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Abstract
Background: Insulin resistance and hyperinsulinemia play im-
portant roles in the progression of multiple chronic disease and
conditions. Diet modulates insulin response; however, evidence is
limited regarding whether diets with higher insulinemic potential
increase the risk of invasive breast cancer.
Objectives: We aimed to prospectively evaluate the association
between a food-based empirical dietary index for hyperinsulinemia
(EDIH) and the incidence of invasive breast cancer.
Methods: We prospectively followed 76,686 women from the
Nurses’ Health Study (NHS; 1984–2016) and 93,287 women from
the Nurses’ Health Study II (NHSII; 1991–2017). Diet was assessed
by food-frequency questionnaires every 4 y. The insulinemic
potential of diet was evaluated using the previously established
EDIH based on circulating C-peptide concentrations. Higher scores
indicate higher insulinemic potential of the diet. Covariates included
reproductive, hormonal, and anthropometric factors (height and BMI
at age 18 y); race; socioeconomic status; total alcohol intake; total
caloric intake; and physical activity.
Results: During 4,216,106 person-years of follow-up, we doc-
umented 10,602 breast cancer cases (6689 NHS, 3913 NHSII).
In the pooled multivariable-adjusted analyses, women in the
highest, compared with the lowest, EDIH quintile (Q) were at
higher breast cancer risk (HRQ5 vs. Q1 = 1.15; 95% CI: 1.07, 1.24;
P-trend < 0.01). Although heterogeneity by estrogen receptor
(ER) status was nonsignificant, the strongest association between
EDIH and breast cancer was observed for ER-negative tumors
(HRQ5 vs. Q1 = 1.21; 95% CI: 1.00, 1.46; P-trend = 0.02). Among
tumor molecular subtypes, the strongest associations were observed
for human epidermal growth factor receptor 2 (HER2)–enriched
tumors (HRQ5 vs. Q1 = 1.62; 95% CI: 1.01, 2.61; P-trend = 0.02).
Conclusions: A dietary pattern contributing to hyperinsulinemia
and insulin resistance was associated with greater breast cancer
risk, especially ER-negative and HER2-enriched tumors. Our
findings suggest that dietary modifications to reduce insulinemic
potential may reduce the risk of breast cancer. Am J Clin Nutr
2022;116:1530–1539.
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Introduction
Poor dietary quality has been linked to the development of

many chronic diseases including breast cancer; hyperinsulinemia
and insulin resistance may be important underlying mechanisms
for this association (1–3). Although certain dietary factors appear
to influence insulin resistance and secretion (4, 5), dietary
patterns or indices that incorporate and account for the complex
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interactions among diverse components may be more predictive
of diet–disease associations (6).

Several breast cancer risk factors, such as obesity and
physical inactivity, contribute to insulin resistance, which, in
turn, increases insulinemia (7, 8). Diets modulating these
biological pathways of insulin response may influence breast
cancer incidence. In epidemiologic studies, healthy dietary
patterns, such as the Alternate Healthy Eating Index (AHEI),
Alternate Mediterranean Diet (aMED), or Dietary Approaches to
Stop Hypertension (DASH), among others, have been inversely
associated with the risk of breast cancer (9–12). Also, greater
adherence to a prudent dietary pattern, composed of vegetables,
fruits, legumes, and whole grains, and lower adherence to a
Western dietary pattern, high in saturated fats and red and
processed meats as well as added sugars, fried foods, and refined
grains, were associated with a reduced risk of breast cancer
(13). Although these dietary patterns are associated with insulin
response (14–16) they may not comprehensively capture the
insulinemic potential of the diet, which may be an important
mechanism linking dietary quality and breast cancer.

Biomarker-based dietary patterns may be crucial in this
regard. Recently, we developed and evaluated the validity of
an empirical index to assess the insulinemic potential of a
usual diet, the empirical dietary index for hyperinsulinemia
(EDIH), based on fasting C-peptide concentrations (17). C-
peptide is co-secreted with insulin but has a longer half-
life in plasma than insulin; consequently, it can serve as a
marker to assess a time-integrated measure of insulinemia due
to both the dietary glycemic load and insulin resistance. The
glycemic index and insulin index assess the acute postprandial
glycemic or insulinemic potential of specific foods (17) and
have not predicted fasting C-peptide concentrations. C-peptide
concentrations were positively associated with breast cancer
in a recent meta-analysis (18). In the Nurses’ Health Studies,
higher C-peptide concentrations were associated with higher
breast cancer risk in pre- and postmenopausal women, and this
association was stronger for estrogen receptor (ER)–negative
tumors (19). Serum C-peptide concentration may be modified by
diet, and a dietary pattern consisting of a higher consumption of
animal-based foods and refined grains has been associated with
higher C-peptide concentrations (20, 21), whereas whole grains
(5), fruits, vegetables (22), and coffee (4,20) have generally been
associated with lower concentrations of insulin or C-peptide.
A dietary pattern may be more appropriate than evaluating
single nutrients or foods, which separately may not affect insulin
concentrations sufficiently to influence breast cancer appreciably.

Although the EDIH has been associated with the risk of
several major chronic diseases (23–31), its relation to breast
cancer has not yet been evaluated. Given the potential role of
hyperinsulinemia on breast cancer risk, we hypothesized that a
greater insulinemic potential of diet, represented by higher EDIH
scores, would be associated with a higher risk of breast cancer.

