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Abstract

Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. 

Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated with 

increased T2D risk. Despite growing evidence linking iAs exposure to T2D, the factors underlying 

inter-individual differences in susceptibility remain unclear. This study examined the interaction 

between chronic iAs exposure and body composition in a cohort of 75 Diversity Outbred mice. 

The study design mimics that of an exposed human population where the genetic diversity of the 

mice provides the variation in response, in contrast to a design that includes untreated mice. Male 

mice were exposed to iAs in drinking water (100 ppb) for 26 weeks. Metabolic indicators used as 
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diabetes surrogates included fasting blood glucose and plasma insulin (FBG, FPI), blood glucose 

and plasma insulin 15 min after glucose challenge (BG15, PI15), homeostatic model assessment 

for β-cell function and insulin resistance (HOMA-B, HOMA-IR), and insulinogenic index. Body 

composition was determined using magnetic resonance imaging, and the concentrations of iAs 

and its methylated metabolites were measured in liver and urine. Associations between cumulative 

iAs consumption and FPI, PI15, HOMA-B, and HOMA-IR manifested as significant interactions 

between iAs and body weight/composition. Arsenic speciation analyses in liver and urine suggest 

little variation in the mice’s ability to metabolize iAs. The observed interactions accord with 

current research aiming to disentangle the effects of multiple complex factors on T2D risk, 

highlighting the need for further research on iAs metabolism and its consequences in genetically 

diverse mouse strains.

Introduction

Type 2 diabetes (T2D) is a complex metabolic disorder currently affecting hundreds of 

millions of individuals worldwide (Stanton et al. 2015; U.S. Department of Health And 

Human Services 2007). There is no cure for T2D and it is associated with high morbidity 

and mortality, resulting in more than one million deaths annually (Roglic and World 

Health Organization 2016). The prevalence of T2D has almost doubled since 1980 (Roglic 

and World Health Organization 2016), with around 9% of the U.S. population currently 

affected—a proportion that is estimated to rise to 30% by 2050 (CDC 2020). In the U.S., 

the estimated health expenditure for T2D and related diseases in 2015 was over $320 

billion (Babu et al. 2007; Maull et al. 2012). Despite recent advances in research on T2D 

etiology, the biological mechanisms underlying the basic metabolic defects remain poorly 

understood. While an increase in obesity is the main driver of the rise of T2D prevalence, 

particularly in children (Fujimoto and Polonsky 2009; Mayer-Davis et al. 2017), obesity 

alone does not explain the current T2D epidemic. Growing evidence suggests that exposures 

to environmental pollutants, including naturally occurring and anthropogenic chemicals, 

which can act as obesogens and/or diabetogens, are contributing factors (Heindel et al. 

2017).

One such chemical is inorganic arsenic (iAs), a ubiquitous contaminant of both drinking 

water and food that is currently poisoning hundreds of millions of people worldwide 

(Cubadda et al. 2017; IARC 2004). The health consequences of chronic exposure to iAs 

are complex. In addition to being a human carcinogen, iAs is associated with a variety 

of dermal, cardiometabolic, and respiratory disorders (U.S. Department of Health And 

Human Services 2007). Toxicologists have implicated iAs exposure in the risk of T2D, 

an association that has been born out in multiple study designs and at a range of doses. 

(Agusa et al. 2011; Kuo et al. 2013; St-Onge et al. 2004; Sumi and Himeno 2012). 

While the association between iAs exposure and T2D is well established and some of the 

potential mechanisms identified, little is known about factors that determine inter-individual 

variation in susceptibility to iAs-associated T2D. One important factor is the process by 

which iAs is metabolized into the methylated metabolites monomethyl-arsenic (MMAs) 

and dimethylarsenic (DMAs). This process is catalyzed by arsenic (+ 3 oxidation state) 

methyltransferase (AS3MT) (Maull et al. 2012). While the AS3MT-catalyzed methylation of 
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iAs is essential for body clearance of iAs, the methylated metabolites that contain trivalent 

arsenic (MMAsIII and DMAsIII) inhibit processes that regulate glucose metabolism in a 

manner consistent with diabetes (Castriota et al. 2020; Martin et al. 2017; Maull et al. 2012). 

In humans, polymorphisms in the AS3MT gene have been associated with variability in iAs 

metabolism, and several studies have suggested that polymorphisms in AS3MT and other 

genes involved in iAs metabolism or in the regulation of glucose homeostasis may be risk 

factors for iAs-associated T2D (Douillet et al. 2021; Drobná et al. 2013; Lindberg et al. 

