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Introduction
The discovery of activating mutations in the epi-
dermal growth factor receptor (EGFR) in a sub-
set of lung adenocarcinomas in 2004 transformed 
the care and prognosis of patients with non-small-
cell lung cancer (NSCLC) and heralded the era 
of ‘personalized medicine’ in thoracic oncology.1,2 
EGFR mutations occur in about 15% of all lung 
adenocarcinomas, and are enriched among 
patients of younger age, minimal or no smoking 
history, and those of East Asian ethnicity.3 While 
a variety of different EGFR mutations have been 
described in NSCLC, for the purposes of this 
review, we will focus on the two most common 
mutation subtypes, exon 19 deletions and L858R 
mutations in exon 21, which together comprise 
about 85% of all EGFR mutations in NSCLC.

Starting with the landmark iPASS study,4 a series 
of randomized, phase III trials demonstrated 
improved progression-free survival (PFS) when 

first-generation EGFR tyrosine kinase inhibitors 
(TKIs; erlotinib and gefitinib) were compared to 
platinum-doublet chemotherapy in the first-line 
setting and established these drugs as a standard 
of care for newly diagnosed patients with EGFR-
mutant NSCLC.4–7 Later studies also showed 
similar results with the second-generation EGFR 
inhibitor afatinib.8,9 While these agents all led to 
improvements in PFS over chemotherapy, long-
term outcomes were limited by the development 
of acquired resistance, which was mediated by the 
EGFR T790M resistance mutation in ~50% of 
patients progressing on first- and second-genera-
tion EGFR inhibitors.10

Third-generation EGFR inhibitors including osi-
mertinib and others were developed to overcome 
T790M-mediated resistance and were found to 
be effective in T790M-positive patients following 
progression on erlotinib, gefitinib, and afatinib, 
leading to US FDA approval of osimertinib for 
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this indication in 2015.11,12 Subsequently, the 
landmark FLAURA trial, which compared osi-
mertinib to erlotinib and gefitinib as a first-line 
therapy for newly diagnosed patients with 
advanced EGFR-mutant NSCLC, demonstrated 
superior progression free (18.9 months) and over-
all survival (38.6 months) among patients treated 
with osimertinib.13,14 The results of the FLAURA 
trial established osimertinib as the preferred 
EGFR inhibitor for newly diagnosed patients, 
bringing urgency to the need to develop treat-
ment options for patients progressing on first-line 
osimertinib. Figure 1 shows the timeline sche-
matic of the approval of EGFR TKIs. In this 
review, we will summarize the current under-
standing of osimertinib resistance mechanisms 
and explore established and emerging treatment 
options.

Landscape of acquired resistance to 
osimertinib/third-generation EGFR TKI
Similar to what has been observed with acquired 
resistance to first- and second-generation EGFR 

inhibitors, resistance mechanisms to osimertinib 
can broadly be categorized as those mediated by 
alterations of EGFR itself (‘on-target’ resistance) 
and various ‘off-target’ resistance mechanisms 
including activation of parallel signaling pathways 
(‘bypass pathway activation’) and histologic 
transformations.15,16 While initial studies of osi-
mertinib resistance focused on patients who 
received the drug in the T790M-positive set-
ting,17,18 recent efforts focused on patients treated 
with first-line osimertinib. Emerging data from 
the FLAURA trial (which included matched pre- 
and post-treatment plasma from 91 patients who 
progressed on first-line osimertinib) and tissue 
biopsies obtained from 174 patients screening for 
the post-osimertinib ORCHARD study represent 
the largest cohorts of first-line osimertinib resist-
ance reported to date and highlight several key 
findings which are summarized in Figure 2.19,20

First, on-target resistance, specifically secondary 
EGFR mutations, including C797X, G724S, and 
others, appear relatively uncommon among 
patients who receive osimertinib as their initial 

Figure 1.  Schematic timeline showing the approval status of EGFR TKIs.
EGFR, epidermal growth factor receptor; TKIs, tyrosine kinase inhibitors.
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EGFR inhibitor. While prior studies had shown 
that up to 22% of treated with later-line osimerti-
nib developed C797S, only 7% of patients devel-
oped C797S or other secondary EGFR mutations 
in the FLAURA and ORCHARD series. 
Amplification of EGFR was more commonly seen 
and frequently occurs in the absence of secondary 
EGFR mutations, but is not generally felt to be a 
targetable finding.