Methods

Study design

The Nurses’ Health Study (NHS) is an ongoing study of
121,701 female nurses aged 30–55 y in 1976, and the Nurses’
Health Study II (NHSII) has followed 116,429 female nurses

(aged 25–42 y) since 1989. Every 2 y, participants have
provided information on health-related factors and medical
history. Women were followed from 1984 to 2016 in the NHS and
from 1991 to 2017 in the NHSII. In this analysis, we excluded
participants who had missing values in the dietary score (i.e.,
EDIH), and who had cancer (except for nonmelanoma skin
cancer) or implausible energy intake (<600 or >3500 kcal/d) at
baseline. Overall, a total of 76,686 women from the NHS and
93,287 from NHSII were included in the analysis (Supplemental
Figure 1). The study protocol was approved by the institutional
review boards of the Brigham and Women’s Hospital and those
of participating registries as required.

Diet assessment

Diet was assessed with semi-quantitative food-frequency
questionnaires (FFQs) administered in the NHS in 1984, 1986,
and every 4 y thereafter, and in the NHSII in 1991 and every 4 y
thereafter. The numbers of FFQ food items have evolved: in the
NHS, there were 116 items in 1984 and 1986 and ≥130 items
thereafter; in the NHSII, the FFQ from 1991 had ≥130 items.
The FFQs included foods with a specified standard portion size,
and participants were asked to indicate the average consumption
of each food during the previous year (from among 9 choices
ranging from “almost never” to “>6/day”).

The EDIH was constructed using weighted sums of food
groups that predicted plasma C-peptide from a sample of 5812
women in NHS (17) and validated using fasting plasma C-peptide
samples in the NHSII and the Health Professionals Follow-Up
Study (HPFS) (17). Briefly, the EDIH was derived based on 39
predefined food groups from FFQs using stepwise regression
models to identify a dietary pattern most predictive of circulating
C-peptide concentrations beyond the postprandial state and
which captures factors that also influence insulin resistance
(e.g., coffee does not contribute calories or carbohydrates but
can improve insulin sensitivity). Therefore, the EDIH may
more exhaustively capture the influence of the whole diet on
insulin secretion and blood concentrations. In total, 18 food
groups (Supplemental Table 1) were identified that contribute
either positively to the EDIH, including red meat, cream soups,
margarine, butter, processed meat, and fruit juice, or inversely
to the EDIH, such as whole grains, coffee, wine, and green-leafy
vegetables. The EDIH showed low-to-moderate correlations with
conventional dietary pattern scores (AHEI, aMED, and DASH;
r = –0.09 to –0.45), and a strong inverse correlation with the
healthful plant-based diet index (r = –0.58). Also, the EDIH has
a positive correlation with the Western dietary pattern (r = 0.63)
(25). In the present study, we calculated the EDIH score for each
participant using FFQ data in each 4-y cycle.

Breast cancer ascertainment

We first identified incident breast cancer cases from biennial
questionnaires. We requested permission from women reporting
breast cancer to review hospital records and pathology reports
for diagnosis confirmation and ascertainment of invasive vs. in
situ and ER, progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2) status. Given the high confirma-
tion rate of reported breast cancer cases in the NHS and NHSII
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(>99%), we included both breast cancer cases confirmed via
medical record review (>90%) and self-reported cases confirmed
by the nurse but lacking a medical record. For deceased cases, the
next of kin was contacted for permission. Deaths were reported
by family members or by the postal service in response to follow-
up questionnaires, or they were identified through the National
Death Index.

Details of breast cancer tissue block collection and tumor
microarray (TMA) construction have been reported previously
(32). Briefly, we collected archived formalin-fixed, paraffin-
embedded breast cancer blocks from participants with incident
breast cancer diagnosed up through 2006. For molecular subtype
classification, immunohistochemical staining information was
available for the markers of ER, PR, HER2, cytokeratins (CK)
5/6, and epidermal growth factor receptor (EGFR). Further
staining for the proliferative marker Ki-67 was achieved in NHS
cases; Ki-67 data were not available for NHSII cases. Cases
with TMAs were very similar to all suitable invasive cases in
terms of demographics, breast cancer risk factors, and tumor
characteristics.

Definitions that correlated with gene expression profile classi-
fications were used for tumor molecular subtyping for a subgroup
of cases. If Ki-67 expression data were missing (NHSII tumors),
histological grade was used instead. Hence, luminal A tumors
were ER-positive and/or PR-positive, HER2-negative, and Ki-
67–negative (or histologic grade 1 or 2). Luminal B tumors were
either 1) ER-positive and/or PR-positive and HER2-positive or
2) ER-positive and/or PR-positive, HER2-negative, and Ki-67–
positive (or histologic grade 3). HER2-enriched tumors were
ER-negative, PR-negative, and HER2-positive. Basal-like tumors
were ER-negative, PR-negative, HER2-negative, and CK 5/6–
positive and/or EGFR-positive. For evaluating ER-positive vs.
ER-negative tumors, ER status was determined primarily from
TMA slides and, if not available, secondarily from pathology
reports. For cases diagnosed between 1980 and 2006 and in the
NHS only, information was available for the insulin receptor (IR).

Ascertainment of covariates

Information on lifestyle and other potential risk factors was
collected at baseline and updated biennially during follow-
up through self-administered questionnaires, including race,
socioeconomic status, age at menarche, age at menopause,
postmenopausal hormone use, oral contraceptive use, parity, age
at first birth, breastfeeding history, height, total alcohol intake,
total caloric intake, physical activity, BMI at age 18 y, and change
in weight since age 18 y. BMI was calculated as weight in
kilograms divided by the square of the height in meters.

Statistical analysis

We calculated person-years of follow-up from the date of
the return of the baseline questionnaire until the date of breast
cancer diagnosis, other cancers (excluding nonmelanoma skin
cancers), or the end of follow-up (June 2016 for NHS, June 2017
for NHSII), whichever occurred first. To better represent long-
term exposures and reduce within-person variation, cumulative
averages of EDIH were computed from all previous question-
naires up to the start of each 2-y follow-up interval. Similarly, the

cumulative average intake of other covariates, when appropriate,
was created to best reflect long-term food intake and lifestyle, and
to minimize within-person variation.