2007; Martin et al. 2017; Su et al. 2012). A better understanding of the degree to which 

these polymorphisms are associated with differences in susceptibility to T2D in populations 

exposed to iAs is of pressing import, given the likely implication of iAs in the increasing 

prevalence and burden of T2D.

While the independent effects of obesity and iAs metabolism on T2D risk are themselves 

of interest, understanding the interplay between these factors is also of great interest 

to environmental toxicologists. Obesity has been shown to modify iAs metabolism in 

population and laboratory studies (Lin et al. 2014; Lindberg et al. 2007; Su et al. 2012). 

Because iAs metabolism plays a key role in the susceptibility to adverse effects of iAs 

exposure, it is likely that obesity can modify the diabetogenic effects of iAs exposure by 

modifying iAs metabolism. In addition, obesity may act additively with iAs exposure to 

impair glucose homeostasis. Indeed, a recent study in Chile has shown that obese individuals 

are at higher risk of developing T2D compared to lean individuals when exposed to iAs 

(Castriota et al. 2018). However, detailed information about the interaction between iAs 

exposure and obesity in the context of diabetes and about the role of genetics in this 

interaction is lacking.

In the present study, we examined the diabetogenic effects of chronic iAs exposure in 

a cohort of 75 male Diversity Outbred (DO) mice that were exposed to 100 ppb iAs 

in drinking water for 26 weeks. The DO are a valuable resource for this study, as their 

phenotypic and genetic diversity make them a powerful model of human disease (Chesler 

et al. 2016; Churchill et al. 2012). The DO have been shown to manifest wide phenotypic 

variability over a range of basal phenotypes (Logan et al. 2013; Svenson et al. 2012) 

including many specifically relevant to toxicology (Harrill et al. 2018). They have further 

been shown to display a wide range of phenotypic variability in response to various 

experimental treatments (French et al. 2015; Kurtz et al. 2020; Mayeux et al. 2018; Patterson 

et al. 2020; Recla et al. 2019). Thus, they were anticipated to manifest an expanded range of 

phenotypic variability compared to standard inbred lines typically used in arsenic research. 

Likewise, they were anticipated to exhibit wide variability in their capacity to metabolize 

iAs (Keele et al. 2020). While these features made the DO an attractive resource for our 

study, they also cause it to come with an attendant limitation: the genetic uniqueness of each 

sample precludes the inclusion of genetic controls. As a result, unlike the randomized trial 

setting wherein potential confounders are guaranteed to be balanced across treatment groups 

(in expectation), care must be taken to control for them, as in a population or a retrospective 

database analysis. Throughout the course of the study, we examined a range of metabolic 

indicators that serve as surrogates for T2D, while also measuring body composition and the 

concentrations of iAs and its methylated metabolites (MMAs and DMAs) in liver and urine.

Xenakis et al. Page 3

Mamm Genome. Author manuscript; available in PMC 2022 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Materials and methods

Mice and treatment

A total of 75 male DO mice (J:DO, JAX stock number 009376) from generation 35 were 

obtained from The Jackson Laboratory. All procedures involving these mice were approved 

by the University of North Carolina Institutional Animal Care and Use Committee. The 

study was limited to male mice to control for possible confounding effects of sex. The mice 

were all aged between 26 and 32 days upon receipt and were housed one per cage for the 

duration of the study. All mice were allowed to acclimate for 4 weeks before exposure to 

iAs under controlled conditions with a 12-h light/dark cycle at 22 ± 1 °C and 50 ± 10% 

relative humidity. During acclimatization, the mice were fed a semi-purified AIN-93G diet 

(Envigo Teklad, Madison, WI, USA) and drank As-free deionized water (DIW) ad libitum. 