Taken together, ‘off-target’ resistance, including 
activation of parallel bypass tracks and/or down-
stream signaling pathways account for up to 30–
50% of cases of first-line osimertinib resistance. 
Among these, MET amplification is the most 
common finding in the ORCHARD cohort, tis-
sue NGS identified MET amplification in 24% of 
cases. Notably, in the cohort of patients with 
matched tissue and plasma testing, 53% cases of 
MET amplification were identified in tissue only, 
highlighting the limitations of liquid biopsies and 
circulating tumor DNA (ctDNA) analysis for the 
detection of MET amplification and likely 
accounting for the lower rate of MET amplifica-
tion (15%) observed in the FLAURA ctDNA 
dataset. Acquired oncogene fusions have also 
been described but appear to be quite rare. For 

example, fusions in BRAF (5%), ALK (2%), and 
RET (<1%) were all observed in the ORCHARD 
matched tissue biopsy cohort. Finally, the 
ORCHARD dataset also identified mutations in 
the AKT/PTEN/PIK3CA pathway in 11% of 
patients, HER2 amplification or mutations in 2% 
and RAS mutations in <1%, while 10% of 
patients in the FLAURA ctDNA cohort had cell 
cycle gene alterations.

Importantly, neither the FLAURA nor 
ORCHARD cohorts included histologic assess-
ment in their analysis of resistance mechanisms, a 
key limitation of both series. Data from Schoenfeld 
and colleagues suggest that histologic transforma-
tions occur in up to 15% of patients who progress 
on first-line osimertinib, with transformation 
from adenocarcinoma to small cell as well other 
non-small-cell (squamous, pleomorphic) histolo-
gies all seen in this context. As discussed below, 
patients with EGFR/RB1/TP53 co-mutations are 
at increased risk of SCLC transformation 
specifically.

In summary, the spectrum of resistance mecha-
nisms to first-line osimertinib is broad with a 
diverse range of resistance mechanisms observed 

Figure 2.  Known resistance mechanisms to osimertinib after (a) first-line osimertinib treatment and (b) second-line or later-line 
osimertinib treatment.
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in both plasma and tissue biopsies. Despite recent 
advances, at least one-third of patients do not 
have an identified resistance mechanism, high-
lighting the need for further characterization of 
osimertinib resistance, including incorporation of 
methods to evaluate for non-genomic mecha-
nisms of resistance which thus far have been 
limited.

For patients in the clinic today, evaluation for osi-
mertinib resistance remains important in deter-
mining optimal next-line therapy. We recommend 
tissue biopsy and next-generation sequencing of 
both DNA and RNA as the preferred method to 
comprehensively evaluate for all known resistance 
mechanisms to osimertinib. Liquid biopsy can be 
considered if tissue biopsy is not feasible, but 
given the emerging data which suggests that liq-
uid biopsies are most useful for the detection of 
acquired resistance mutations, ctDNA should not 
be considered a reliable method of detection of 
amplification, fusions, or histologic transforma-
tion. Where possible, treatment options should 
be aimed at identified resistance mechanisms as 
will be discussed in the remainder of this review. 
Nevertheless, with the increasing diversity of 
emerging resistance and the significant propor-
tion of patients who do not have a targetable 
resistance mechanism identified, treatment 
options which are effective for broader groups of 
patients, rather than those aimed at each individ-
ual type of resistance, are urgently needed and 
likely to have the broadest clinical impact.

Strategies to overcome osimertinib 
resistance

Targeting EGFR C797S
For patients who develop resistance mediated by 
EGFR C797S, a new, fourth generation of EGFR 
TKIs specifically designed to target this mutation 
is now entering the clinic. Several promising can-
didates, including EAI045, JBJ-04-125-02, BLU-
945, BBT-176, BDTX-1535, and others, have 
been evaluated preclinically and many are now 
entering phase I studies.

EAI045 is an EGFR allosteric inhibitor, which 
was effective both in vitro and in vivo in EGFR-
mutant models including those harboring the 
C797S mutation.21 However, EAI045 was not 
effective as a single agent, but required combina-
tion with cetuximab, which induced wild-type 
EGFR-mediated skin toxicities.

JBJ-04-125-02 is a more potent allosteric EGFR 
inhibitor which specifically targets EGFR L858R 
and inhibits EGFR L858R/T790M/C797S sign-
aling in vitro and in vivo.22 Dual targeting of 
EGFR with JBJ-04-125-02 and osimertinib led to 
enhanced apoptosis and delayed the onset of 
resistance. However, the selective activity of JBJ-
04-125-02 against L858R and not exon 19 dele-
tion is a key limitation, with agents active against 
both mutations now showing more promise.