To maximize the statistical power, data from the NHS and
NHSII were pooled. Age-adjusted and multivariable-adjusted
HRs and 95% CIs were calculated using a time-varying Cox
regression model. All analyses were stratified by cohort and
calendar year and age in months was the underlying time scale,
enabling the finest possible control of confounding for age and
secular trends. In the multivariable-adjusted model, we included
race, socioeconomic status, age at menarche, age at menopause,
postmenopausal hormone use, oral contraceptive use, parity, age
at first birth, breastfeeding history, height, BMI at age 18, and
total caloric intake (for categorizations, see footnote in table
2). We did not include weight gain after age 18 in the primary
analysis because this could be a mediator of an effect of an
hyperinsulinemic diet (23). We conducted a Wald test for trend,
using the median EDIH value of each quintile, modeled as a
continuous variable.

We performed several sensitivity analyses to test the robustness
of our findings. First, we additionally adjusted for the consump-
tion of food groups (coffee, red and processed meat) contributing
most to the EDIH. Second, to take advantage of repeated diet
assessments in these cohorts and evaluate the latency between
these indices and breast cancer incidence, we conducted separate
Cox models at different lag periods, with risk of invasive and
ER-negative breast cancer. In the simple updated model, EDIH
scores reported on the most recent FFQ before each follow-
up interval were used; in the latency models, we used EDIH
scores reported at different latencies (i.e., 4–8, 8–12, 12–16, 16–
20 y) before breast cancer diagnosis. In addition, we applied a
damped exponential weighting function that incorporates latency
of exposure profiles that can be implemented using standard
Cox regression software (33). Third, we tested whether the
EDIH and breast cancer association varied by selected traditional
risk factors: current BMI, physical activity, total alcohol intake,
and menopausal status at diagnosis. Tests for interaction were
obtained using the Wald test of cross-product interaction terms
between the EDIH, modeled as a continuous variable, and
potential effect modifiers. Fourth, to examine the independent
association of the EDIH with breast cancer, we conducted
a model further mutually adjusting for the empirical dietary
inflammatory pattern (EDIP) (34). Mediation analyses (35) were
performed to assess the extent to which associations may be
statistically accounted for by weight gain from age 18 y and type
2 diabetes and estimated the mediated proportion (36, 37). To
evaluate whether associations differed by molecular subtype or
ER status, we used the Lunn-McNeil approach to derive the P
value for heterogeneity (38).

Statistical tests were 2-sided, with P values <0.05 indicating
statistical significance. All analyses were performed using SAS
for UNIX version 9.4 (SAS Institute).

Results
Our study included 76,686 women from the NHS and

93,287 women from the NHSII. Compared with participants
with lower EDIH scores, those in the highest quintile
tended to have higher BMI (kg/m2) and weight change
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TABLE 1 Age and age-adjusted baseline characteristics of participants according to quintiles of the EDIH score in the NHS (1984) and the NHSII (1991)1

NHS NHSII

Q1 (n = 15,337) Q3 (n = 15,337) Q5 (n = 15,337) Q1 (n = 18,657) Q3 (n = 18,657) Q5 (n = 18,657)

Median (range) EDIH score 0.1 (0.1, 0.2) 0.5 (0.4, 0.5) 0.9 (0.8,1) 0.2 (0.1, 0.2) 0.5 (0.4, 0.5) 0.9 (0.8, 1)
Age, y 52.3 (6.9) 51 (7.1) 49.2 (7.1) 37.5 (4.5) 36.6 (4.7) 36 (4.7)
BMI, kg/m2 23.7 (3.7) 25.1 (4.6) 26.5 (5.7) 23 (4) 24.3 (5) 26.3 (6.5)
Waist circumference, cm 76.1 (9.4) 79 (10.5) 82.3 (12.5) 75.2 (10.5) 78.3 (12.1) 82.7 (14.5)
BMI at age 18 y, kg/m2 21.3 (2.8) 21.4 (2.9) 21.5 (3.2) 21 (3) 21.2 (3.3) 21.7 (3.8)
Weight change from age 18 y,

kg
6.3 (9.5) 9.9 (10.8) 13.5 (12.9) 5.4 (9.2) 8.5 (10.8) 12.7 (13.6)

Height, m 1.6 (0.1) 1.6 (0.1) 1.6 (0.1) 1.6 (0.1) 1.6 (0.1) 1.6 (0.1)
White, % 97.3 97.2 97.0 95.1 95.4 95.1
Self-reported history of

diabetes, %
1.7 3.0 5.5 0.6 0.8 1.8

Family history of breast
cancer, %

8.2 8.1 7.8 6.2 5.8 5.9

Biopsy-confirmed benign
breast disease, %

28.0 25.8 24.7 9.9 9.4 9.4

Age at menarche <12 y, % 22.1 22.6 23.0 24.2 24.1 25.4
Oral contraceptive use, ever, % 49.5 49.5 49.6 84.0 85.0 84.5
Parous, % 91.6 93.0 93.1 64.7 76.8 78.1
Parity,2 n1 3.1 (1.4) 3.2 (1.5) 3.2 (1.6) 2 (0.9) 2.1 (0.9) 2.2 (0.9)
Breastfeeding ≤6 mo,2 % 36.3 36.8 36.3 65.9 62.9 58.0
Postmenopausal, % 48.6 48.4 48.4 2.9 3.3 3.4
Postmenopausal hormone use,

never,3 %
52.0 53.4 52.6 7.7 7.6 7.4

Physical activity, MET-h/wk 13.8 (14.4) 12 (12) 10.8 (12.1) 26.1 (32.8) 20.1 (24) 18.1 (23)
Dietary intake

