Skip to main content
. 2022 Dec 19;22:71. doi: 10.1186/s40644-022-00508-9

Table 3.

Performance metrics from each of the Logistic Regression and Random Forest classifier models, where low grade tumours have Gleason Score <  = 3 + 4 / Grade Group <  = 2 and high grade tumours have Gleason Score >  = 4 + 3 / Grade Group >  = 3. The best performing metrics when comparing the two classifiers are in bold. Ktrans and Ve were computed using the Parker AIF

MRI Parameters Logistic Regression Models Random Forest Models
Low Grade Tumours Sensitivity Specificity Accuracy (%) Sensitivity Specificity Accuracy (%)
T2w + ADC 0.21 0.89 60 0.40 0.70 58
T2w + ADC + Ktrans 0.25 0.88 63 0.44 0.77 63
T2w + ADC + Ktrans + Ve 0.38 0.84 65 0.57 0.81 71
T2w + ADC + TTP + IRE + AUC 0.48 0.79 66 0.63 0.83 74
T2w + ADC + Ktrans + Ve + TTP + AUC 0.47 0.79 66 0.68 0.86 78
High Grade Tumours Sensitivity Specificity Accuracy (%) Sensitivity Specificity Accuracy (%)
T2w + ADC 0.65 0.81 74 0.63 0.79 72
T2w + ADC + Ktrans 0.64 0.82 75 0.68 0.84 77
T2w + ADC + Ktrans + Ve 0.65 0.83 75 0.72 0.86 80
T2w + ADC + TTP + IRE + AUC 0.65 0.82 75 0.76 0.87 82
T2w + ADC + Ktrans + Ve + TTP + AUC 0.65 0.83 76 0.79 0.89 85
All Tumours Sensitivity Specificity Accuracy (%) Sensitivity Specificity Accuracy (%)
T2w + ADC 0.56 0.74 66 0.54 0.69 62
T2w + ADC + Ktrans 0.56 0.76 66 0.57 0.77 68
T2w + ADC + Ktrans + Ve 0.60 0.75 68 0.64 0.79 72
T2w + ADC + TTP + IRE + AUC 0.62 0.74 69 0.68 0.81 75
T2w + ADC + Ktrans + Ve + TTP + AUC 0.61 0.75 68 0.72 0.84 80