In our previous studies, the concentration of iAs in the AIN-93G diet ranged from 11 to 50 

ppb (Douillet et al. 2017; Huang et al. 2018a, b; Huang, et al. 2018a, b). The acclimatization 

allows for clearance of iAs to which the mice were exposed in The Jackson Laboratory 

while consuming a regular grain-based diet; this type of diet has been shown to contain 

up to 400 ppb As (Murko et al. 2018). After acclimatization, the 75 mice were switched 

to DIW containing sodium arsenite (NaAsO2, > 99% pure; Sigma-Aldrich, St. Louis, MO, 

USA) at final concentration of 100 μg As/L (100 ppb) for 26 weeks. This dose was selected 

because, based on a pharmacokinetic model developed by the US EPA, it was anticipated to 

yield total arsenic concentration in mouse livers consistent with that in human populations 

chronically exposed to the Maximum Contaminant Level for iAs in drinking water of 10 

ppb (El-Masri and Kenyon 2008). Further, we have previously shown that this level of 

chronic iAs exposure induced T2D phenotypes in adult male C57BL/6 mice lacking the 

As3mt gene which, like humans, exhibit decreased capacity to metabolize iAs (Douillet et 

al. 2017). Water consumption was measured weekly, and food consumption was measured at 

the intervals shown in Fig. 1.

Metabolic phenotyping

Body weight and composition as well as seven T2D indicators were measured at selected 

time points before and during the exposure to iAs (Fig. 1).

Body weight and composition—Body weight was measured 13 times before and 

during the exposure as shown in Fig. 1. Body composition, including the percentages of 

body mass represented by fat (%fat) and by lean mass (%lean mass), was measured 2 weeks 

prior to iAs exposure (week-2) as well as in the middle and at the end of the exposure 

(weeks 12 and 24, respectively). The Echo MRI Three-in-one Composition Analyzer and 

Labmaster (Echo Medical Systems, Houston, TX, USA) was used for the body composition 

analysis.

Blood glucose and plasma insulin—Blood glucose and plasma insulin levels were 

measured both after 6-h of fasting and 15 min after intraperitoneal (i.p.) injection of glucose 

(2 g/kg bodyweight; Sigma-Aldrich) at 3–5 week intervals. Fasting blood glucose (FBG) 

and 15-min blood glucose (BG15) concentrations were measured by One Touch® Ultra® 

glucometer (LifeScan, Inc., Milpitas, CA). Sample preparations and glucose treatments were 
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always performed in the early afternoon, and were further organized such that the timing for 

each mouse was consistent over the course of the study. Plasma was isolated from blood by 

centrifugation at 1700×g for 15 min at 4 °C and stored at − 80 °C. Fasting plasma insulin 

(FPI) and 15-min plasma insulin (PI15) concentrations were measured using ELISA kits 

from Crystal Chem (Elk Grove Village, IL).

Homeostatic model assessment for β-cell function and insulin resistance 
(HOMA-B and HOMA-IR) and insulinogenic index—The homeostatic model 

assessment for β-cell function (HOMA-B), the homeostatic model assessment for insulin 

resistance (HOMA-IR), and insulinogenic index were calculated from the fasting and 15-

min glucose and insulin concentrations using the following formulas:

HOMA‐B =
500 * FPI μU

mL
FBG mg

dL
18.2 − 3.5

HOMA‐IR =
FBG mg

dL * FPI μU
mL

16.2

Insulinogenic Index =
PI15 μU

mL − FPI μU
mL

0.04 * BG15 mg
dL − FBG mg

dL

Euthanasia and tissue collection

All mice were euthanized after 26 weeks of exposure to iAs by cervical dislocation. Tissues 

were collected after euthanasia, snap frozen, and stored at − 80 °C for future analyses.

Speciation analysis of As in urine and liver

We measured iAs and its metabolites both in livers and urine. The analysis of As species 

was carried out in spot urine samples (50–100 μl) collected immediately prior to iAs 

exposure (week – 2) and at the middle and end of exposure (weeks 12 and 24, respectively). 

Concentrations of iAs, MMAs, and DMAs were measured by hydride generationatomic 

absorption spectrometry coupled with a cryotrap using previously described procedures 

(Hernández-Zavala et al. 2008). The same method was used to measure concentrations of 

As species in 10% homogenates (w/v) prepared from livers collected after euthanasia. Both 

urine and liver homogenates were treated with 2% cysteine for 1 h prior to analysis to 

convert all pentavalent arsenicals to trivalency (Matoušek et al. 2008). The instrumental 

limits of detections (LODs) for iAs, MMAs, and DMAs using this method are 14, 8, 

and 20 pg As, respectively (Hernández-Zavala et al. 2008). These instrumental LODs 

translate to 0.28, 0.16, and 0.40 ppb in urine and 0.5–5.6, 0.4–3.2, and 1.0–8 ppb in liver, 

respectively, given the injected sample volumes and dilutions used in this study. In urine, 
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MMAs concentrations were below LOD for all samples, as were 31% (n = 23) of iAs 

concentrations. Conversely, DMAs concentrations in urine were all above LOD, as were 

all metabolite concentrations in livers. A value of zero was imputed for each value below 

LOD. The relative contributions of each As species in each tissue were then computed by 

dividing the concentration of each metabolite by the total arsenic concentration (tAs) in the 

tissue, which was calculated as the sum of the concentrations of iAs, MMAs, and DMAs. 