Total energy, kcal/d 1436 (457) 1683 (436) 2214 (504) 1459 (462) 1730 (446) 2278 (522)
Total carbohydrates, % 48.3 (8.9) 46.5 (7.3) 44.2 (7.8) 52.8 (8.5) 49.5 (6.7) 47.4 (7.6)
Total protein, % 16.8 (3.1) 18.1 (3.3) 18.3 (3.6) 18.4 (3.6) 19.7 (3.4) 19.4 (3.6)

Saturated fat, % 11.7 (3) 12.4 (2.4) 13.4 (2.4) 10.4 (2.9) 11.2 (2.2) 12 (2.2)
Monounsaturated fat, % 11.4 (2.4) 12.7 (2.2) 13.8 (2.3) 10.8 (2.6) 11.9 (2.2) 13.2 (2.3)
Polyunsaturated fat, % 6.5 (1.9) 6.7 (1.7) 6.7 (1.6) 5.5 (1.5) 5.6 (1.3) 5.8 (1.3)
Alcohol, g/d 10.3 (13.8) 6.0 (9) 5.9 (10.9) 4.7 (7) 2.7 (5.3) 2.5 (5.5)

1All variables are standardized to the age distribution of the study population, except for age. Values are means (SDs) for continuous variables and
percentage of participants for categorical variables unless otherwise indicated. EDIH, empirical dietary index for hyperinsulinemia; MET, metabolic
equivalent of task; NHS, Nurses’ Health Study; NHSII; Nurses’ Health Study II; Q, quintile. 2Among parous women only. 3Among postmenopausal.

since age 18 (kilograms), and lower physical activity lev-
els, and were more likely to have a history of diabetes
(Table 1). They also reported higher total caloric intake
(kilocalories/day).

During 4,216,106 person-years of follow-up, we documented
10,602 breast cancer cases (6689 NHS, 3913 NHSII).
Although the age-adjusted model showed no association,
in the multivariable-adjusted analysis (Table 2), the
EDIH was significantly associated with breast cancer risk
[HRQuintile (Q) 5 vs .Q1 = 1.15; 95% CI: 1.07, 1.24; P-trend < 0.01].
Reproductive and hormonal factors were the main covariates
responsible for the observed changes in the effect estimates
between the age-adjusted and multivariable-adjusted models.
Additional adjustment for weight change since age 18, a potential
mediator of an effect of the EDIH on risk of breast cancer, and
the EDIP modestly attenuated the magnitude of the association
(HRQ5vs.Q1 = 1.08; 95% CI: 1.00, 1.16; P-trend = 0.03;
and HRQ5vs.Q1 = 1.09; 95% CI: 1.00, 1.19; P-trend = 0.04,
respectively) (data not shown). In a separate analysis by cohort
(Supplemental Table 2), higher EDIH scores were associated
with a higher risk in the NHS (HRQ5vs.Q1 = 1.17; 95% CI: 1.07,

1.28; P-trend < 0.0001) and a suggestively higher risk in the
NHSII (HRQ5vs.Q1 = 1.11; 95% CI: 0.99, 1.25; P-trend = 0.10).
In ancillary analyses, we took alcohol components out of the
EDIH score and consequently adjusted for cumulatively updated
total alcohol consumption in the multivariable model, but
results were basically unchanged. Furthermore, we evaluated
the extent to which the direct association with higher EDIH
may be mediated by weight gain from age 18 or type 2 diabetes
(Supplemental Table 3). The calculated mediation proportion
was 37.4% (95% CI: 19%, 60.4%; P < 0.001) and 7.4% (95%
CI: 3.5%, 14.8%; P < 0.001), indicating that weight gain
and diabetes could statistically explain approximately 37%
and 7% of the positive association with EDIH (Supplemental
Table 3).

We observed no statistical evidence of interaction by BMI,
waist circumference, physical activity, or alcohol intake (P-
interaction > 0.05; Supplemental Table 4); nonetheless, the
association between EDIH and breast cancer risk was sugges-
tively stronger for postmenopausal women (HRQ5vs.Q1 = 1.19;
95% CI: 1.10, 1.29; P-trend < 0.001, P-interaction = 0.05)
(Table 3). The latter association remained significant when we
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TABLE 2 Multivariable HRs (95% CIs) of overall and subtypes of breast cancer according to EDIH quintiles in the NHS and NHSII

Quintiles of EDIH P-trend2

Q1 Q2 Q3 Q4 Q5

Invasive breast cancer
Cases/person-years 2259/843,605 2145/843,690 2081/843,656 2090/843,456 2027/841,701
Age-adjusted 1.00 0.97 (0.91, 1.03) 0.96 (0.90, 1.01) 0.98 (0.92, 1.04) 0.97 (0.91, 1.03) 0.39
MV-adjusted 1.00 1.02 (0.96, 1.09) 1.04 (0.98, 1.11) 1.10 (1.03, 1.17) 1.15 (1.07, 1.24) <0.01

ER-negative
Cases/person-years 300/845,475 296/845,465 311/845,370 325/845,139 316/843,286
Age-adjusted 1.00 0.99 (0.84, 1.16) 1.06 (0.90, 1.24) 1.12 (0.96, 1.32) 1.10 (0.94, 1.29) 0.11
MV-adjusted 1.00 1.01 (0.86, 1.19) 1.10 (0.93, 1.30) 1.19 (1.00, 1.42) 1.21 (1.00, 1.46) 0.02