BLU-945 is an investigational, reversible, highly 
wild-type selective next-generation EGFR TKI 
optimized for combination with other agents while 
targeting both activating and on-target resistance 
EGFR mutations, including T790M and C797S. 
BLU-945 demonstrated in vitro, in vivo antitumor 
monotherapy activity and enhanced activity in 
combination with osimertinib in resistant NSCLC 
models.23,24 Patient-derived xenograft models 
consistently showed that single-agent BLU-945 
could lead to significant tumor growth inhibition 
in Ex19del/T790M/C797S mutation harboring 
model. Based on these preclinical results, a phase 
I/II study of BLU-945 in patients with metastatic 
EGFR-mutant NSCLC as monotherapy or in 
combination with osimertinib is ongoing 
(SYMPHONY; NCT04862780). Increasing 
BLU-945 doses have been associated with increas-
ing antitumor activity with tumor shrinkage at 
doses of 200 QD and above, and one unconfirmed 
partial response seen at 400 mg QD. BLU-945 
treatment also resulted in substantial decreases in 
ctDNA, with a reduction of 83% (10/12) and 82% 
(9/11) in EGFR T790M and EGFR C797S vari-
ant alleles, respectively. Dose-dependent tumor 
shrinkage and ctDNA variant allele fraction reduc-
tion were seen.25

BLU-701 is also a reversible, selective EGFR 
inhibitor with nanomolar inhibitory activity 
against EGFR double mutations (Ex19del/C797S 
and L858R/C797S).26 BLU-701 showed strong 
inhibition of activating EGFR mutations and 
double mutations, while sparing wild-type EGFR 
and showed significant brain penetration in in 
vivo models. BLU-701 is currently under clinical 
investigation in the ongoing HARMONY trial 
(NCT05153408).

BBT-176 showed an inhibitory effect on Ex19del/
T790M/C797S and L858R/T790M/C797S triple 
mutations in engineered cell lines and patient-
derived cell line and xenograft models.27 A phase 
I/II trial of BBT-176 is ongoing to determine 
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MTD and RP2D (NCT04820023). As of March 
2022, early clinical data showed that steady-state 
drug exposure was proportional to dose and the 
drug’s long half-life was compatible with daily 
drug administration. No dose limiting toxicities 
(DLTs) were observed at dose levels up to 320 mg 
QD. Common treatment-related adverse events 
(TRAEs) were nausea (n = 5), vomiting (n = 3), 
diarrhea (n = 3), rash (n = 4), pruritus (n = 2), 
amylase increase (n = 2), and lipase increase 
(n = 2). No discontinuation of treatment due to 
TRAE has been reported so far. Reduction in 
EGFR mutation allelic frequency was observed in 
three patients, including a non-classical exon 19 
deletion and T790M. These changes were corre-
lated with tumor shrinkage in two of the patients.28 
Two patients with Ex19del/T790M/C797S 
showed radiological improvements in both target 
and non-target lesions.

Finally, JIN-A02 is a novel, orally available, 
fourth-generation EGFR TKI targeting C797S 
mutation and has demonstrated potent anti-
tumor activity in preclinical models of double- or 
triple-mutant EGFR (ex19del/T790M or 
ex19del/T790M/C797S).29 Its activity against a 
broad range of EGFR mutations, including 
L718Q which there is currently no treatment 
alternative, is expected to provide a therapeutic 
opportunity for patients who progressed upon 
previous EGFR TKI, and a future first-in-human 
trial is planned for testing clinical efficacy and 
safety.

Targeting MET amplification
MET amplification occurs in 10–25% of patients 
with EGFR TKI resistance,17,30 and may be over-
come with combined EGFR and MET TKIs.31 
Recently, phase I safety data for the combination 
of savolitinib, a potent and selective MET TKI, 
in combination with osimertinib was reported 
from the global expansion cohorts of the 
TATTON trial.32 These data suggested the feasi-
bility of combining osimertinib and savolitinib as 
a new therapeutic option. The ongoing 
SAVANNAH study (NCT03778229) is evaluat-
ing the efficacy and safety of osimertinib and 
savolitinib in patients with MET-mediated resist-
ance to osimertinib, with a phase III, randomized 
study of osimertinib/savolitinib versus platinum-
doublet chemotherapy planned in the same 
patient population (SAFFRON; NCT05261399). 
In addition to savolitinib, anectodal responses to 
EGFR TKIs in combination with other MET 

inhibitors including crizotinib and capmatinib 
have also been reported.33,34

In addition to MET TKIs, additional strategies to 
target MET including both antibodies and anti-
body–drug conjugates (ADCs) are being devel-
oped. For example, REGN5093, which targets 
two different epitopes of MET, is being investi-
gated in a first-in-human trial of MET-altered 
NSCLC (NCT04077099). REGN5093 has pre-
viously shown in vivo efficacy in MET-driven 
tumor models.35 Telisotuzumab Vedotin 
(Teliso-V), an anti-MET ADC, has also shown 
favorable antitumor activity in a phase II trial in 
patients with NSCLC and c-MET protein over-
expression. In an interim analysis, the EGFR 
wild-type group (n = 37) had an objective response 
rate (ORR) of 35.1% [95% confidence interval 
(CI), 20.2–52.5%] by independent central review 
(ICR) and an investigator assessed ORR of 36.1% 
(95% CI, 20.8–53.8%). Within this cohort, the 
median duration of response (mDOR) for patients 
in the c-Met intermediate subgroup was 
6.9 months. However, the ORR in the EGFR-
mutant group (n = 30) was only 13.3% (95% CI, 
3.8–30.7%) by ICR and 25.8% (95% CI, 11.9–
44.6%) when assessed by investigators.36 In 
January 2022, US FDA granted breakthrough 
therapy designation for Teliso-V in EGFR wild-
type NSCLC with high levels of MET 
overexpression.

