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Semantic Interpretation for Convolutional Neural Networks:
What Makes a Cat a Cat?

Hao Xu, Yuntian Chen,* and Dongxiao Zhang*

The interpretability of deep neural networks has attracted increasing attention
in recent years, and several methods have been created to interpret the “black
box” model. Fundamental limitations remain, however, that impede the pace
of understanding the networks, especially the extraction of understandable
semantic space. In this work, the framework of semantic explainable artificial
intelligence (S-XAI) is introduced, which utilizes a sample compression
method based on the distinctive row-centered principal component analysis
(PCA) that is different from the conventional column-centered PCA to obtain
common traits of samples from the convolutional neural network (CNN), and
extracts understandable semantic spaces on the basis of discovered
semantically sensitive neurons and visualization techniques. Statistical
interpretation of the semantic space is also provided, and the concept of
semantic probability is proposed. The experimental results demonstrate that
S-XAI is effective in providing a semantic interpretation for the CNN, and
offers broad usage, including trustworthiness assessment and semantic
sample searching.
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1. Introduction

Convolutional neural networks (CNNs)
have made tremendous progress in various
fields, including computer vision,[1] natural
language processing,[2] and other fields[3] in
recent years. Although CNNs have achieved
superior performance on varied tasks, the
degree of confidence for the prediction
is limited by its essence as a “black-box”
model, which means that the decision pro-
cess is difficult to express with explicit rules,
and thus challenging to be understood by
humans. This shortcoming will expose
the CNN to the risk of being attacked or
biased.[4] Therefore, the interpretability of
the CNN has attracted increasing attention,
and a variety of techniques have been
attempted to explore the decision logic of
CNNs in a human-understandable manner.

Interpretability is defined as the ability
to provide explanations in understandable
terms to a human.[5] Mainstream ways of

interpreting CNNs include: 1) feature visualization, which visu-
alizes specific filters or feature maps to depict the representa-
tion of a CNN[6–11]; 2) network diagnosis, which diagnoses a pre-
trained CNN to understand different aspects of it[12–16]; and 3)
structure modification, which adjusts the structure of CNN for
better interpretability.[17–21] Despite their success, current inter-
pretation methods face fundamental constraints that limit their
usage. First, although some studies have focused on semantic
information hidden behind the CNN,[16,19,22] an explicit under-
standable semantic space has not yet been abstracted. Second,
current researches are centered on extracting individual traits
from each sample to obtain local interpretability, and are unable
to decipher underlying common traits hidden in the data of the
same class. Finally, even though existing works have provided nu-
merous techniques to interpret CNN, few of them inspire appli-
cations or improvements in practical tasks. Overall, the study of
the interpretation and application of semantic spaces in CNNs
still needs to be further developed.

In order to overcome these existing limitations, this paper
presents the semantic explainable artificial intelligence (S-XAI),
which is a semantic interpreter that provides a global interpreta-
tion by abstracting common traits from datasets and extracting
explicit understandable semantic spaces from CNNs. It makes
the following three notable improvements:

1) Global interpretation via common traits. Instead of seeking
the information learned by CNNs in a single image, we adopt
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a sample compression method based on the distinctive row-
centered principal component analysis (PCA), called row-
centered sample compression (RSC), to explore the common
traits hidden behind samples that can be visualized by feature
visualization techniques, which is illustrated in Figure 1a.

2) Understandable semantic space. In this work, we extract un-
derstandable semantic spaces that can be visualized explicitly,
which is shown in Figure 1b. We also propose the concept of
semantic probability for the first time, which can measure the
probability of occurrence of semantic concepts.

3) Broad and efficient usage. The ultimate goal of understand-
ing neural networks is to elucidate how they work and im-
prove them. Our proposed S-XAI is able to handle more tasks
efficiently, such as trustworthiness assessment and semantic
sample searching, thus improving the confidence and scala-
bility of CNNs, which is illustrated in Figure 1c.

In this work, we take the task of discriminating between cats
and dogs using the commonly used VGG-19 network[23] as an
example to demonstrate what makes a cat recognized as a cat
for CNN from the perspective of semantic space. In the VGG-
19 network, we add a global average pooling (GAP) layer be-
fore the fully-connected layer. The GAP layer reduces dimen-
sion, and preserves the spatial information extracted by the pre-
vious convolutional layers and pooling layers, which facilitates
feature visualization.[24] In this paper, we first exhibit how to
obtain underlying common traits, which are vectors containing
mixed semantic features. Then, we describe how to extract un-
derstandable semantic space on the basis of the visualization
of semantically sensitive neurons (SSNs) discovered from the
comparison between the common traits of samples with masked
and unmasked semantic concepts. Finally, we introduce the con-
cept of semantic probability and discuss some major challenges
for CNNs, including overconfidence for prediction[25] and target
sample searching,[26] and show how the proposed S-XAI can han-
dle these issues in a simple yet effective way through several ex-
periments.

