Table 3.
Performance metrics from each of the Logistic Regression and Random Forest classifier models, where low grade tumours have Gleason Score < = 3 + 4 / Grade Group < = 2 and high grade tumours have Gleason Score > = 4 + 3 / Grade Group > = 3. The best performing metrics when comparing the two classifiers are in bold. Ktrans and Ve were computed using the Parker AIF
| MRI Parameters | Logistic Regression Models | Random Forest Models | ||||
|---|---|---|---|---|---|---|
| Low Grade Tumours | Sensitivity | Specificity | Accuracy (%) | Sensitivity | Specificity | Accuracy (%) |
| T2w + ADC | 0.21 | 0.89 | 60 | 0.40 | 0.70 | 58 |
| T2w + ADC + Ktrans | 0.25 | 0.88 | 63 | 0.44 | 0.77 | 63 |
| T2w + ADC + Ktrans + Ve | 0.38 | 0.84 | 65 | 0.57 | 0.81 | 71 |
| T2w + ADC + TTP + IRE + AUC | 0.48 | 0.79 | 66 | 0.63 | 0.83 | 74 |
| T2w + ADC + Ktrans + Ve + TTP + AUC | 0.47 | 0.79 | 66 | 0.68 | 0.86 | 78 |
| High Grade Tumours | Sensitivity | Specificity | Accuracy (%) | Sensitivity | Specificity | Accuracy (%) |
| T2w + ADC | 0.65 | 0.81 | 74 | 0.63 | 0.79 | 72 |
| T2w + ADC + Ktrans | 0.64 | 0.82 | 75 | 0.68 | 0.84 | 77 |
| T2w + ADC + Ktrans + Ve | 0.65 | 0.83 | 75 | 0.72 | 0.86 | 80 |
| T2w + ADC + TTP + IRE + AUC | 0.65 | 0.82 | 75 | 0.76 | 0.87 | 82 |
| T2w + ADC + Ktrans + Ve + TTP + AUC | 0.65 | 0.83 | 76 | 0.79 | 0.89 | 85 |
| All Tumours | Sensitivity | Specificity | Accuracy (%) | Sensitivity | Specificity | Accuracy (%) |
| T2w + ADC | 0.56 | 0.74 | 66 | 0.54 | 0.69 | 62 |
| T2w + ADC + Ktrans | 0.56 | 0.76 | 66 | 0.57 | 0.77 | 68 |
| T2w + ADC + Ktrans + Ve | 0.60 | 0.75 | 68 | 0.64 | 0.79 | 72 |
| T2w + ADC + TTP + IRE + AUC | 0.62 | 0.74 | 69 | 0.68 | 0.81 | 75 |
| T2w + ADC + Ktrans + Ve + TTP + AUC | 0.61 | 0.75 | 68 | 0.72 | 0.84 | 80 |