Targeting oncogene fusions
For patients with acquired oncogene fusions, 
including ALK, BRAF, RET, and others, combi-
nation treatment strategies targeting EGFR and 
the relevant fusion can be considered. The coex-
istence of acquired RET rearrangement (CCDC6-
RET) was first reported in 2015 in a case series,37 
in which the RET rearrangement was identified 
as a potential resistance mechanism to EGFR 
TKI-treated NSCLC patients. Later, a more 
comprehensive description of fusion-positive 
EGFR-mutant NSCLCs was reported, in which 
treatment with combination of RET and EGFR 
inhibitor was effective and well tolerated. 
Currently known rearrangements include RET 
(CCDC6-RET, NCOA-RET, ERC1-RET), BRAF 
(PCBP2-BRAF, AGK-BRAF, ESYT2-BRAF), 
ALK (EML4-ALK), FGFR3 (FGFR3-TACC3), 
NTRK1 (NTRK1-TPM3), and ROS1 (GOPC-
ROS1). The most common rearrangements 
involve RET (43%) followed by ALK (26%), 
NTRK1 (16%), and FGFR3 (11%).38
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Combination of EGFR inhibitors and fusion 
inhibitors have shown early clinical responses as 
in the case of osimertinib and alectinib, and osi-
mertinib and pralsetinib.38 The ongoing post-osi-
mertinib platform study, ORCHARD, will 
include RET and ALK fusion-positive cohorts to 
prospectively validate whether co-targeting 
EGFR and acquired RET and ALK fusions is 
efficacious and safe (NCT03944772).

Combination approaches involving bispecific 
antibody (amivantamab)
Amivantamab (JNJ-61186372) is a fully humanized 
bispecific antibody targeting EGFR and MET with 
several mechanisms of action.39,40 Amivantamab 
inhibits ligand-induced phosphorylation of EGFR 
and c-MET, induces antibody-dependent cellular 
cytotoxicity (ADCC) activity, and downregulates 
receptor expression in tumor cells.41 Amivantamab 
was recently approved in the treatment of patients 
with advanced NSCLC with EGFR exon 20 inser-
tion mutations whose disease has progressed on or 
after platinum-based chemotherapy.42

CHRYSALIS is a phase I study of amivantamab, 
administered as a single agent and in combination 
with lazertinib, a third-generation EGFR TKI, to 
patients with advanced NSCLC harboring diverse 
EGFR mutations.43,44 In a cohort of patients with 
osimertinib-resistant EGFR-exon 19 deletion and 
L858R-mutant NSCLC treated with amivantamab 
monotherapy (n = 121) and amivantamab combined 
with lazertinib (n = 45), the ORR was 19% (95% CI, 
12–27) and 36% (95% CI, 22–51), the mDOR was 
5.9 (95% CI, 4.2–12.6) months and 9.6 (95% CI, 
5.3–not reported) months, and the mPFS was 
4.2 months and 4.6 months, respectively.45 The 
improved response rate and durability observed with 
the amivantamab and lazertinib combination sup-
port the concept of dual targeting of both the extra-
cellular and catalytic domains of EGFR. 
Infusion-related reactions were the most common 
adverse event (AE; seen in 69% of patients treated 
with amivantamab alone and 78% of patients treated 
with amivantamab/lazertinib combination), while 
other toxicities included paronychia (37% and 49%), 
acneiform dermatitis (28% and 51%), rash (26% 
and 27%), pruritus (22% and 31%), and hypoalbu-
minemia (26% and 38%). Of note, pneumonitis was 
reported in 2% and 4% of patients, respectively.45

Responses to amivantamab/lazertinib were more 
common among patients with EGFR/MET-
based resistance mechanisms to osimertinib 

(n = 17) where the ORR was 47% versus ORR 
29% in patients without identified EGFR/MET-
based resistance (n = 28).46 In an exploratory 
analysis, EGFR/MET expression by immunohis-
tochemistry was also correlated with response, 
with responses seen in 9/10 IHC-positive (defined 
as a combined EGFR + MET H score ⩾ 400) 
patients. These data suggest that the presence of 
EGFR/MET-mediated resistance mechanisms or 
EGFR/MET protein expression may be potential 
biomarkers of amivantamab/lazertinib response, 
but larger confirmatory studies will be needed to 
guide clinical use.