2. Results

2.1. Extraction of Common Traits from Samples

In nature, the same kinds of objects often possess certain simi-
lar common characteristics, which are termed “common traits.”
These common traits constitute an important basis for the iden-
tification of species. For example, although there are numerous
kinds of cats in the world, they all have similar faces, noses, and
legs that are common traits for recognition as cats by humans.
In previous literature, some techniques have been proposed to
interpret CNNs by finding the part of an image with the largest re-
sponse to the specified category[7,12]; however, this is a local inter-
pretation since it only explains why one simple image is judged as
a responsive label by the CNN. In other words, these studies have
discovered individual traits, instead of common traits. In this
work, we innovatively introduce a RSC method to extract com-
mon traits from samples for CNNs, which is based on the dis-
tinctive row-centered PCA. Figure 2 demonstrates the difference
between our proposed RSC method and the conventional PCA.
From the figure, the difference can be seen vividly. For the con-

ventional column-centered PCA, the PCA is conducted to reduce
the dimension of features from p to k (k < p), which helps to map
the high-dimensional data to low-dimensional space for better
visualizing features of different categories[27] (Figure 2a). There-
fore, the data matrix is column-centered to calculate the covari-
ance matrix, which is why the conventional PCA is also called the
column-centered PCA. In contrast, in the proposed RSC method,
the data matrix is row-centered to obtain a different covariance
matrix in order to reduce the sample dimension from n to k (k <

n), which is rarely utilized but is highly appropriate for extracting
common traits of samples (Figure 2b). Considering that the fea-
ture dimension remains the same during the RSC, it is especially
suitable for visualizing and interpreting the CNN.

The framework for extracting common traits from samples is
illustrated in Figure 1a. In the framework, Ns different cat sam-
ples are randomly selected from the dataset, and a specific genetic
algorithm is utilized to obtain the optimal combinations of super-
pixels for each sample, which aims to reduce interference and
makes the extracted common traits more representative (Sup-
porting Information S1). The discovered combinations of super-
pixels are fed into the CNN, and the feature maps are generated
after the global average pooling (GAP) layer. Different from pre-
vious works that visualize feature maps for each sample,[6,7] we
conduct the RSC on the feature maps of all Ns samples. Visualiza-
tion of the 1st, 2nd, and 3rd principal components (PCs) after the
RSC with 300 samples for cats and dogs is illustrated in Figure
3a,b, respectively. It is obvious that different PCs present traits at
different levels. The 1st PC displays vivid faces, the 2nd PC dis-
plays several body regions, such as beards, eyes, and noses, and
the 3rd PC mainly presents fur-like patterns. Different from the
visualization of feature maps for one sample, the visualization of
PCs contains multiple traits that clearly belong to different sam-
ples, which indicates that the PC integrates the common traits
from the samples. The information ratios (calculated by the pro-
portion of total variance) of the first five PCs are presented in
Figure 3c, which reveals that the 1st PC retains nearly 50% of
the information, while the 2nd PC and 3rd PC retain only 7.32%
and 3.53% of the information, respectively. This may explain why
the 1st PC can display faces, which are a holistic concept, while
the others can only present fragmental semantic parts. Consider-
ing the dominant information ratio of the 1st PC, the subsequent
study will extract semantic spaces based on the 1st PC.

In order to further prove the stability of the extracted common
traits, we conduct repeated experiments with different numbers
of samples and calculate the spread from the average, which is
expressed as

e = 1
p

1
Ne

p∑
j=1

Ne∑
i=1

|||si
j − s̄j

||| × 100% (1)

where Ne is the number of repeated experiments; p is the number
of features (i.e., the length of the PC); Si

j is the value of the jth

index in the scores of PCs in the ith experiment; and S̄j is the
average value of the jth index in the scores of PC of all of the
experiments, which is given as follows

s̄j =
1

Ne

Ne∑
i=1

si
j (2)
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Figure 1. Overview of the proposed S-XAI. a) Our framework for extracting common traits from a dataset, taking the category of cats as an example.
Left: the original samples and discovered best combinations of superpixels. Middle: extracting feature maps for all samples from a pretrained CNN.
Right: the obtained principal components (PCs) from the row-centered sample compression on the feature maps and visualization of common traits.
b) Our framework for extracting understandable semantic space, taking the semantic space of cats’ eyes as an example. Left: samples with unmasked
and masked semantic concept. Middle: extraction of common traits for both kinds of samples. Right: discovered semantically sensitive neurons (SSNs)
and the visualization of the semantic space. The big bright eyes are vividly illustrated, which proves that an understandable semantic space is found.
c) The workflow of CNN and S-XAI. The blue part is the prediction process of the CNN. The red part is the process of S-XAI, in which the semantic
probabilities are calculated from the extracted semantic spaces that can be visualized and recognized by humans for trustworthiness assessment and
semantic sample searching. The dashed box refers to an optional step.
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Figure 2. The difference between the conventional column-centered PCA and the proposed row-centered sample compression. a) The column-centered
PCA is the conventional PCA commonly used in previous feature visualization methods. b) The row-centered sample compression based on the distinc-
tive row-centered PCA is utilized in this work to extract common traits.

In this work, Ne is 3 and p is 512. The result is shown in Fig-
ure 3d. From the figure, it is found that the spread tends to de-
crease as the number of selected samples Ns increases, which
indicates that the extracted traits tend to be more stable with
more Ns. Specifically, when the Ns is 300, the spread is only
3.9%, which means that we can extract stable common traits from
a small number of samples, which further proves that certain
representative common traits indeed exist in the samples of the
same class.

