitch operations.
The two outputs of the cross-stitch are denoted by vTU and vUT ,

espectively.10 Note that the shape of the two vectors remains
nchanged after this transformation.
Connected components in Network: We concatenate vTT and

TU , which are the transformed feature vectors of the tweet text
TT and tweet features xTF , respectively. This produces vT = vTT ⊕

TU , a concatenated representation of all textual features. This is
one considering the inherent similarity between the tweet text
nd the tweet features over user features. We then perform affine
ransformations of the three vectors, vT , vEK and vUT , through
eparate feed-forward linear layers and concatenate to obtain the
inal decoded vector v, effectively containing transformed feature
epresentations from all the inputs. The vector v is then down-
caled using a fully-connected network, regularised using dropout
efore finally obtaining the probability distribution across the
wo classes.

(y|x; θ ) = Softmax(v′) = Softmax(||v′

T ||v
′

UT ||
′) (6)

here, v′ represents the transformed vector after it passes
hrough the respective feed forward sub-network, and θ repre-
ents the model parameters at the current time (from now on,
e refer to this as f (x)).

.3. Training strategies

For training our model, we use a mixed objective function,
hich is a weighted sum of both supervised and unsupervised

osses:

mix = λMLLML + λAT LAT + λVAT LVAT (7)

The losses are as follows: (i) LML represents maximum likeli-
ood loss and minimises the loss between the predicted and true
abels. (ii) Additionally, we use the Adversarial Training Loss LAT ,
hich introduces a regularisation with model training by adding
denoising objective [48]. The goal through this training is to
ake the model robust to adversarial perturbations in the input.
e find this specially useful for fake news detection as it allows

he model to attend to a wide spectrum of tweets with minor

10 The first letter in the subscript of v denotes feature vector assuming that
it contains most information from the same vector.
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Table 2
Features used by the competing models and performance comparison on CTF (TT: Tweet Text, TF: Tweet Features,
UF: User Features, UL: Unlabelled Data).
Model Features used by the model Performance

TT TF UF UL Accuracy Precision Recall F1 Score

MTL ✓ ✓ 0.79 0.77 0.82 0.79
1HAN ✓ 0.89 0.60 0.87 0.71
16HLT-HAN ✓ 0.87 0.68 0.86 0.76
3HAN ✓ ✓ 0.89 0.77 0.82 0.80
CSI ✓ ✓ 0.87 0.80 0.91 0.85
dEFEND ✓ ✓ 0.89 0.83 0.89 0.86
MixText ✓ ✓ 0.87 0.83 0.84 0.84
Cross-SEAN ✓ ✓ ✓ ✓ 0.954 0.946 0.961 0.953
F

o
f
s
a
l

M
b
s
c

l
i

variations to improve the generality. An adversarial signal radv ,
defined in terms of the L2 norm on the gradient gL, with current
odel parameters is used to perturb the word embedding inputs
of xTT , e⋆ = e + radv , even when this perturbation depends
pon the gradient computed over the output w.r.t all the labelled
nputs xL. The LAT objective function in Eq. (10) is given as a
modification of LML (Eq. (8)). (iii) It can be observed that the above
two objectives require us to know the true label of the data input,
thus pertaining to the labelled data only. Here, to expand the
concept of adversarial training to unlabelled data, we make use
of virtual adversarial training loss LVAT , which too is aimed to add
robustness against adversarial inputs. Just as in Eq. (10), we apply
the perturbation on the word embedding e, except radv is now
defined as in Eq. (13). δ represents a small random perturbation
vector [48], using a 2nd-order Taylor series expansion followed
by the power iteration method. The VAT loss is then defined as
in Eq. (14). We denote f (x) = h(E(x)), where E(x) ∈ RN×D is the
word embedding vector.