The CHRYSALIS-2 study also explored to com-
bination of amivantamab/lazertinib in a larger 
cohort of patients EGFR-mutant NSCLC follow-
ing osimertinib and platinum-based chemother-
apy. In preliminary results, the ORR was 41% 
(95% CI, 24–61). In a separate cohort of heavily 
pre-treated patients (including 70% of patients 
who had received at least four prior lines of ther-
apy), the ORR was 21% (95% CI, 11–36).45 The 
ORR in patients in CHRYSALIS-2 was similar to 
patients post-osimertinib but chemo-naïve, sug-
gesting intervening chemotherapy did not 
adversely impact on the activity of amivantamab 
and lazertinib. However, given the limitations of 
small sample size and cross-trial comparisons, 
these findings should be interpreted with 
caution.

Antibody–drug conjugates
Patritumab deruxtecan (U3-1402, HER3-DXd) 
is a novel HER3-targeted ADC composed of a 
fully humanized IgG1 monoclonal antibody to 
HER3 linked to deruxtecan, a topoisomerase I 
inhibitor payload via a tetrapeptide-based cleav-
able linker.47 HER3 is overexpressed in 42–83% 
of NSCLC48,49 and is associated with poor prog-
nosis.50 In a multi-cohort phase I study of patients 
with EGFR-mutated NSCLC adenocarcinoma 
after failure of osimertinib and chemotherapy 
treated with patritumab deruxtecan at the recom-
mended dose for expansion (5.6 mg/kg IV Q3W), 
the ORR was 39%. The median DOR and the 
median PFS were 7.0 months and 8.2 months, 
respectively. Similar outcomes were reported in 
the cohort of patients post-EGFR TKI ± plati-
num-based chemotherapy.51 The activity of patri-
tumab deruxtecan is highly encouraging in this 
heavily pre-treated patient population with a 
median of four prior lines of treatment, and 
importantly, patritumab deruxtecan was active in 
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patients with diverse mechanisms of osimertinib 
resistance.

Datopotamab deruxtecan (Dato-DXd) is an 
ADC composed of a humanized anti-TROP2 
(trophoblast cell-surface antigen 2) monoclonal 
antibody with the same payload (deruxtecan) and 
tetrapeptide-based cleavable linker.52 TROP2 is 
highly expressed in NSCLC, regardless of 
genomic mutation status, and is also associated 
with a poor prognosis.53,54 Preliminary results 
from a phase I TROPION-PanTumor01 trial of 
patients with heavily pre-treated advanced 
NSCLC and actionable genomic alterations 
including 85% with EGFR mutations (69% with 
prior osimertinib) were recently presented. 
Among 34 patients treated with Dato-DXd at 
doses of 4–8 mg/kg q3w, the ORR was 35% and 
median DOR was 9.5 months. The most com-
mon AEs were nausea (62%) and stomatitis 
(56%).55

Small-cell transformation, squamous  
cell transformation
While most EGFR-mutant lung cancers are ini-
tially diagnosed as adenocarcinoma, histologic 
transformations are a well-described resistance 
mechanism to all generations of EGFR inhibitors. 
Transformation to small-cell lung cancer (SCLC) 
was observed in 3–10% of patients who progress 
on first-generation EGFR inhibitors.10,56 More 
recently, Schoenfeld and colleagues identified 
histologic transformation in 15% of patients with 
tissue biopsies after osimertinib, and surprisingly 
showed that, in addition to SCLC, other histolo-
gies including both squamous and pleomorphic 
carcinomas could emerge at the time of resist-
ance.57 The overall frequency of histologic trans-
formation after first-line osimertinib is poorly 
understood, as many of the series reported to date 
have been limited to the assessment of genomic 
resistance mechanisms through plasma and 
tissue.

The biology of SCLC transformation remains an 
area of active investigation. Early clinical and pre-
clinical studies of patient-derived tumor samples 
and cell line models showed that RB1 loss, a hall-
mark of de novo SCLC, is nearly universal in 
transformed SCLCs and that, while activating 
EGFR mutations are retained at the DNA level, 
EGFR expression is largely lost following trans-
formation.58,59 Subsequently, whole exome 
sequencing EGFR-mutant NSCLCs before and 

after transformation identified early inactivation 
of TP53 and RB1 as key risk factors for eventual 
SCLC transformation. Patients with EGFR/
TP53/RB1 co-mutated lung adenocarcinomas 
had a 43-fold greater risk of transformation than 
those without these mutations.60 Recently, this 
finding was validated in a clinical cohort of 39 
patients EGFR/RB1/TP53-mutant lung cancers, 
wherein 7 (18%) of patients underwent eventual 
transformation.61