2.2. Extraction and Visualization of Understandable Semantic
Space

Although the common traits have been extracted successfully, the
semantic information is disorganized since many kinds of se-
mantic concepts are mixed in the extracted common traits. There-
fore, we develop a framework to extract and visualize understand-
able semantic spaces on the basis of the common traits, which
is illustrated in Figure 1b. The core of our proposed framework
is to compare the common traits extracted from samples with
masked and unmasked semantic concepts. We take the semantic
space of cats’ eyes as an example. First, Ns cat samples with visi-
ble eyes are chosen from the datasets, and their eyes are masked
with surrounding color. Then, the respective common traits are
extracted, as shown in Figure 4a. A number of semantically sensi-
tive neurons (SSNs), NSSN, are chosen by selecting the maximum

absolute difference between both common traits, which are visu-
alized in Figure 4a,b, respectively. The semantic concept is split
successfully since there only exist multiple bright and clear eyes
in the semantic space of cats’ eyes, and the condition is the same
for the semantic space of cats’ noses. It is worth noting that the
visualized eyes and noses are surreal, i.e., they are not obtained
by visualizing a single sample, but rather by concretizing the en-
tire semantic space. The results show that the representation of
features at the semantic level from the CNN is successfully ob-
tained.

In this work, the semantic concept is defined by humans to be
better understood. However, in our research, we found that the
connections between these semantic concepts seem to be more
complex. For instance, the 263th neuron is sensitive to both cats’
eyes and nose, which suggests that the network seems to learn
the relationship between cats’ eyes and nose. This is also proven
by the fact that a blurry nose also appears in the semantic space of
cats’ eyes. This means that the semantic concepts learned by the
network may be somewhat different from the semantic concepts
recognized by humans, which calls for deeper investigation in
future work.

2.3. Statistical Interpretation for Semantic Space

In order to explore semantic space more deeply, we also provide
statistical interpretation for semantic space. For the purpose of
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Figure 3. The results for extracting common traits. a) Visualization of the 1st, 2nd, and 3rd PCs for cats (Ns = 300). The left pictures are original
visualized common traits, and the right ones are partial enlarged pictures with explicit traits for better recognition. b) Visualization of the 1st, 2nd, and
3rd PCs for dogs (Ns = 300). The left pictures are original visualized common traits, and the right ones are partial enlarged pictures. c) The information
ratio of the first five PCs extracted from 500 dog samples. The x-shape annotation refers to the information ratio. A higher information ratio means more
feature information contained in the PC. d) The spread from the average for the 1st PC of cats with different Ns. A lower spread means a higher stability
of extracted common traits.

depicting the activation extent for an image z in the semantic
space s, we define a weighted average activation As(z) as

As(z) = 1
NSSN

NSSN∑
i=1

aiΔi, (3)

where NSSN is the number of discovered SSNs; ai is the activa-
tion of the ith SSN in the feature map extracted from the GAP

layer before fully-connected layers for image z; and Δi is the value
of difference for the ith SSN obtained from semantic space. A
larger As means that the image has a larger activation in seman-
tic space s. Since the calculation process is very fast, the weighted
average activation of a large number of samples can be quickly
obtained. In this work, we randomly selected 3000 samples con-
taining a wide variety of cats from the dataset and calculated their
weighted average activation in the extracted semantic space of
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Figure 4. Results of extracted understandable semantic space. a) Left: scores of the 1st PC (i.e., common traits) of samples with eyes unmasked and
masked. Middle: difference between the extracted common traits. Right: visualization of extracted semantic space of cats’ eyes, and the red frames are
recognized eyes. b) Left: scores of the 1st PC of samples with nose unmasked and masked. Middle: difference between the extracted common traits.
Right: visualization of extracted semantic space of cats’ noses, and the red frames are recognized noses. The annotation “263” in both a) and b) indicates
that the same SSN occurs in both semantic spaces. c) Probability density distribution plot of the values of the weighted average activation As for 3000
samples of cats. The red curve is the fitted normal distribution curve. The pictures in the black framed lines are the samples located at the left (Peye <

0.1) and right (P eye >0.9) ends of the distribution, respectively. Bottom right: the semantic probability of samples with eyes unmasked and masked in
the semantic space of cats’ eyes.
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cats’ eyes. The probability density distribution plot of the values
of the weighted average activation As is displayed in Figure 4c.
The distribution is close to a normal distribution, which also oc-
curs in other semantic spaces (Supporting Information S3). Fur-
thermore, we find that the two ends of the probability density
distribution correspond to cats without and with obvious eyes,
respectively (see Figure 4c). While images of cats without visible
eyes are still able to be identified as cats with a high probability
by the CNN, their activations within the semantic space of cats’
eyes are low, which further confirms the validity of the extracted
semantic space.