These proportions were then expressed as the percentage of tAs represented by iAs (%iAs), 

MMAs (%MMAs), or DMAs (%DMAs). While trimethyl arsine oxide has been detected in 

the urine of laboratory animals in some published studies (Waters et al. 2004), it was not 

detected in any of the urine samples analyzed in the current study.

Statistical analyses

The associations between iAs exposure and the final (week 25) value of each T2D indicator 

of interest were investigated using multiple linear regression. As mentioned above, the lack 

of genetic controls implied by using DO samples requires carefully controlling for potential 

confounding variables. Our approach was to specify a very large “full” model, and to 

eliminate variables by backwards selection that were not significant at the alpha = 0.1 level, 

always retaining iAs exposure and any main effects that were significant in interaction with 

other variables. To this end, in each regression, the full model controlled for cumulative 

iAs exposure (equivalently, the total amount of water consumed during exposure), the initial 

T2D indicator value, body weight, and adiposity (%fat), as well as all relevant two-way 

interactions.

Multiple linear regression was also employed to investigate the association between arsenic 

species present in liver with the week 25 T2D indicators. We employed the final reduced 

models that used cumulative iAs exposure as the independent variable as a starting 

point. Each term containing iAs exposure was replaced with three analogous terms: 

tAs concentration, %DMAs, and %MMAs in liver. We then applied a second round of 

backwards selection as above.

All models were fit using the lm() function in R (R Core Team 2020). Data visualizations 

were created using the ggplot2 (Wickham 2016) and ggcorrplot (Kassambara 2019) 

packages.

Results

Food and water consumption

The study design, including the timing of all T2D indicator measurements, is illustrated 

in Fig. 1. Although there was substantial inter-individual variability in weekly food 

consumption, the rates of food consumption (g/week) rose only modestly on average and 

for individual mice over the 30 week period (Figs. 2a & S1a); median consumption was 22.6 

g/week (IQR: 21.3–24.2) immediately before iAs initiation (week 0) and 25.5 g/week (IQR: 

23.2–26.9) at week 25; this difference was statistically significant (p < 0.001 by Wilcoxon 

Rank Sum test). Notwithstanding some week-to-week variability which was especially 

noticeable for mice with more extreme levels of consumption, we observed that the rates 
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of food consumption remained nearly constant after week 8. For most mice, weekly water 

consumption was even more constant over time (Figs. 2b & S1b), although there was even 

greater inter-individual variability, and a few extreme outliers. There are several examples 

of extreme week-to-week variability within samples that might be attributable to leaks in 

water bottles rather than true variability in consumption. Importantly, extreme consumption 

is correlated within mice over time. Water consumption was initially slightly elevated and 

decreased modestly during the first few weeks of the study, a pattern likely caused by the 

stress of acclimatization to a new environment. Median water consumption at week-2 was 

24.0 g/week (IQR: 21.6–29.0) and decreased to 21.9 g/week (IQR: 18.9,26.2) at week 1, 

after which a slight linear increase was observed for the duration of follow-up: median 

consumption at week 26 was 27.1 g/week (IQR: 22.2–35.1). The difference from week-2 to 

week 26 was marginally significant (p = 0.054 by Wilcoxon Rank Sum Test).

Body weight and composition

The stability of food and water consumption over time is in marked contrast to the 

progression of body weight and composition (as measured by %fat) which increased 

significantly over the course of the study (Figs. 2c, d, S1c & d). The body weight gain 

was highest in the first half of the study after which it plateaued. Median body weight 

increased from 25.0 g (IQR: 23.3–27.4) at week-2 to 42.1 g (IQR 36.7–47.2) at week 24 

and %fat more than doubled from 9.8% (IQR 6.7–13.6) to 23.4% (IQR 19.4–28.7). These 

differences were both highly significant (p < 0.001 by Wilcoxon Rank Sum test). Of note, 

notwithstanding minor fluctuations, the body weight trajectories appear nearly deterministic, 

increasing smoothly over time.