LML =
−1
nL

nL∑
i=1

yi log(f (xi)) + (1 − yi) log(1 − f (xi)) (8)

adv = −ϵL/∥gL∥2; gL = −∇xL log(f (xL)) (9)

LAT =
−1
nL

nL∑
i=1

P + Q (10)

here,

= yi log(h(E(xi)) + radv) (11)

= (1 − yi) log(1 − f (h(E(xi) + radv))) (12)

rv−adv = ϵg/∥g∥2; g = −∇xKL[f (x) ∥ h(E(x) + δ)] (13)

LVAT =
1

nL + nU

nL+nU∑
i=1

KL[f (x) ∥ h(E(x) + rv−adv)] (14)

. Experimental setup and results

All our experiments were performed on a single 16 GB Nvidia
esla V-100 GPU. Our base model is a single layer Bi-LSTM with
maximum sequence length of 128 and a hidden dimension of
12. We performed experiments with a wide range of embedding
izes ranging from 128 to 768 and found the best results with
00 dimensions. We initially fine-tuned the word embeddings on
10M unlabelled tweet texts before using them for training. We

sed the Adam optimiser for all our experiments with a learning
rate of 0.001, β1 = 0.90, β2 = 0.98 and a decay factor of 0.5. We
sed dropout with pdrop of 0.3 in all our feed-forward networks,
here the number of layers exceeds 2. Early stopping with a
atience of 20 was also used along with gradient clipping with
maximum L norm of 1. We kept λ , λ and λ as 1.
2 ML AT VAT

9

Table 3
Results of Cross-SEAN with different variations of the mixed
objective function.
Objective function Result

ML AT VAT Accuracy F1 Score

✓ 0.910 0.907
✓ ✓ 0.936 0.930

✓ ✓ 0.854 0.860
✓ ✓ 0.936 0.930
✓ ✓ ✓ 0.954 0.953

6.1. Comparative evaluation

We compare Cross-SEAN with seven state-of-the-art methods
described as follows. MTL [70] uses a multitask learning frame-
work by leveraging soft parameter sharing on classification (pri-
mary) and regression (secondary) tasks based on tweet text and
tweet features. 1HAN and 3HAN [71] use hierarchical attention
based GRU networks. 1HAN is the base version of 3HAN, where
3HAN uses 3-level hierarchical attention for words, sentences
and headlines learning in a bottom up manner. 16HLT-HAN [72]
uses hierarchical structure by applying attention mechanism at
both word and sentence levels. CSI [73] uses a three module
approach that consists of Capture, Score and Integrate, combining
what they define as the three common characteristics among fake
news, i.e., text, response and source to identify misinformation.
urthermore, we also use dEFEND [74] as a baseline, which uses

a GRU-based word-level and sentence-level encoding along with
a module for sentence-comment co-attention. MixText [49] is
a semi-supervised approach that produces results by leveraging
large amount of training samples and interpolating text in hidden
space.

Table 2 shows that Cross-SEAN outperforms all the baselines
by a margin of at least more than 6% accuracy and 9% F1 Score,
with dEFEND being the best baseline.

6.2. Ablation study

(a) Objective functions: In Table 3, we test the performance
f Cross-SEAN on different combinations of the mixed objective
unction. We vary the values of λML, λAT , λVAT between 0-1. A
teady increase in the performance can be seen as we move from
vanilla supervised training objective (only maximum likelihood

oss) to an additional semi-supervised mixed objective function.
Fig. 8 shows the variation of different objectives functions –

L, AT and VAT, individually, when trained with different com-
inations of the mixed objective function. For instance, Fig. 8(a)
hows the variation of the individual ML Loss when different
ombinations of the net objective function is used.
From Fig. 8(a), the regularisation effect of the two adversarial

osses, AT and VAT, is apparent as it can be observed that their
ntroduction considerably effects the individual ML loss, making
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Table 4
Results with various fully-connected network combinations. Here, TFi and UFi represent the ith layer transposing a feature vector
of tweet features and user features respectively. Two joined cells represent a concatenated form of the respective vectors feeding
as inputs to the corresponding layer.
Linear layers Attention Cross-stitch Performance