In order to measure the relative position of image z in
the distribution of samples in semantic space s, we propose
the concept of semantic probability Ps(z), which is written as
follows

Ps(z) =
cdf (X = As(z)) − cdf (X = Amin)
cdf (X = Amax) − cdf (X = Amin)

(4)

where cdf is the cumulative distribution function of the fitted
normal distribution; and Amin and Amax are the min and max
of As in the distribution, respectively. A larger Ps(z) represents
a greater activation of image z in the corresponding semantic
space s with a higher probability of occurrence. Unlike the proba-
bility in vector space that usually occurs in CNN studies, the Ps(z)
here represents the semantic probability in the semantic space,
which can measure the probability of a specific semantic concept
appearing in the picture. From the figure, the Peye(z) of the pic-
ture with masked eyes exhibits a marked decrease compared with
the same one with unmasked eyes in the semantic space of cats’
eyes. Similarly, the images satisfying Peye(z)>0.9 have large bright
eyes, while the images satisfying Peye(z)<0.1 hardly show any
eyes.

2.4. Application: Trustworthiness Assessment

In CNNs, the output of prediction is usually converted into the
probability of each label by the softmax function, which will in-
duce the problem of overconfidence since the softmax function
exaggerates confidence.[25] For example, for a photograph of a
cat’s back shown in Figure 5a, a human may experience a chal-
lenge distinguishing it from a blanket, but the CNN recognizes
it as a cat with a high probability of 97.7%. However, the se-
mantic space extracted in this work can solve this problem since
the semantic space and respective semantic probability are ob-
tained from the information in the feature maps, without need-
ing to go through the fully-connected layers and softmax func-
tion, which means that the semantic probability is closer to the
reality.

In this work, we extract six semantic spaces, including eyes,
noses, and legs for cats and dogs, respectively. The semantic prob-
abilities of these semantic spaces are illustrated by a radar map
for each image. An explanation sentence is generated automat-
ically by S-XAI from the radar map utilizing different words to
represent different levels of confidence (e.g., sure, probably, may,
confusing, etc.). For example, a dog that is identified to be a dog
with 100% probability by CNN is shown in Figure 5b. The S-XAI

can provide more information besides the classification probabil-
ity given by the CNN. From the radar map, it is obvious that both
the semantic probabilities of cats’ legs and dogs’ legs are high,
which indicates that it is hard for the CNN to distinguish the
legs of cats and dogs. In fact, if this dog’s upper body is covered,
humans cannot discern whether it is a dog or a cat by relying only
on the legs. In addition, the semantic probabilities of dogs’ eyes
and noses are dominant compared with cats’ eyes and noses.
This information is reflected in the output of S-XAI that “I am
sure it is a dog mainly because it has vivid eyes and nose, which
are dog’s eyes and nose obviously. Although its legs are a little
confusing.”

Considering that some big cats like Maine Coon cats are easy
to be mistaken for a dog,[28] we select three pictures of a big Rag-
doll cat with different postures, including the front angle and the
side angle (Figure 5c), and the back angle (Figure 5a). The out-
put of CNN is similar and above 90% for the cats with all pos-
tures. However, radar maps obtained from the S-XAI identify dif-
ferences between these pictures. For the image in the front angle,
the explanation of S-XAI is “I am sure it is a cat mainly because it
has vivid eyes and nose, which are cat’s eyes and nose obviously.
Meanwhile, it has vivid legs, which are something like cat’s legs,”
which shows high confidence. For the image in the side angle,
the explanation of S-XAI is “It is probably a cat mainly because
it has eyes, which are perhaps cat’s eyes. Although its legs are a
little confusing.” For the image in the back angle, all semantic
probabilities are inconspicuous, and the explanation of S-XAI is
“It may be a cat, but I am not sure.” These explanations made
by S-XAI are consistent with human cognition, in which from
the front angle, it is universally identified to be a cat; whereas, its
legs are confusing from the side angle, which may account for
why big cats are frequently mistaken for a dog.

We also provide an example in which a white blanket is input
into the CNN, which is shown in Figure 6. While humans easily
identify it as a white blanket instead of a cat, the CNN predicts
that it has a 95.6% probability of being a cat, which is an incor-
rect assessment. The S-XAI, however, discovers that all semantic
probabilities of this image are low and outputs that “It may be a
cat, but I am not sure,” which shows low confidence of the assess-
ment. In contrast, when presented with a cat, S-XAI can provide
an explanation with high confidence.

The above experiments show that the explanation of S-XAI pro-
vides more information to remedy the phenomenon of overcon-
fidence and makes the process of prediction understandable for
humans.

2.5. Application: Semantic Sample Searching

Since current research on semantic interpretation of neural net-
works is still in its infancy, finding target samples by semantics
requires additional effort.[26] However, once the semantic space
is extracted, samples that satisfy semantic requirements through
semantic probability can easily be found. For instance, if we want
to find dogs with distinct noses in the dataset, we just need to set
Pdog

nose(z) > 0.9 and the discovered samples all have obvious noses,
which is illustrated in Figure 5d. Similarly, images of cats without
distinct legs can also be searched quickly by setting Pcat

leg(z) < 0.1.
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Figure 5. The application of S-XAI, including trustworthiness assessment and semantic sample searching. a) Assessments given by humans (right),
CNN (bottom), and S-XAI (bottom right) when identifying the picture of a Ragdoll cat facing backward. The assessment of S-XAI includes a radar
map of semantic probabilities in different semantic spaces and an explanation sentence generated automatically from the semantic probabilities. b)
Assessments given by CNN (right) and S-XAI (bottom) when identifying the picture of a dog. c) Assessments given by S-XAI for the same Ragdoll cat
with different postures and angles, including the front angle (upper) and the side angle (lower). d) The samples found by S-XAI that satisfy the semantic
condition proposed by humans. Left: dogs with a distinct nose. Right: cats without distinct legs.