ER-positive
Cases/person-years 1570/844,297 1424/844,389 1409/844,323 1351/844,205 1312/842,383
Age-adjusted 1.00 0.93 (0.86, 1.00) 0.93 (0.87, 1.00) 0.91 (0.84, 0.98) 0.91 (0.84, 0.98) 0.01
MV-adjusted 1.00 0.99 (0.92, 1.06) 1.03 (0.95, 1.11) 1.04 (0.96, 1.12) 1.11 (1.02, 1.22) 0.01
P-heterogeneity3 = 0.30

Luminal A4

Cases/person-years 578/585,800 498/585,985 507/585,903 470/585,602 450/584,192
Age-adjusted 1.00 0.89 (0.79, 1.00) 0.93 (0.82, 1.04) 0.88 (0.78, 1.00) 0.88 (0.78, 1.00) 0.24
MV-adjusted 1.00 0.93 (0.82, 1.05) 0.99 (0.87, 1.12) 0.97 (0.85, 1.11) 1.02 (0.88, 1.18) 0.06

Luminal B4

Cases/person-years 250/586,097 228/586,205 222/586,160 211/585,833 214/584,405
Age-adjusted 1.00 0.92 (0.77, 1.10) 0.91 (0.76, 1.09) 0.88 (0.73, 1.05) 0.91 (0.75, 1.09) 0.29
MV-adjusted 1.00 0.96 (0.80, 1.16) 0.99 (0.82, 1.19) 0.98 (0.80, 1.20) 1.07 (0.86, 1.33) 0.54

HER-24

Cases/person-years 43/586,282 45/586,380 43/586,322 57/585,958 53/584,553
Age-adjusted 1.00 1.07 (0.70, 1.62) 1.07 (0.70, 1.64) 1.46 (0.98, 2.18) 1.43 (0.95, 2.15) 0.03
MV-adjusted 1.00 1.09 (0.71, 1.66) 1.12 (0.72, 1.75) 1.57 (1.02, 2.43) 1.62 (1.01, 2.61) 0.02

Basal-like4

Cases/person-years 39/586,282 57/586,374 56/586,312 63/585,957 57/584,538
Age-adjusted 1.00 1.48 (0.98, 2.23) 1.51 (1.00, 2.27) 1.74 (1.16, 2.60) 1.63 (1.08, 2.45) 0.02
MV-adjusted 1.00 1.40 (0.93, 2.12) 1.38 (0.90, 2.11) 1.58 (1.03, 2.43) 1.53 (0.96, 2.43) 0.10
P-heterogeneity3 = 0.10

Insulin receptor negative5

Cases/person-years 179/298,160 192/298,147 182/298,044 210/297,786 157/297,046
Age-adjusted 1.00 1.07 (0.87, 1.32) 1.06 (0.86, 1.30) 1.24 (1.02, 1.52) 0.97 (0.78, 1.21) 0.81
MV-adjusted 1.00 1.10 (0.89, 1.35) 1.09 (0.88, 1.35) 1.29 (1.03, 1.60) 1.02 (0.80, 1.31) 0.55

Insulin receptor positive5

Cases/person-years
Age-adjusted 1.00 0.91 (0.75, 1.10) 0.98 (0.81, 1.18) 0.83 (0.68, 1.02) 1.01 (0.83, 1.23) 0.89
MV-adjusted 1.00 0.94 (0.77, 1.14) 1.03 (0.84, 1.26) 0.90 (0.72, 1.12) 1.14 (0.91, 1.44) 0.34

P for heterogeneity = 0.80

All analyses were conducted using Cox models stratified by cohort, age in months, and calendar year. The multivariable model adjusted for race
(non-Hispanic White, Black, Asian-American, Hispanic White), age at menarche (<12, 12, 13, 14, >14 y), menopausal status, and age at menopause
(premenopausal; <45, 45–49, 50–52, ≥53 y; unknown), postmenopausal hormone use [never user, past user, current user (estrogen only for <5 y), current
user (estrogen only for ≥5 y), current estrogen + progestin user for <5 y, current estrogen + progestin user for ≥5 years, current user of other types], oral
contraceptive use history (never, ever), parity and age at first birth (nulliparous, 1 child before age 25, 1 child at ≥25 years of age, ≥2 children before age 25,
≥2 children ≥25 y of age), breastfeeding history (never, breastfed for ≤6 mo, breastfed for >6 mo), family history of breast cancer (yes or no), history of
biopsy-confirmed benign breast disease (yes or no), height (<1.60, 1.60–1.64, 1.65–1.69, 1.70–1.74, ≥1.75 m), cumulatively updated alcohol intake (0, <5,
5–9, 10–14, ≥15 g/d), cumulatively updated total caloric intake (kcal/d, quintiles), physical activity (continuous MET-hours/week), neighborhood-based
socioeconomic status indicator (continuous), and BMI at age 18 (kg/m2; <20.0, 20.0–21.9, 22.0–23.9, 24.0–26.9, ≥27.0). EDIH, empirical dietary index for
hyperinsulinemia; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; MET, metabolic equivalent of task; MV, multivariable; NHS,
Nurses’ Health Study; NHSII; Nurses’ Health Study II; Q, quintile.

1The P-trend was calculated by assigning the EDIH quintile medians to all the participants in the quintile and modeling as continuous variables.
2For testing heterogeneity by subtype, we used the Lunn–McNeil approach, for the multivariable model.
3Due to smaller sample sizes in analyses, to ensure that models would run, covariate categorizations were simplified.
4Insulin receptor (IR)–positive or -negative status was determined as ≥ (positive) or < (negative) the median of IR expression (cytoplasmic and

membranous).

further adjusted for the EDIP (HR Q5vs.Q1 = 1.13; 95% CI: 1.01,
1.25; P-interaction = 0.10) (data not shown).