T2D indicators

The time courses for the T2D indicators were more variable, with substantial heterogeneity 

between mice and many outliers (Figs. 3 & S2). It was not uncommon for some mice to 

strongly deviate from the average trends. The distributions of the plasma insulin measures 

(FPI and PI15) became more skewed over time (Figs. 3a, b); the maximum FPI value 

increased from 6.2 to 78.8 ng/mL, while the maximum PI15 value increased from 5.9 to 

39.7 ng/mL from week-1 to 25 (the extreme outlier at week 25 was the same sample for 

both measures). The median FPI at week-1 was 1.87 ng/mL (IQR: 1.30–2.70) compared 

to 3.37 ng/mL (IQR: 2.03–6.07) at week 25 (p < 0.001, by Wilcoxon rank sum test). The 

median PI15 at week −1 was 1.45 ng/mL (IQR: 1.08–2.04) compared to 3.49 ng/mL (IQR: 

2.18–6.24) at week 25 (p < 0.001, by Wilcoxon rank sum test). By contrast, FBG decreased 

slightly over time, as shown in Figs. 3c & S2c. The median FBG at week-1 was 140.0 

mg/dL (IQR: 121.5–159.0) compared to 122.5 mg/dL (IQR: 107.2–141.2) at week 25 (p 
< 0.001, by Wilcoxon rank sum test). BG15 did not change meaningfully over time, as 

illustrated in Figs. 3d & S2d (p = 0.24, by Wilcoxon rank sum test).

The distributions for the HOMA-B and HOMA-IR indices, which are derived from fasting 

glucose and insulin values, reveal the same pattern as seen for the insulin measurements 

(Figs. 3e, f, S2e & f): the maximum HOMA-B value increased from 823.8 to 13,932.5, 

while the maximum HOMA-IR value increased from 61.3 to. 554.3 from week-1 to 25 

(again, the extreme outlier at week 25 for both measures came from the same sample as 

Xenakis et al. Page 7

Mamm Genome. Author manuscript; available in PMC 2022 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the FPI and PI15 measures). The median HOMA-B at week 3 was 236.17 (IQR: 164.73–

338.44) compared to 551.4 (IQR: 248.5–1104.9) at week 25 (p < 0.001, by Wilcoxon rank 

sum test). The median HOMA-IR at week −1 was 15.30 (IQR: 10.17–23.90) compared 

to 23.80 (IQR: 15.00–46.35) at week 25 (p < 0.001, by Wilcoxon rank sum test). A very 

modest increase in insulinogenic index was observed, along with an increase in variability 

(Fig. 3g & S2g): the median value was − 0.05 (IQR: − 0.12, 0.02) at week-1 compared to 

0.02 (IQR: − 0.10, 0.14) at week 25 (p = 0.02, by Wilcoxon rank sum test).

The correlations among the week 25 values of the seven T2D indicators are illustrated 

in Fig. 4. The two insulin indicators (FPI and PI15) are highly correlated. While still 

significant, the correlation between the two glucose indicators (FBG and BG15) is 

more modest. The salient feature of this correlogram is the strong correlations among 

the insulin indicators and three derived measurements; the insulin endpoints are highly 

positively correlated with HOMA-B and HOMA-IR and highly negatively correlated with 

insulinogenic index. Thus, the values of these indices are driven by plasma insulin, not blood 

glucose values.

Association between T2D indicators at week 25 and iAs exposure

The results of the model selection (i.e., which independent variables remained after 

the selection procedures) for each T2D indicator are summarized in Table 1. Log 

transformations were applied to the FPI and PI15 measurements to better achieve 

approximate normality of model residuals. A single outlier with extreme residual value 

was removed in the final models for FPI, HOMA-B, HOMA-IR, and insulinogenic index. 

A single sample was the outlier in the three derived indicators, while a unique sample was 

the outlier in the model for FPI. Removal of these outliers does not change the inference 

for the interaction terms, and in most cases makes it more conservative. The full models are 

included in Tables S1–S16 in online Appendix A, and the effect estimates that characterize 

the effect of iAs have been abstracted into Table 2 below. The salient result is that the 

association of cumulative iAs exposure in the FPI, PI15, HOMA-B, and HOMA-IR models 

manifested as significant interactions between iAs and body weight/composition. That is, 

each of these models contains a significant interaction between cumulative iAs exposure and 

either body weight or %fat. Because we scaled the independent variables in these models, 

the marginal effect of iAs exposure can be interpreted as the association between a one 

standard deviation increase in iAs exposure and the T2D indicator for mice of average body 

weight/composition. Although these marginal associations were somewhat paradoxically 

negative, they were not significant in any of the four models. The interaction effect (e.g., 

for log-transformed FPI) can be interpreted as follows: the effect of a one standard deviation 

increase in cumulative iAs exposure for mice with one standard deviation higher than 

average %fat (holding body weight constant) is − 0.16 + 0.29 = 0.13 ng/mL (Tables 1, 