TF1 UF1 TF2 UF2 TF3 UF3 TF4 UF4 Accuracy F1 score

128 0.910 0.884

64 256 ✓ 0.932 0.935

64 64 256 256 ✓ ✓ 0.931 0.934

64 256 256 512 0.939 0.942

64 256 256 512 ✓ 0.927 0.944

64 64 256 256 256 ✓ ✓ 0.954 0.953
Fig. 8. Variation of individual loss functions of Cross-SEAN with different combinations of the mixed objective function.
t drop to a larger extent, in fewer iterations. Even though the
ntroduction of AT alone seems to make the loss curve more
tochastic, the net loss is considerably lower. This can be seen
n addition to the surprising smoothing effect which is observed
herever the VAT loss is considered, including Figs. 8(b) and 8(c).
hese two properties of AT and VAT losses respectively, motivate
heir usage together, thus resulting into an efficient and smooth
ecrease of loss and strengthening our hypothesis of leveraging
nlabelled data. This is further ensured by another interesting
bservation by using only AT and VAT losses for the training
although as expected, we achieve a deteriorated accuracy as

hown in Table 3, the corresponding losses in Figs. 8(b)–8(c)
how high consistency and smoothness. Fig. 8(d) shows the final
oss curve when all the 3 losses are used, i.e., when λML = λAT =

VAT = 1.
(b) Model Components: Table 4 shows the importance of

different components used in Cross-SEAN such as cross-stitch,
attention and feed-forward layers for tweet and user features.
We experiment across several combinations of tweet features
and user features with concatenation and usage of cross passing
through various layers as shown in Table 4. We find that the best
architecture is with the cross-stitch on tweet and user features
when one output of the cross-stitch is combined in the early
stages of the network and the other output is fused in the later
stage. Also the use of attention shows performance improvement
of the final model.

In our initial set of experiments, the cross-stitch was intro-
duced between the encoded representation of the tweet text,
obtained after passing it through Bi-LSTM, and a concatenated
form of tweet and user features. A considerable difference in
the performance is observed between the two, the former being
the superior one. We relate this to the fact that the encoded
representation of the tweet text is considerably different from
the additional features, while they in themselves are very similar.
Further, since the tweet features are inherently more similar to
the tweet text, the cross-stitch output corresponding to the tweet
features is first concatenated to the encoded tweet text and lastly
with the user features. This is also shown in Table 4, where the
architecture used in the last row evidently outperforms the one in
the 3rd row, which represents concatenation of the three outputs
on the same level.
10
7. Chrome-SEAN: A chrome extension

Cross-SEAN is an end-to-end model which enables for identi-
fication of fake tweets in real time. Keeping the users warned is a
very important step and would help with an easy access through
the browser. In order to help users detect misinformation on
Twitter in real time, we deploy Cross-SEAN as a Chrome browser
extension, called Chrome-SEAN that replicates the performance
of the model while performing a lot of other features as well.

Chrome-SEAN is built as Chrome extension, which uses
jQuery11 to send and receive requests from POST API method.
We deployed the Cross-SEAN model using Flask12 in our local
servers which can receive the POST API requests concurrently.
To handle the load balancing over multiple concurrent requests,
we use Redis.13 The server is not burdened with resource inten-
sive requests, and the combination of Flask and Redis performs
efficient communication through APIs.

Chrome-SEAN first identifies the tweet ID through the URL
while scanning Twitter, and sends it to the server using an API.
Chrome-SEAN also provides the option to enter the tweet ID
manually. Upon requesting to Cross-SEAN, the raw data is first
transformed to the necessary format and then passed through the
model. The detected class along with its confidence from the soft-
max layer is returned back to the extension and displayed. Fig. 9
shows the working of Chrome-SEAN in two stages. In the former
stage, the extraction of the tweet is performed in the browser
side and is instant, whereas in the latter stage, verification of the
tweet takes on an average of 1.2 s per tweet (single API request).

As shown in Fig. 9, we take users’ feedback on our final
classification output and consider it as a true label in the ex-
tended online dataset. Additionally, we employ an online training
mechanism on the basis of users’ feedback if it differs from the
class identified and check the confidence of the model; the model
is trained only if the confidence is lower than 0.6. We take special
care before online training to make the model robust to attackers

11 https://jquery.com.
12 https://flask.palletsprojects.com/en/1.1.x/.
13 https://redis.io/.

https://jquery.com
https://flask.palletsprojects.com/en/1.1.x/
https://redis.io/
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Fig. 9. The working of Chrome-SEAN, a Chrome extension of Cross-SEAN.

attempting to pollute the results. To handle load balancing on the
server, we make use of Redis.