In latency analyses (Supplemental Table 5) the highest
compared with the lowest EDIH 0–16 y before diagnosis was

associated with 15–23% higher risk of invasive breast cancer
(HR: 1.15; 95% CI: 1.08, 1.24 for simple update or 0–4 y; HR:
1.15; 95% CI: 1.07, 1.23 for 4–8 y; HR: 1.23; 95% CI: 1.14, 1.33
for 8–12 y; and HR: 1.17; 95% CI: 1.07, 1.27 for 12–16 y).
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TABLE 3 Multivariable HRs (95% CIs) of overall and ER-negative breast cancer risk according to quintiles of EDIH by menopausal status in the NHS and
NHSII1

Quintiles of EDIH P-trend2 P-interaction3

Cases, n Q1 Q2 Q3 Q4 Q5

Invasive breast cancer
Menopausal status

Premenopausal 2222 1.00 0.98 (0.86, 1.12) 1.04 (0.91, 1.19) 1.04 (0.90, 1.19) 1.07 (0.91, 1.25) 0.34
Postmenopausal 7746 1.00 1.03 (0.96, 1.10) 1.03 (0.96, 1.11) 1.12 (1.04, 1.21) 1.19 (1.10, 1.29) <0.001 0.05

ER-negative breast cancer
Menopausal status

Premenopausal 391 1.00 0.84 (0.60, 1.17) 1.00 (0.72, 1.39) 1.05 (0.75, 1.47) 1.01 (0.70, 1.47) 0.67
Postmenopausal 1042 1.00 1.10 (0.90, 1.33) 1.09 (0.89, 1.33) 1.22 (0.99, 1.50) 1.29 (1.03, 1.62) 0.02 0.36

1The multivariable model adjusted for race (non-Hispanic White, Black, Asian-American, Hispanic White), age at menarche (<12, 12, 13, 14, >14 y),
menopausal status, and age at menopause (premenopausal; <45, 45–49, 50–52, ≥53 y; unknown), postmenopausal hormone use [never user, past user,
current user (estrogen only for <5 y), current user (estrogen only for ≥5 y), current estrogen + progestin user for <5 y, current estrogen + progestin user for
≥5 years, current user of other types], oral contraceptive use history (never, ever), parity and age at first birth (nulliparous, 1 child before age 25, 1 child at
≥25 years of age, ≥2 children before age 25, ≥2 children ≥25 y of age), breastfeeding history (never, breastfed for ≤6 mo, breastfed for >6 mo), family
history of breast cancer (yes or no), history of biopsy-confirmed benign breast disease (yes or no), height (<1.60, 1.60–1.64, 1.65–1.69, 1.70–1.74, ≥1.75 m),
cumulatively updated alcohol intake (0, <5, 5–9, 10–14, ≥15 g/d), cumulatively updated total caloric intake (kcal/d, quintiles), physical activity (continuous
MET-hours/week), neighborhood-based socioeconomic status indicator (continuous), and BMI at age 18 (kg/m2; <20.0, 20.0–21.9, 22.0–23.9, 24.0–26.9,
≥27.0). EDIH, empirical dietary index for hyperinsulinemia; ER, estrogen receptor; NHS, Nurses’ Health Study; NHSII; Nurses’ Health Study II; Q, quintile.

2The P-trend was calculated by assigning the median to all the participants in the quintile and modeling as continuous variables.
3P-interaction was calculated using the Wald test by including the interaction term.
In subgroup analyses of a factor, that potential effect modifier was not additionally adjusted for in the multivariable model.
Twenty-one MET-h/week is equivalent to ∼7 h/wk of brisk walking.

We observed no significant heterogeneity by ER status (P-
heterogeneity = 0.30) (Table 2), although direct associations
were stronger for ER-negative (HRQ5vs.Q1 = 1.21; 95% CI: 1.00,
1.46; P-trend = 0.02) than for ER-positive (HRQ5vs.Q1 = 1.11;
95% CI: 1.02, 1.22; P-trend = 0.01) breast cancers. Further
adjustment for weight change since age 18 did not materially alter
the association for ER-negative breast cancer (HRQ5vs.Q1 = 1.18;
95% CI: 0.97, 1.43; P-trend = 0.045), but it did change for ER-
positive breast cancer (HRQ5vs.Q1 = 1.04; 95% CI: 0.95, 1.13; P-
trend = 0.39) (data not shown). Weight gain could statistically
explain 59.2% (15.9%, 91.7%; P < 0.001) of the positive
association for ER-positive tumors and might partly mediate that
association (Supplemental Table 3). Although P-heterogeneity
was 0.10 across the molecular subtypes (Table 2), signifi-
cant associations were observed with HER2-enriched tumors
(HRQ5vs.Q1 = 1.62; 95% CI 1.01, 2.61; P-trend = 0.02). We did
not observe any association between cumulative average EDIH
and breast cancer based on IR status (P-heterogeneity = 0.80;
Table 2).

Additional adjustment for the consumption of food groups
(coffee, red and processed meat) contributing most to the
EDIH and diabetes (Supplemental Table 6) or any other
food components of the EDIH score (data not shown) did not
alter the results. Furthermore, we adjusted for the EDIP to
assess the independent contribution of hyperinsulinemia for ER-
negative breast cancer, and the association was attenuated and
no longer significant (HRQ5vs.Q1 = 1.04; 95% CI: 0.82, 1.30; P-
trend = 0.72) (data not shown). We also assessed the extent
to which the association of ER-negative breast cancer with
higher EDIH may be mediated by weight gain from age 18 y
and diabetes. The proportion of EDIH association statistically
accounted for by weight change since age 18 was 23.3% (95% CI:
4.6%, 65.7%; P = 0.04). In addition, the percentage of exposure

effect was too small (<1%) to calculate reliably, and diabetes was
not an intermediate to EDIH (Supplemental Table 3).