2 & S1). However, because these effects are best interpreted visually, we illustrate them 

as interaction plots in Fig. 5. The interaction plots visualize the predicted T2D indicator 

on the y-axes versus (standardized) iAs exposure on the x-axes, for the three quartiles of 

body weight/adiposity. The diabetogenic effect of iAs exposure at week 25 is only seen in 

mice in the highest quartile of %fat. Specifically, there is a positive slope for FPI, PI15, 

and HOMA-B for these mice. Although the slope remains negative for this quartile for 
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HOMA-IR, the salient pattern remains that the “protective” effect of iAs exposure in lower 

%fat quartiles attenuates and eventually reverses for larger/fatter mouse for all of these T2D 

indicators.

Body weight and/or adiposity was significantly associated with all T2D indicators except for 

FBG and insulinogenic index; both of these models were reduced until only iAs remained. 

While there was no significant relationship observed between iAs and FBG, a standard 

deviation increase was marginally associated with a 0.16 unit increase in insulinogenic index 

at week 25 (p = 0.077, Tables 1, 2 & S13). The only significant term in the model for BG15 

other than the week-1 value was the interaction between weight and %fat: a simultaneous 

increase of one standard deviation in both body weight and %fat was associated with a 24.8 

mg/dL decrease in BG15 at week 25 (Tables 1 & S8).

As noted above, there were several samples for which an elevated water consumption (at a 

single timepoint each) might be more accurately attributable to leaking water bottles than 

to true week-to-week variability in water consumption. We conducted sensitivity analyses in 

which we replaced these suspect consumption values by linearly interpolating between the 

consumptions at the two time points immediately adjacent. We re-ran the models for the four 

T2D surrogates with significant interaction effects; the parameter estimates and inference 

were nearly identical in all cases.

Association between liver arsenic species and T2D indicators at week 25

The final (log-transformed) FPI models using the liver arsenic species as independent 

variables are included in Tables S3 & 4. Notably, the significant interaction between 

cumulative iAs exposure and adiposity in the model for FPI is replaced with an analogous 

significant interaction between the proportion of DMAs (%DMAs) and adiposity; this 

interaction is visualized in Fig. 6. Similarly, the proportion of DMAs replaces cumulative 

iAs exposure in the significant association with HOMA-IR (Tables S15 & S16, online 

Appendix A); on average, a ten percent increase in DMAs is associated with a nearly 

94 unit increase in insulinogenic index. These were the only T2D indicators to exhibit 

significant associations with liver arsenic species. When the significant liver species terms 

were replaced with their analogous 24-week urine species terms, these associations were not 

significant.

Discussion

DO mice are an established model to study gene–environment interactions and genetic 

susceptibility to adverse effects of environmental exposures observed in human populations. 

Inorganic arsenic has been classified as an environmental diabetogen (Maull et al. 2012), 

and the diabetogenic effects of iAs exposure have been shown to vary among individuals 

and human populations, depending in part on the efficiency of iAs detoxification via 

the AS3MT-catalyzed methylation pathway and on AS3MT polymorphism (Drobná et al. 

2013; Kuo et al. 2017). The present study was designed to characterize the inter-individual 

differences in indicators of obesity and T2D in the genetically diverse DO mice exposed to 

iAs, and to our knowledge is the first study to do so. The DO are well suited to this purpose, 

as they have been shown to exhibit a wide range of phenotypic variability in response 
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to many different types of experimental exposures (French et al. 2015; Kurtz et al. 2020; 

Mayeux et al. 2018; Patterson et al. 2020; Recla et al. 2019); they were similarly expected to 

exhibit an expanded range of variability for the iAs-induced T2D indicators of interest and 

in their capacities to metabolize iAs compared to existing inbred lines. These indicators were 

assessed in the DO mice before and during a 26-week period of chronic iAs exposure. Two 

striking findings are reported here. First, a broad variation was observed among the DO mice 

in obesity and T2D indicators when exposed to iAs. Second, an interactive effect between 

body weight and/or adiposity and iAs exposure was identified in relation to the assessed 

T2D indicators. Specifically, mice that were obese and exposed to iAs displayed significant 

positive trends in T2D indicators.