While there are currently no clinical guidelines for 
the optimal management of patients with EGFR/
RB1/TP53-mutant NSCLC, it is important to 
recognize the increased risk of SCLC transforma-
tion in this population, monitor closely for pro-
gression and obtain a tissue biopsy at the time of 
progression to evaluate for histologic transforma-
tion. For patients who undergo transformation, 
platinum-etoposide chemotherapy is the pre-
ferred treatment regimen.59 The role of chemo-
immunotherapy combinations now commonly 
used in de novo SCLC is unclear, though retro-
spective data suggest that immunotherapy given 
as monotherapy has little benefit.59 Importantly, 
serial biopsies can identify re-emergence of 
NSCLC clones after transformation in some 
cases; thus, it is important to consider repeat 
biopsy if feasible for patients who experience dis-
ease progression after SCLC-directed therapy.59

While histologic transformation from NSCLC to 
SCLC has been well described, shifts from adeno-
carcinoma to other non-small-cell histologies have 
also been observed and remain poorly understood. 
At present, there are no genomic markers of risk 
for squamous or other types of transformation, 
but recent data suggest that squamous histology 
can coexist with other known resistance mecha-
nisms (including MET amplification, T790M, 
and others), highlighting the importance of com-
plete molecular profiling, even in tumors where 
histologic transformation is identified.62 For 
patients with transformation, chemotherapy regi-
mens should be selected based on the predomi-
nant histology at the time of progression.

Brain progression on osimertinib, and  
what to do?
The patterns of disease progression after osimer-
tinib can be largely categorized into three scenar-
ios: isolated central nervous system (CNS) 
progression, systemic oligoprogression, and dis-
seminated systemic progression. Oligoprogression 
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is a relatively new concept which has emerged as 
effective local therapies became available, refer-
ring to progressive lesions restricted in both num-
ber and involved sites, typically less than five.63,64

Several real-world datasets have explored the pat-
terns of disease progression after osimertinib. 
One report has suggested that EGFR T790M-
positive NSCLC patients treated with osimerti-
nib are more likely to progress with oligoprogressive 
lesions (72%) than overt systemic progressive 
lesions (28%).64 Although the most common site 
of progression was lung, 15–20% of patients had 
disease progression in the brain.64–66 Furthermore, 
a majority of patients who had progression in the 
brain had oligoprogression. Notably, more than 
60% of patients with oligo-progression continued 
osimertinib beyond progression with a median 
post-progression treatment duration of 4.1 months 
(some of them received a concurrent local abla-
tive therapy, in most cases, radiotherapy). 
Nevertheless, osimertinib failed to demonstrate a 
significant benefit in overall survival (continued 
osimertinib; 18.9 versus discontinued osimertinib 
after PD; 15.1 months, p = 0.802).64,66

Nonetheless, osimertinib is renowned for its 
superior CNS penetration compared to older 
EGFR TKIs.67 For treatment-naïve patients, osi-
mertinib demonstrated an intracranial ORR of 
66–91% and intracranial DOR of 15.2 months 
[95% CI: 4.1–not calculable (NC)].68 For previ-
ously EGFR TKI-treated patients, intracranial 
ORR of 54–70%, intracranial DOR of 8.9 months 
(95% CI: 4.3–NC), and intracranial PFS of 
11.7 months (10–NC) were reported.69,70

Based on osimertinib’s intracranial efficacy, as well 
as previous data from the BLOOM study demon-
strating intracranial efficacy and safety of osimerti-
nib administered at 160 mg daily,71 a recent 
retrospective analysis explored outcomes with osi-
mertinib dose-escalation among 105 patients who 
experienced CNS disease progression on standard-
dose osimertinib (80 mg daily).72 Among 24 patients 
who were treated with osimertinib dose-escalation 
alone (cohort A), the median duration of CNS dis-
ease control was 3.8 months (95% CI: 1.7–5.8), 
specifically 5.8 months (95% CI: 1.7–5.8) and 
2.0 months (95% CI: 1.0–4.9) for those with lep-
tomeningeal and parenchymal metastases, respec-
tively. The median duration of CNS disease control 
was marginally improved to 5.1 months (95% CI: 
3.1–6.5) for patients who received concurrent radia-
tion or cytotoxic chemotherapy (cohort B).

Several retrospective studies have reported the 
benefit of continued osimertinib treatment 
beyond radiographic progression. The duration 
of benefit varied widely with a second PFS of 5.7–
12.6 months and 6.4–15.5 months for those who 
received radiation and for those who did not, 
respectively.73,74 Nonetheless, data on CNS effi-
cacy of osimertinib in patients who continued 
beyond the first radiographic progression are 
scarce. Further studies are warranted considering 
the retrospective and non-comparative nature of 
study results reported so far.