When we examined EDIH at specific lags (Supplemental
Table 5), we identified a lag period for the association of
EDIH and ER-negative breast cancer at various periods. The
direct association between EDIH and ER-negative breast cancer
was the strongest when EDIH was assessed 0–4 y (HR: 1.25;
95% CI: 1.05, 1.50), 4–8 y (HR: 1.34; 95% CI: 1.10, 1.62),
and 8–12 y (HR: 1.31; 95% CI: 1.05, 1.63) before diagnosis.
These results also suggested a 12–16-y lag for the association
between EDIH and ER-negative breast cancer (HR: 1.18; 95%
CI: 0.92, 1.52); however, the magnitude of association was
less strong, and there was no association at later time points
(16–20-y lag). Overall, the lag-specific results agree with the
latency analyses (damped exponential weighting model), which
suggested, although nonsignificantly, that recent adherence to the
EDIH may be a more important predictor of risk than more distant
exposure for ER-negative breast cancer (data not shown).

Discussion
In these 2 large prospective US cohorts, we investigated the

associations of a dietary pattern reflecting the contribution of
foods to hyperinsulinemia and insulin resistance with the risk of
breast cancer. This association was most evident in relation to
ER-negative and HER2-enriched tumors. To our knowledge, this
is the first prospective cohort study examining dietary insulinemic
potential and breast cancer development. The strong positive
associations for ER-negative breast tumors remained significant
after further adjusting for weight change or foods contributing
most to the EDIH. Overall, these findings support the importance
of the insulin signaling pathway for the etiology of breast cancer.
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Dietary patterns with higher insulinemic potential are rich in
red and processed meat, sugar-sweetened beverages, and French
fries, but low in whole fruit, whole grains, high-fat dairy products
(e.g., cheese, whole milk, yogurt), green-leafy vegetables, coffee,
and wine. The resultant nutrient profile is rich in total and
saturated fat, cholesterol, and total and animal protein and low
in fiber. In the current analyses, positive associations were found
for the EDIH with invasive breast cancer. Adiposity is closely
related to diet and can, in part, mediate its role in breast cancer,
with hyperinsulinemia/insulin resistance promoting breast cancer
cell growth (39, 40). In previous studies, higher EDIH scores
were associated with substantial long-term weight gain (23);
therefore, we further adjusted for weight change to highlight
the mediating influence of adiposity on the association between
EDIH and breast cancer risk. As predicted, the influence of
the dietary pattern was strongly mediated by weight change for
invasive breast cancer. Indeed, increasing the likelihood of weight
gain since age 18 y explained approximately 40% of the direct
association with EDIH adherence. Higher diabetes prevalence
statistically explained only 7.4% of the positive association with
EDIH and we observed no interaction by diabetes status, which is
consistent with our previous results (41). Furthermore, our results
were slightly attenuated but remained significant after accounting
for the inflammatory potential of the diet, which might reflect an
independent association of insulinemic diets and overall invasive
breast cancer risk.

Estrogen exposure is an established driver of breast cancer.
Thus, any potential influence of dietary factors in ER-positive
tumors may be hard to identify given the strong influence
of hormonal factors. The association between EDIH and ER-
positive tumors was attenuated after adjusting for weight change.
On the other hand, in ER-negative tumors, other factors, such
as diet, may exert a relatively greater influence and be more
easily visible. In fact, the strong positive association between
EDIH and ER-negative breast cancer remained after adjusting
for weight change, suggesting that this empirical hypothesis-
oriented dietary index for hyperinsulinemia has an impact
independent of adiposity, possibly through mitogen-activated
protein kinase (MAPK) (42) and PI3K/Akt/mTOR (43) pathways
(44, 45). This is also consistent with a nested case-control
study within the Nurses’ Health Studies (19) in which C-peptide
concentrations were more strongly associated with risk of ER-
negative breast cancer than with ER-positive cases. Notably, the
positive association of EDIH and subsequent ER-negative breast
cancer was attenuated after accounting for the inflammatory
potential of diet. Given these results, the insulinemic potential
of diet might not play a unique and strong role in ER-negative
breast cancer when accounting EDIP and therefore focusing on
the independent information not available in the EDIP.

Our finding of stronger direct EDIH associations with ER-
negative breast cancers is consistent with other studies that have
reported lower risks of ER-negative breast cancer associated
with lower glycemic load (46), lower total carbohydrate intake
(46), higher dietary fiber (47), and higher adherence to a priori
scores (DASH, Recommended Food Scores, aMED, healthful
plant-based diet index) favoring plant foods (11). Nonetheless,
the ability of these diet quality scores to predict breast cancer
risk depends on how well these scores measure dietary risk
factors for breast cancer. In this regard, the dietary score in our
study includes several food groups that are not regularly captured

in other dietary patterns, including certain vegetable categories
(e.g., green-leafy vegetables), coffee, and animal-based foods
besides red and processed meat, such as eggs. Some of these
foods have been associated with risk of breast cancer, particularly
for more aggressive tumors such as ER-negative, basal-like, or
HER2-enriched breast tumors (11, 48, 49). In fact, our results
are in close agreement with previous findings, which could be
expected, as most healthy plant foods that are inversely weighted
in the EDIH [e.g., green-leafy vegetables (48), whole fruits
(48), coffee (41, 50)] have been associated with a lower risk of
breast cancer in prospective cohort studies, including our own.
Moreover, a healthful plant-based diet, inversely correlated with
the EDIH (r = –0.58), and emphasizing the quality of plant foods
(such as whole grains and foods rich in dietary fiber) was recently
associated with a decreased risk of ER-negative breast tumors
(51).