The searching process is very fast because semantic probability in
the semantic space can be calculated simultaneously during the
prediction process of the neural network. This technique shows
promising potential in the filtering of datasets and identifying
“bad samples.”

2.6. Extendibility to Multiclassification Problems

In this work, a fundamental problem of binary classification, i.e.,
distinguishing cats and dogs, is taken as an example to show the
ability of the proposed S-XAI to provide semantic interpretations
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Figure 6. Assessments given by humans (right), CNN (bottom), and S-XAI (bottom right) when identifying the picture of a white blanket (a) and a cat
(b).

for the CNN. Considering that multiclassification problems are
mainstream in practical applications, it is significant to exam-
ine the extendibility of the proposed S-XAI to multiclassification
problems with large datasets. Here, we adopt the Mini-ImageNet
dataset,[29] which consists of 100 categories of objects. For each
category, there are 600 samples, and thus the total number of pic-
tures is 60 000. The VGG-19 network is utilized here, and 50 000
samples are randomly selected to form the training dataset, while
the other samples form the testing dataset. The classification ac-
curacy of the trained CNN achieves 85%. The S-XAI is adopted
to interpret this network in multiclassification problems, and the
results are displayed in Figure 7.

The figure shows that the extracted common traits of differ-
ent categories remain distinct and evident for multiclassification
problems (Figure 7a). For example, the common traits of crabs
from CNN present vivid shells and legs with the primary color
paralleling crabs’ color. Meanwhile, the semantic spaces for each
category can be extracted and visualized successfully in the same
way (Figure 7b). Here, the semantic space of birds’ wings is taken
as an example. It can be seen that the probability density distribu-
tion plot of As is also similar to a normal distribution. Finally, the
extendibility of S-XAI to give semantic assessments for CNN is
examined. For the multiclassification problem, the rules to gen-
erate assessments need some slight adjustments by merely com-
paring the semantic probability of the target category, which is
detailed in the Supporting Information S4. Figure 7c provides an
example of giving semantic assessments for birds’ pictures from
different angles, and it can be seen that the S-XAI outputs are
parallel with the truth. The experiments prove that the S-XAI has
good extendibility and can handle multiclassification problems.

3. Discussion

In this work, we proposed the framework of the semantic explain-
able AI (S-XAI), which provides a global interpretation for CNNs
by abstracting common traits from samples and extracting ex-
plicit understandable semantic spaces from CNNs. Statistical in-
terpretation for the semantic space is further provided, and the
concept of semantic probability is proposed for the first time. Ex-
periments demonstrated that S-XAI is effective in providing a se-
mantic interpretation for the CNN, and has broad usage, includ-
ing trustworthiness assessment and semantic sample searching.

In S-XAI, the proposed RSC method plays a vital role, and
can quickly extract highly hierarchical common traits from the
feature maps of samples. Unlike conventional PCA that reduces
feature dimensions, the proposed RSC reorganizes the original
samples into a new reduced sample space, where each PC corre-
sponds to a certain level of common traits. Then, the semantic
concept is separated from the common traits through discover-
ing the semantically sensitive neurons (SSNs) and their specific
proportional relationship. On this basis, we visualize the seman-
tic space for the first time. A set of orthogonal semantic concepts,
including eyes, nose, and legs, is investigated in this work. It is
found that the phenomenon of overlap of semantic spaces for
CNN exists, which means that the semantic concepts in the CNN
may be somewhat different from the definition of humans.

We also provide a statistical analysis for the extracted semantic
space. The weighted average activation is defined in order to de-
scribe the activation of an image in semantic space, and it is dis-
covered that the weighted average activation of sufficient natural
samples is close to a normal distribution in the semantic space.

Adv. Sci. 2022, 9, 2204723 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2204723 (9 of 14)
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Therefore, the concept of semantic probability is proposed for the
first time, which can measure the likelihood of the occurrence of
semantic concepts.

Our work goes a step further and investigates the application
of our proposed S-XAI by several experiments. The results show
that the S-XAI can provide trustworthiness assessment on the
basis of semantic probabilities, which explores more informa-
tion from the CNN, thus not only explaining the prediction made
by the CNN, but also remedying the phenomenon of overcon-
fidence. In addition, the S-XAI is proven to be able to quickly
search for samples that satisfy semantic conditions. The extracted
semantic space also sheds light on the identification of adversar-
ial examples, which may provide a potential way for adversarial
example defense (Supporting Information S5). It is also proven
that the proposed S-XAI has good extendibility when adapting it
to other structures of CNN and multiclassification tasks (more
details are provided in the Supporting Information S4).