Some clinicians aimed to restrict the disease pro-
gression by combining osimertinib with cytotoxic 
chemotherapy after progression to initial treat-
ment. Frustratingly, a meaningful benefit was not 
demonstrated with combination therapy, with no 
new AEs.75 The median PFS with osimertinib 
plus platinum-doublet regimen was 6.1–
6.9 months.75,76 Randomized, placebo-controlled, 
prospective studies are ongoing to evaluate the 
efficacy of continuing osimertinib in combination 
with platinum-based chemotherapy in EGFR-
mutant NSCLC patients harboring brain metas-
tases who developed systemic disease progression 
but stable CNS disease (TORG1938/EPONA 
and COMPEL study).77,78

We must remember that a similar combination 
approach using early-generation EGFR TKI led 
to disappointing outcomes. The randomized, 
phase III, global IMPRESS trial recruited patients 
who had disease progression on first-line gefitinib 
and randomized them to receive platinum-dou-
blet chemotherapy alone versus platinum-doublet 
chemotherapy plus continued gefitinib.79 The 
median PFS did not differ between the two 
groups (5.4 months in both groups) but the 
median OS was detrimental with combination 
therapy [13.4 versus 19.5 months; hazard ratio 
(HR): 1.44, 95% CI: 1.07–1.94].79,80 
Nevertheless, one of the main reasons for contin-
uing osimertinib beyond the first radiographic 
progression is its CNS efficacy, unlike the 
IMPRESS study where main theoretical concern 
was the tumor flare after gefitinib discontinua-
tion. Thus, the results from aforementioned pro-
spective, randomized trials with osimertinib are 
highly anticipated.

In short, in the case of isolated CNS progression 
and oligo-progression, continuing osimertinib, 
with or without local radiotherapy, seems to be a 
valid option with limited additional benefit of 
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osimertinib dose-escalation.81,82 Future studies 
will provide a clue on the continuation of osimer-
tinib with or without cytotoxic chemotherapy in 
patients who experience disseminated systemic 
progression.

Combination with immunotherapy
The lack of benefit from immune checkpoint 
inhibitor (ICI) monotherapy in patients with 
EGFR-mutant NSCLC patients has been well 
documented,83–86 although the mechanism 
behind this phenomenon remains unclear. It is 
possibly related to the immune-suppressive tumor 
microenvironment in EGFR-mutant tumors.87,88 
One theory suggests that the overexpression of 
CD39/CD73 in EGFR-mutant NSCLC inhibits 
the activity of various immune cells (such as 
CD8+ T cells, natural killer cells, and dendritic 
cells) by increasing extracellular adenosine level.89

The inferior response of EGFR-mutant NSCLC 
to ICI monotherapy led to attempts to combine 
ICI with osimertinib.90,91 Nonetheless, this com-
bination has been halted due to increased inci-
dence of AEs, especially pneumonitis.90 The 
TATTON trial which evaluated the combination 
of osimertinib with durvalumab reported a high 
incidence (22%, 5/23) of any grade interstitial 
lung disease (ILD) including two patients with at 
least grade 3 AEs, which led to an early termina-
tion of patient enrollment.90 An increased inci-
dence of AE in EGFR TKI and ICI combination 
was not limited to osimertinib. Grade 3 liver 
enzyme elevations were reported in gefitinib plus 
durvalumab or pembrolizumab combinations 
(40–70%).92,93

Even so, this phenomenon reserves a further 
investigation as the CAURAL trial which evalu-
ated the same combination of osimertinib with 
durvalumab did not report an increased incidence 
of ILD (only one out of 14 patients in combina-
tion arm reported grade 2 ILD). The reason for 
different risk of AEs remains unclear and needs to 
be elucidated.91,94

Indeed, atezolizumab plus bevacizumab, carbopl-
atin, and paclitaxel (ABCP) has emerged as a 
potential new standard of care for patients with 
EGFR-mutant metastatic non-squamous 
NSCLC who have failed on TKI treatment, as 
demonstrated from the subgroup analyses from 
IMPOWER-150 trial.95 EGFR-mutant patients 
treated with ABCP regimen demonstrated a 

significant improvement in OS (HR: 0.31, 95% 
CI: 0.11–0.83), PFS (HR: 0.61, 95% CI: 0.36–
1.03), and ORR (71% versus 42%) compared to 
those treated with BCP regimen. The OS benefit 
was evident in patients who had previous EGFR 
TKI therapy with HR of 0.39 (95% CI: 
0.14–1.07).