The DO mice exhibited large inter-individual variation in body weight, food, and water 

consumption. For example, at week 30, the largest mouse was more than twice size of 

smallest (57.7 g vs 26.5 g, respectively). Similarly, while weekly water consumption after 

week 11 was more or less constant for individual mice, the range of consumption varied 

almost fivefold (e.g., 16.1 to 80.4 g/week) across the DO population.

We observed significant interactions between cumulative iAs exposure and body weight or 

adiposity for the FPI, PI15, HOMA-B, and HOMA-IR measures. While for mice of average 

body weight (or %fat) the association was paradoxically (though mostly insignificantly) 

protective, for large (or obese) mice diabetogenic effects of iAs exposure were apparent 

and were consistent with insulin resistance. Similarly, we observed an analogous interaction 

between the proportion of DMAs present in the liver and adiposity on FPI. While obesity 

is known to modify iAs metabolism in humans (Lin et al. 2014; Lindberg et al. 2007; Su et 

al. 2012), to our knowledge, these interactions constitute novel associations in experimental 

mouse models like the DO.

The present study contributes to a growing body of research documenting the complex 

associations between iAs and its metabolites and T2D and its indicators. The interactions we 

observed are consistent with recent evidence from a human population in Chile, in which the 

increase in the odds of T2D associated with iAs exposure from drinking water was higher 

among obese subjects compared to lean subjects (Castriota et al. 2018). Further, a recent 

analysis of NHANES data documented a nonlinear association between urinary DMAs and 

BMI (Warwick et al. 2021). The confluence of these lines of research highlights the need for 

more studies in experimental populations to better understand and quantify these complex 

associations.

Although we have uncovered a significant interactive effect between iAs and obesity in 

the context of T2D indicators, our study is not without limitations. For example, studies 

using DO mice necessarily preclude inclusion of genetically matched controls, since each 

mouse is genetically unique. The study design we employed therefore mimicked that of an 

exposed human population, where the genetic diversity of the mice provides the variation 

in response, in contrast to a design that includes untreated mice. This lack of a control 

group requires carefully controlling for possible confounding variables, which motivated 

us to adopt a statistical approach common in population studies and other non-randomized 

datasets where inclusion of such control groups is often not possible. One might expect 
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the overall genetic contributions of NOD and NZO to the DO sample genomes to be two 

such confounders, since these strains were themselves bred to be models of type I diabetes 

and obesity, respectively (Noll et al. 2019). That is, a potential concern is that imbalances 

in these founder contributions could confound our observed relationships, if these founder 

contributions are associated with the diabetes outcomes of interest. Although we did not 

include these founder contributions in our statistical models, we did not anticipate them 

to be confounders in the DO, since NOD and NZO are highly polygenic models which 

likely manifest their extreme outcomes in inbred strains due to the combined recessive 

and epistatic effects at a large number of loci, which would not be the case in an 

outbred population like the DO. After genotyping our samples, we formally tested and 

confirmed this logic (online Appendix B). The fact that we studied only male mice is 

another limitation, but one that came with a concurrent benefit. While we are aware that 

sex might modify the effect of iAs exposure in mice (Douillet et al. 2017; Drobna et al. 

2009), in restricting our study to male samples only, we also deliberately eliminated the 

possible confounding effect of sex. A further limitation of this work is the possible lack 

of generalizability to human populations as mice are known to metabolize iAs far more 

efficiently than humans (Vahter 1999). This point is illustrated in the ternary plots in Fig. 

7. Figure 7a displays the distribution of the observed arsenic species present in the urine 

collected immediately prior to sacrifice (week 24), and Fig. 7b shows the distribution 

of arsenic species present in the liver samples collected at sacrifice. As shown, these 

compositions are dominated by DMAs, while there is very little contribution of MMAs (in 

the case of the urine samples, all had MMAs measured below the LOD). This is in marked 

contrast to the distributions observed in the urine of humans that have been chronically 

exposed to iAs. For example, the relative contributions of iAs and MMAs were 4.4–37.9% 

and 5.9–29.3%, respectively, in one U.S. population chronically exposed to iAs in drinking 

water (Hudgens et al. 2016).