Overall, our study enables exploration of the representation
of CNNs at the semantic level, and provides an efficient way to
extract understandable semantic space. Compared with existing
methods, the proposed S-XAI can extract and visualize explicit
semantic spaces without modifying the structure of CNN ( Sup-
porting Information S8). The application of the S-XAI framework
to other deep learning areas is relatively straightforward, and is
currently being explored. Further work also involves simplify-
ing the process of extracting semantic space by adopting certain
techniques, such as semantic segmentation[30,31] or annotation-
free techniques, for extracting object parts[16] to mask semantic
concepts automatically and making semantic concepts more ex-
plicit to obtain better semantic space. We believe that the S-XAI
will pave the way for understanding the “black box” model more
deeply from the perspective of semantic space.

4. Experimental Section
Superpixel Segmentation: Superpixel segmentation algorithms group

pixels into perceptually meaningful atomic regions, which can be used to
replace the rigid structure of the pixel grid.[32] This greatly reduces the
complexity of image processing tasks. Here, the simple linear iterative
clustering (SLIC) technique[32] based on k-means clustering is adopted
for superpixel segmentation, the detailed process of which is provided in
the Supporting Information S7. Compared with most superpixel methods,
SLIC has faster calculation speed, lower computational complexity, better
stability, and is easy to implement in the python package skimage.

Genetic Algorithm: The genetic algorithm is a well-known optimiza-
tion algorithm inspired from the biological evolution process.[33] A typi-
cal genetic algorithm consists of crossover, mutation, fitness calculation,
and evolution.[34] In this work, a specific genetic algorithm is put forward
to find the best combinations of superpixels based on the segmentation
of superpixels that incurs the highest probability of the specified category
from the CNN. For an image z, it was split into Nsp superpixels through the
SLIC method and number each superpixel. A binary code of length Nsp is
generated as the genome according to the superpixels, where 1 represents
the existence of the superpixel and 0 represents nonexistence. For the ini-
tial generation, NP genomes are randomly initialized. Then, the crossover

process is conducted by randomly exchanging certain segments of two
genomes, which leads to the occurrence of new genomes. Afterward, the
genomes are mutated by randomly selecting genes and conducting bit-
wise negation. The fitness is then calculated to distinguish between good
and bad genomes, which is defined as Pi = c(z′) where z′ is the combina-
tion of superpixels translated from the genome, c is the target class, and
Pi = c is the output probability of the class c obtained from the CNN. Next,
the genomes are sorted from large to small according to the calculated
fitness. Finally, the first half of genomes remain, while others are replaced
by new genomes in order to produce a new generation of parents. This
process will cycle until the epoch achieves the maximum iteration that is
set beforehand. In order to accelerate the convergence, the best genome
is fixed until a better one replaces it in each generation. In this work, Nsp
is 40, the population of genomes NP is 50, the maximum iteration is 50,
and the probability of mutation is 0.5.

Dataset Settings: For binary classification problems, a well-known
dataset originated from the competition in Kaggle called Dogs v.s. Cats
was used.[35] This dataset includes 25 000 training images in which half
are cats and half are dogs, and 12 500 test images. All of the images
were rescaled into normalized 224 × 224 × 3 pixels to use the VGG-19
network[23] as a classifier. In the VGG-19 network, a global average pool-
ing (GAP) layer before the fully-connected layer was added. The ImageNet-
pretrained weights as initial weights, as well as the Adam optimizer[36] to
train the neural network for three epochs through the mini-batch tech-
nique with a batch size of 16 was used. The accuracy of the network on the
test dataset is 97.5%. For multiclassification problems, the Mini-ImageNet
dataset,[29] a subset of the ImageNet-1K dataset, is used, which has 100
categories. For each category, there are 600 samples, and thus the total
number of pictures is 60 000. Compared with the ImageNet-1K dataset,
which is bulky and contains a lot of unnecessary information for classifica-
tion (e.g., anchor boxes for object detection), the Mini-ImageNet dataset
is more suitable for examining the extendibility of S-XAI to multiclassifica-
tion problems. The output neurons are 100, and other settings of CNN are
the same as the binary classification situations. The classification accuracy
is 85%.

Row-Centered Sample Compression: The row-centered sample com-
pression (RSC) method is based on the distinctive row-centered PCA to
compress sample dimensions in order to extract common traits of sam-
ples from CNN. The RSC method involves a dataset with observations on
p numerical variables or features, for each of n individuals or observations,
which forms an n × p data matrix X.[27] In this work, n equals the number
of samples Ns, and p is the number of features which equals the number
of channels in this work. For a conventional PCA that is usually utilized to
reduce dimension, the columns of the data matrix are centered to calculate
the covariance matrix, which facilitates dimension reduction after singu-
lar value decomposition (SVD). Therefore, the commonly-used conven-
tional PCA is also termed the column-centered PCA. In this work, a rarely
seen row-centered PCA is adopted in the RSC method, which achieves
good performance on extracting common traits. In the RSC method, the
rows of the data matrix X are centered. The row-centered data matrix X̂
where X̂i,j = Xi,j − X̄i is denoted, i is the index of rows, and j is the index

of columns. The covariance matrix S is calculated as S = 1
p−1

X̂X̂T . Then,

the SVD is adopted to the covariance matrix S, and S = U∑VT is obtained
where U, ∑, V ∈ Rn × n . ∑ is a diagonal matrix, called the singular value
matrix, where the diagonal elements (i.e., singular value) are arranged
from largest to smallest. Since ∑ is a square matrix, the singular value
equals the eigenvalue. It is worth noting that the rank of ∑ is r<min {n, p},
which means that there are only r nonzero singular values (or eigenvalues).
Herein, the first k (k ≤ r) singular values are preserved and Uk ∈ Rn × k are
obtained from U by retaining the first k columns. Finally, the reduced prin-
cipal components (PCs) are obtained by Xk = XTUk ∈ Rp × k, where each