A combination of ICI with chemotherapy has 
modest, if any, benefit on the survival outcomes 
in patients with EGFR mutations, as implied in 
IMPOWER-130 (atezolizumab in combination 
with carboplatin plus nab-paclitaxel).96 Hence, 
the addition of bevacizumab to ICI/chemother-
apy combination is a viable strategy to optimize 
treatment responses in patients with EGFR-
mutant NSCLC by reverting the immune-per-
missive tumor microenviroment (TME) and 
normalizing tumor vasculature.97

Several studies are ongoing to evaluate different 
combinations of ICI and anti-VEGF agents, such 
as pembrolizumab plus ramucirumab 
(NCT04120454) or pembrolizumab plus len-
vatinib (NCT04989322), in EGFR-mutant 
NSCLC patients who had failed prior TKI treat-
ments. Strategies to combine radiation with 
immunotherapy, to increase tumor antigen pres-
entation and enhance T-cell infiltration into 
tumors,98 are also adopted in early-stage EGFR-
mutant NSCLC patients under neoadjuvant set-
ting (NCT05244213 and NCT05319574) or 
concurrent chemoradiation (NCT04013542). 
The results from these diverse combinations are 
warranted.

Conclusions and future perspectives
Precision oncology in the treatment of EGFR-
mutant lung cancers have revolutionized the 
treatment paradigm with the success of highly 
selective and potent EGFR inhibitors. Third-
generation osimertinib demonstrated high 
response rate and survival gain in EGFR-mutant 
NSCLC patients in both treatment-naïve and 
treatment-refractory conditions, with fewer side 
effects compared to early generation TKIs. 
However, the development of on-target and 
bypass resistance mechanisms emerged as a chal-
lenge in the contemporary management of 
EGFR-mutant NSCLC who had become resist-
ant to osimertinib. The present review focused on 
the currently available data on the mechanism 
behind the acquired resistance and the efforts to 
overcome them using different classes of drugs.
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Ongoing efforts are investigating various upfront 
combination approaches with osimertinib which 
can change our treatment paradigm in the near 
future (Table 1). WJOG9717L which combined 
osimertinib with bevacizumab reported no PFS 
benefit compared to osimertinib alone.99 FLAURA2 
has safely opened up its investigation by demon-
strating a manageable safety and tolerability in 
patients treated with osimertinib in combination 
with pemetrexed and platinum doublet chemother-
apy.100 We have previously experienced in NEJ009 
trial that gefitinib in combination with chemother-
apy could prolong PFS compared to gefitinib 
alone,101 while the OS benefit was not apparent.102 
The efficacy results from FLAURA2 are highly 

awaited to see if third-generation osimertinib could 
lead to different outcomes to those of first-genera-
tion TKI. Other novel approaches such as combin-
ing EGFR/MET bispecific antibody with 
third-generation EGFR TKI in treatment-naïve 
EGFR-mutant NSCLC (MARIPOSA-1) are also 
paving way for an improved efficacy.103

Advanced research and clinical trials are neces-
sary to overcome osimertinib resistance and 
improve the survival outcomes of EGFR-mutant 
NSCLC patients. In upcoming years, another 
paradigm-shifting breakthroughs in the treatment 
landscape of EGFR-mutant lung cancer patients 
is anticipated.

Table 1.  Current clinical trials for osimertinib-based combination approaches.

Agent Combination agent Phase (N) Clinical efficacy NCT number (trial name)

Abemaciclib Osimertinib II (18) NR NCT04545710

Anlotinib Pemetrexed II (60) NR NCT04316351

Toripalimab

Amivantamab Lazertinib III (500) NR NCT04988295 
(MARIPOSA-2)

Amivantamab Lazertinib I/Ib (460) NR NCT04077463

Pemetrexed

Carboplatin

SI-B001 Osimertinib II/III (50) NR NCT05020769

Dacomitinib Osimertinib I (24) NR NCT03755102

Bemcentinib (BGB324) Erlotinib I/II (40) ORR 9%104 NCT02424617

Savolitinib Osimertinib II (294) NR NCT03778229 (SAVANNAH)

Sapanisertib (MLN0128, 
TAK-228)

Osimertinib 1 (36) NR NCT02503722

Alisertib Osimertinib 1b (48) (Alisertib + osimertinib)105

mPFS 1.9 months
ORR 5%, DCR 40%

NCT04479306

Sapanisertib (Sapanisertib + osimertinib)
mPFS 4.6 months
ORR 12.5%, DCR 68.7%

Reqorsa (quaratusugene 
ozeplasmid, GPX-001)

Osimertinib I/II (92) NR NCT04486833 (Acclaim-1)

Savolitinib Osimertinib or 
placebo

II (56) NR NCT04606771 (CoC)

Savolitinib Osimertinib III (324) NR NCT05261399 (SAFFRON)

(Continued)
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