However, some components of the index are weighted towards
components that are risk factors for breast cancer (52), such
as alcohol consumption and, more specifically, red and white
wine. Therefore, we also analyzed the EDIH without the alcohol
component and controlled for alcohol as a confounder in
the statistical model and observed similar results. Moreover,
positively scored food groups such as red and processed meat,
low-energy and high-energy beverages, butter, French fries, and
cream soups have been associated with an increased risk of breast
cancer (53–55). Thus, dietary patterns that do not account for
these food items may be missing crucial elements of diet that
influence breast cancer risk and could partly justify previous null
and mixed findings.

Because ER-negative tumors tend to be more aggressive and
have fewer treatment options than ER-positive tumors (45),
it is of special importance to identify prevention strategies.
Moreover, among the ER-negative breast cancers, a higher EDIH
was associated with a higher risk for HER2-enriched tumors
and a suggestively higher risk for basal-like tumors. Factors
related to adiposity/hyperinsulinemia may be important for these
subtypes (45), especially for triple-negative breast cancers, of
which 80% are basal-like tumors. Previous studies examining
associations between dietary patterns and molecular subtypes
of breast cancer are limited. In the Nurses’ Health Studies,
and consistent with our current results, we observed an inverse
trend for the DASH dietary pattern and HER2-enriched breast
cancer (11).

Insulin resistance is tethered to hyperinsulinemia, and the
direct mitogenic effect of insulin and the indirect effect through
increased production of insulin-like growth factor I (IGF-I) and
reduction of IGF-I binding proteins might help to explain the
link between hyperinsulinemia and breast cancer (56). Free
IGF-I has mitogenic and antiapoptotic effects and has been
suggested to be associated with higher breast cancer risk (57).
Higher adherence to an insulinemic diet may lead to increased
risk of ER-negative breast cancer by potentiation of the IR
(58). Insulin binding to IR leads to downstream activation of
PI3K/AKt and MAPK signaling pathways (59), which induces
mTOR signaling to promote cell growth (60). The latter can
also stimulate mitochondrial biogenesis and activity, which,
in turn, increases TCA cycle utilization and ATP production
[through increased rates of oxidative phosphorylation (61)].
Since insulin can activate the PI3K/AKT/mTOR pathways, it
is predicted that hyperinsulinemia, in the absence of obesity
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and type 2 diabetes, may drive the aggressive biology of ER-
negative tumors (62). Because we observed a stronger association
with ER-negative than with ER-positive breast cancer, our results
suggest that the putative causal effect of EDIH on breast cancer
promotion may be exerted through non-estrogenic pathways.
Identifying specific biological pathways through which diet and
insulin may act to influence breast cancer development will
further elucidate mechanisms of action to guide population-
based policies towards effective prevention and intervention
strategies. Integrating diet and metabolomics data may be helpful
in this regard. For example, a low-quality dietary pattern (high
EDIH) has been associated with high concentrations of different
acylcarnitines (63), which may increase breast cancer risk (64).
More specifically, His et al. (65) found that higher concentrations
of acylcarnitine C2, which are a marker for lipid oversupply (that
could enhance cancer cell proliferation) and upregulate fatty acid
oxidation, were positively associated with breast cancer risk.

Limitations and strengths

This study’s strengths include the 2 large prospective cohorts,
detailed and updated dietary and covariate information, and
availability of tissue information for the determination of
molecular subtypes. The exposures were cumulatively updated
over time and have been validated, minimizing misclassifi-
cation, and reflecting long-term dietary patterns. The EDIH
has previously been strongly associated with substantial long-
term weight gain in men and women, independently of total
energy intake (23), type 2 diabetes (27, 28), and several
cancers (24–26, 29–31), indicating that the score is well
measured.

However, our study has limitations. First, inevitable mea-
surement errors in assessing diet, which would likely be
nondifferential in relation to risk of breast cancer, may have
caused underestimation of associations. Nonetheless, previous
validation studies have shown reasonably good correlations
between FFQs and diet records, suggesting that dietary intake
is generally well measured (66, 67). Because the EDIH was
empirically derived from C-peptide data, the strength of the
association between the score and breast cancer relies not only
on the association of index and biomarkers but also on the
strength of association between C-peptide and breast cancer (18,
19). Nonetheless, EDIH scores are robustly associated with C-
peptide in independent validation datasets (17). We additionally
used multiple FFQs over follow-up to reduce within-person
variation and better approximate habitual long-term diet. The
EDIH scores were cumulatively averaged from multiple time
points, which is likely more relevant to the natural course of
breast cancer that spans several years. Another limitation was
that we could not evaluate diet from childhood/adolescence,
which may be a critical period for breast cancer initiation. Also,
we had limited power to evaluate certain molecular subtypes.
In addition, residual confounding cannot be excluded, but we
controlled for a wide variety of breast cancer risk factors.
Moreover, because the participants were mostly White, the results
may not be generalizable to populations with different underlying
breast cancer risks. Nonetheless, it is unlikely that the biological
mechanisms would differ qualitatively in other populations,
although the magnitudes of the association might vary (68).

Conclusions

In conclusion, in this large prospective study, higher hyper-
insulinemic dietary scores (reflecting higher dietary insulinemic
potential) were associated with a greater risk of invasive breast
cancer, with a large part of this association being explained by
weight gain. However, independent of adiposity, higher adher-
ence to the EDIH was associated with higher ER-negative breast
cancer incidence. Thus, dietary recommendations emphasizing
the importance of avoiding high insulinemic dietary patterns (i.e.,
processed meat, red meat, high- and low-energy beverages) and
prioritizing low insulinemic dietary patterns (i.e., whole fruit,
green-leafy vegetables, full-fat dairy, and coffee) as one of the
important components of a healthy diet could be considered for
the primary prevention of breast cancer. Further studies may
help identify specific biological pathways through which an
insulinemic diet is implicated in breast cancer development.
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