Figure 7. The extendibility of S-XAI to multiclassification problems with the Mini-ImageNet dataset. a) The extracted common traits of four example
categories, including birds, snakes, crabs, and fish. b) The difference between the extracted common traits with and without masking birds’ wings, the
extracted semantic space of birds’ wings, and the probability density distribution plot of the values of As for 400 samples of birds in the semantic space
of birds’ wings. c) The S-XAI output of semantic assessments for birds’ pictures from different angles.
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column of Xk is a PC. For example, X(col=1)
k

is the 1st PC, X(col=i)
k

is the ith
PC, and the elements of PC are called PC scores. The standard measure of
quality of a given ith PC is the proportion of total variance (or the informa-

tion ratio) that is calculated as 𝜋i = 𝜆i(
∑p

i=1 𝜆i)
−1 = 𝜆i(tr(S))−1 × 100%,

where tr(S) denotes the trace of the covariance matrix S, and 𝜆i is the corre-
sponding eigenvalue. Therefore, the quality of the retained k-dimensional
PCs can be expressed as a percentage of total variance accounted for:∑k

i=1 𝜋i . It is common practice to use some predefined percentage of to-
tal variance explained to decide how many PCs should be retained (70%
of total variability is common), and the emphasis in PCA is almost always
on the first few PCs.[27]

Feature Visualization
The feature visualization techniques aim to solve the following ques-

tion: given an encoding feature of an image, to what extent is it pos-
sible to reconstruct the image itself?[6] This question is closely related
to the explanation of the network since the visualized feature map can
tell us what kinds of features are learned by the network. The core is-
sue of feature visualization is solving the minimization problem: z∗ =
arg min
z∈RC×H×W

(L(Φ(z),Φ0) + 𝜆R(z)) , where L is the loss function which is usu-

ally mean squared error (MSE),Φ0 is the target encoding feature, andΦ(z)
is the corresponding feature of optimized image z with the size of C×H×W
obtained from the network, where C is the number of channels, H and W
are the height and width of the feature map, respectively, and R is the reg-
ularization term capturing a natural image prior. The focal point of the
minimization is the selection of R, and thus leads to different techniques
of feature visualization, including L2-regularization,[6] total variation (TV)
regularization,[6] and deep image prior regularization.[10] The existence of
R prevents the minimization process from converging to the images of
high frequency that humans cannot discern. In this work, MSE loss for
L and total variation (TV) regularization for R are utilized. Therefore, the
minimization problem is converted into the following

z∗ = arg min
z∈RC×H×W

(‖‖Φ(z) − Φ0
‖‖2 + 𝜆R(z)

)
(5)

R(z) =
∑

k

∑
i,j

(
(zk,i,j+1 − zk,i,j)

2 + (zk,i+1,j − zk,i,j)
2
) 𝛽

2 (6)

where 𝜆 and 𝛽 are employed to control the magnitude of regularization.
The gradient descent technique is used to solve this minimization problem
as follows

zn+1 = zn − 𝛿 ⋅
d
(‖‖Φ (zn) − Φ0

‖‖2 + 𝜆R (zn)
)

dzn
(7)

where zn is the image after the nth iteration; 𝛿 is the learning rate; and
the initial image is defined as a blank figure with all elements equal to
zero after standardization. The optimization process will continue until
the epoch reaches the maximum iteration. In this work, 𝜆, 𝛽, and 𝛿 are set
to be 2, 2, and 0.05, respectively. The learning rate 𝛿 is multiplied by 0.5
for each 1000 epochs. The maximum iteration is 4000.

In previous works,[6,10,11] feature visualization techniques are usually
employed to visualize the feature maps in the network, which means that
they can only analyze what is learned by the network for each image. Al-
though they enable understanding the feature learned by the network in
each layer, they are also constrained to be a local explanation. In this work,
on the visualization of each single image is not focused, but rather visual-
ization of the principal components obtained by the row-centered sample
compression that contains common traits, thus providing a global inter-
pretation. Therefore, the Φ0 is each PC and the optimized image z is the
visualization of the PC, which contains common traits in this work.