User Study: Chrome-SEAN was tested by 35 users until now.
e first randomly sampled tweets from the human-annotated set
f tweets which were not a part of the training set, assigned them
o users and asked them to test on similar tweets, totalling 215
weet inputs, ranging from a wide variety of sub-topics, users and
imelines. It was observed that 67% of these input tweets were
ade within the last 7 days, 53% were from new users with less

han 5 tweets, and 85% had a retweets count of less than 10.
We asked users to provide feedback on each tweet they tested

ith Chrome-SEAN, in accordance with the true label. We found
hat 203 out of 215 ratings were positive, i.e., deeming the pre-
iction by Chrome-SEAN correct, resulting into an accuracy of
4% and F1 Score of 94.3%. Such high level of accuracy on such
diverse set of inputs depicts Cross-SEAN’s ability to pick the
ppropriate input features when making a prediction.

. Discussion and conclusion

This work introduced the task of COVID-19 fake news detec-
ion on Twitter. We collected related tweets from diverse sources.
ost human annotations, we proposed CTF, the first labelled
witter dataset, consisting of COVID-19 related labelled genuine
nd fake tweets along with a huge set of unlabelled data. We
lso presented a thorough analysis to understand surface-level
inguistic features.

As the amount of labelled data is limited, we made use of
he vast unlabelled data to train the neural attention model in
semi-supervised fashion as learning the semantic structures
f language around COVID-19 helps the model learn better. We
ollected external knowledge for all the tweets by taking the
ost relevant stance from credible sources on the web. As fake
ews around COVID-19 are emerging, even if the model is not
rained on a certain fake news topics, we assume that external
nowledge from a trusted source could help aid the classification.
e built a neural attention model which takes various inputs

uch as tweet text, tweet features, user features and external
nowledge for each tweet. We employed cross-stitch units for
ptimal sharing of parameters among tweet features and user
eatures. As tweet text and tweet features are closely related,
e performed optimal sharing of information by concatenating
ne output of cross-stitch early in the network and the other
atter. Maximum likelihood and adversarial training are used for
upervised loss, while virtual adversarial training for unsuper-
ised loss. Usage of adversarial losses further adds regularisation
nd robustness to the model. We then incorporated this model
nto Cross-SEAN, a novel cross-stitch model which performs un-
er a semi-supervised setting by leveraging both unlabelled and
11
labelled data with optimal data sharing across various tweet
information.

Cross-SEAN is highly effective, outperforming seven state-
of-the-art models significantly. We contrasted features of base-
line models with Cross-SEAN and showed various metrics. We
showed a thorough ablation study with various fully-connected
network combinations of the model and the respective accu-
racy contrasting the importance of individual components of the
model. We also showed variation of individual loss functions with
the different configurations of the mixed objective function.

To make use of Cross-SEAN in real time by general users, we
developed Chrome-SEAN, a chrome extension based on Cross-
SEAN to flag fake tweets, which showed reasonable performance
in a small-scale user study. Chrome-SEAN is built to be robust
to handle vast amount of concurrent requests. We introduced
several features to Chrome-SEAN which can further help collect
labelled data using user feedback. Cross-SEAN further trains in an
online fashion, for a given feedback if the confidence of the model
is low. Chrome-SEAN is further tested by human subjects.

Shortcomings of Cross-SEAN: We observe following short-
comings of Cross-SEAN:

• The nature of language used in micro-blogging sites such
as Twitter, in certain times makes the external knowledge
noisy. Often times, a few trusted news sources on the Inter-
net are biased on political topics which in turn create bias
in the external knowledge.

• Although external knowledge adds additional information
relative to the test time helping emerging fake news, it may
not promise complete robustness and early detection.

• Although the tweet features, user features and external
knowledge can attribute to general fake news, Cross-SEAN
is a model specifically tuned for COVID-19 fake news, and is
not tested on general fake news on Twitter.

Future work: We plan improve on the following points:

• We intend to study the dynamic graph structure of the
follower–followee and tweet–retweet network, and extract
representations from tweet and user nodes to help early
detection of COVID-19 fake news.

• We will add additional improved filters to the process of
extracting external knowledge to remove possible bias and
noise.

• We will work towards explainability of Cross-SEAN using
the current structures of attention mechanism.

• We plan to incorporate semantic information from other
forms of media such as images, GIFs or videos which are
readily available with the tweets. Even the textual informa-
tion present in such media will be extracted and used for
detection.
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