The relative contributions of the observed As species that we have documented in our 

small cohort of DO mice are similar to those that have been documented in inbred strains, 

including the Collaborative Cross (CC) (Douillet et al. 2017; Huang et al. 2018a, b; Stýblo 

et al. 2019). This extremely efficient metabolization has motivated a recently published 

humanized AS3MT mouse model, which was created to metabolize iAs in a manner much 

more similar to humans (Koller et al. 2020). We are currently employing this model to 

create diverse congenic CC lines that carry this humanized version of AS3MT, which should 

serve as an ideal resource for further studying the significant interactions that we have 

observed in the current study, as their iAs metabolization profiles should mimic that seen 

in the human population. Further, we intentionally selected CC strains to be recipients of 

the humanized AS3MT gene that manifest extremes of obesity from among the extant CC 

strains to maximize their relevance to the study of T2D. These lines will also be fully 

reproducible, thus allowing for the inclusion of genetic case-controls, and thus the ability to 

infer causal genetic effects.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Study design. Metabolic phenotypes measured are displayed above the relevant 

measurement occasions (yellow indicates derived phenotypes). Administration and 

measurement of water and food consumed as well as measurement of body weight were 

conducted at regular timepoints indicated below weekly time series (mice were given 

arsenic-free water for frst four weeks, after which arsenic was introduced to the water). 

Body composition by MRI and urine collection were performed at weeks – 2, 12, and 24
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Fig. 2. 
Box and whisker plots of food consumption, water consumption, body weight and %fat 

over time; a Food consumption over time. Rate of food consumption remains nearly 

constant after week 8; b Water consumption over time. Elevated initial consumption is 

likely associated with acclimatization to new environment; after an initial drop, consumption 

remains nearly constant for almost all mice; c Body weight over time. Body weight 

increased quickly during first half of study, followed by a plateau in the second half; d 
%fat over time. Body fat increases quadratically, remaining fairly constant in later weeks
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Fig. 3. 
Metabolic phenotyping over time; a Distribution of FPI over time. One outlier with a value 

of 78.9 ng/mL was removed for the purposes of visualization; b Distribution of PI15 over 

time; c Distribution of FBG over time; d Distribution of BG15 over time; e Distribution of 

HOMA-B over time. Two outliers with values of 4880.6 and 13,932.5 were removed for 

improved visualization; f Distribution of HOMA-IR over time. One outlier with a value of 

554.3 was removed for improved visualization; g Distribution of insulinogenic index over 

time. One outlier with a value of −26.4 was removed for improved visualization
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Fig. 4. 
Correlogram of metabolic indicators at week 25. The size of each circle is directly 

proportional to the magnitude of the Spearman correlation coefcient, which is annotated 

at the center of each circle. Black outlines indicate signifcance at the alpha=0.05 level. 

Insulin phenotypes are highly correlated with each other, and with the derived phenotypes 

(HOMA-B, HOMA-IR and insulinogenic index)
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Fig. 5. 
Visualization of interaction effects for insulin phenotypes from multiple linear regressions; 

a Prediction of FPI at week 25 as a function of cumulative iAs consumption, at three 

quartiles of body fat percentage (Q1=red, median=blue, Q3=green). Bands indicate 95% 

CI; b Prediction of PI15 at week 25 as a function of cumulative iAs consumption, at three 

quartiles of body fat percentage (Q1=red, median=blue, Q3=green). Bands indicate 95% 

CI; c Prediction of HOMA-B at week 25 as a function of cumulative iAs consumption, at 

three quartiles of body weight (Q1=red, median=blue, Q3=green). Bands indicate 95% CI; d 
Prediction of HOMA-IR at week 25 as a function of cumulative iAs consumption, at three 

quartiles of body weight (Q1=red, median=blue, Q3=green). Bands indicate 95% CI
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Fig. 6. 
Visualization of interaction effects for prediction of FPI at week 25 from multiple linear 

regressions using liver arsenic species as independent variables as a function of cumulative 

iAs consumption, at three quartiles of body fat percentage (Q1 = red, median = blue, Q3 = 

green). Bands indicate 95% CI
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Fig. 7. 
Ternary diagrams of As species visualizing the relative proportions of each As species in 

urine a and liver b. Each point on the simplex represents the distribution for a single sample. 

Each vertex represents one of the three As species and proximity to a vertex corresponds 

to a higher contribution of that species; a In urine, all samples had MMAs measure below 

the LOD and the composition is dominated by DMAs; b In liver, DMAs vs. iAs remains 
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the main axis of variation with DMAs dominating the composition. MMAs contributes very 

little to the composition
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