Extraction of Common Traits: With the assistance of the RSC method,
it is possible to extract common traits from the samples of the same class.
Common traits are extracted for cats as an example (see Figure 1a). Ns cat
samples from the dataset are first randomly selected, and the best combi-

nation of superpixels for each sample via the SLIC technique is discovered.
Subsequently, the samples are fed into the network, and the feature maps
of the last layer before the fully-connected classifier are extracted. The size
of the feature map for each sample is a C×H×W matrix. Specifically, the fea-
ture map is degenerated to a vector with the length of C in this work since
the last layer is the global average pooling (GAP) layer. Consequently, the
feature maps for the selected Ns cat samples form a matrix with the size
of Ns×C. In order to extract common traits, the RSC method is adopted.
Considering that the number of channels C equals the number of features
p in this work, the matrix of feature maps is seen as the data matrix with
the size of Ns×p. In the RSC, we preserve k PCs that make the percentage
of total variance achieve 85% of the total variability and obtain a k × p ma-
trix after PCA. In this work, the first few PCs are primarily focused on, since
the information ratios of others are negligible. This RSC method can also
be utilized for other layers or networks easily (Supporting Information S2).
After the RSC method, the feature visualization technique is adopted to vi-
sualize each PC to exhibit the common traits in a human-understandable
way (see the right of Figure 1a).

Masking the Semantic Concept: In order to explore the semantic space,
it is necessary to mask the semantic concept, such as eyes, nose, and legs,
in the image (see the left of Figure 1b). In this work, it is completed man-
ually since the semantic concept is defined by humans. To improve the
efficiency of the masking process, a program is designed to assist manual
processing. For an image z, it is firstly split into Nsp superpixels (Nsp =
20 here). Then, the superpixels that contain the target semantic concept
are selected manually, and are filled with the color of a nearby superpixel
that is also selected manually. This process will mask the semantic con-
cept, thus obtaining the same image without the target semantic concept.
In this work, we have shown that 100 images with and without the target
semantic concept are sufficient for extracting the semantic space, which
means that manual processing is acceptable here. However, when faced
with extraction of a large-scale semantic space with numerous semantic
concepts and categories, manual processing is inefficient and some other
techniques, such as semantic segmentation[30,31] or annotation-free tech-
niques, for extracting object parts[16] may be viable approaches to improve
this process.

Extraction and Visualization of Semantic Space: In this work, for the
first time, a simple yet effective method to extract and visualize semantic
space in an understandable manner is presented. Here, the method in de-
tail will be introduced. The method is constructed based on the extracted
common traits of the images with and without the target semantic concept
(see Figure 1b). First, Ns samples with the explicit target semantic concept
are selected, and then the target semantic concept is masked to generate
samples without the target semantic concept (Ns = 100 in this work). For
masked and unmasked samples, the common traits are extracted in the
same way as that mentioned above, respectively. It is worth noting that it is
not needed to search the best combinations of superpixels here since the
semantic concept is focused on. Considering that the information ratio of
the 1st PC is dominant compared with that of the others, which means
that it contains more information of common traits, the 1st PC here is
only analyzed. The difference between both common traits is calculated
as sunmask-smask, where smask and sunmask are the scores of the 1st PC for
the samples with masked and unmasked semantic concept, respectively.
From the comparison, it is found that several neurons are particularly sen-
sitive to the existence of the semantic concept, which are termed as se-
mantically sensitive neurons (SSNs) in this work. NSSN semantically sen-
sitive neurons with the largest absolute difference are chosen. It is worth
mentioning that the absolute difference of these SSNs constitutes a spe-
cific proportional relationship. The extracted semantic space is made up
of both the SSNs and the specific proportional relationship. In this work,
NSSN is set to be 5. In order to visualize the extracted semantic space, a
target Φ0 is designed for visualization, where its size is the same as the
feature map in the last layer before fully-connected layers, and all elements
are zeros except the discovered SSNs. For the discovered SSNs in Φ0, the
values obey the specific proportional relationship with the maximum value
enlarged (to 30 in this work). Through the visualization of Φ0, the seman-
tic space is exhibited in a human-understandable way (see the right of
Figure 1b).
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Table 1. Rules for generating the explanation by S-XAI.

ΔmaxP(z)<0.2 0.2<ΔmaxP(z)<0.35 0.35<ΔmaxP(z)<0.5 ΔmaxP(z)>0.5

Assessment It might be a dog/cat, but I
am not sure.

It is probably a dog/cat mainly because I am sure it is a dog/cat mainly
because

Explanation

ΔP(z)<0.2 0.2<ΔP(z)<0.35 0.35<ΔP(z)<0.5 ΔP(z)>0.5

Pmax(z)>0.5 Position:
vivid, Semanteme:

confusing

Position:
vivid,
Semanteme:
perhaps

Position:
vivid,
Semanteme: something

like

Position: vivid, Semanteme:
obviously

0.2<Pmax(z)<0.5 None Position:
be,
Semanteme:
perhaps

Position:
be,
Semanteme: something

like

Position:
be, Semanteme: obviously

Trustworthiness Assessment: The proposed S-XAI is able to provide
more information and make the trustworthiness assessment based on the
extracted semantic space. The trustworthiness assessment includes two
components: a radar map of semantic probabilities; and a trustworthi-
ness assessment. The radar map depicts the semantic probabilities in dif-
ferent semantic spaces. Through the radar map, a substantial amount of
information can be observed to produce the trustworthiness assessment.
Here, for an image z, the semantic space of the predicted class given by
the CNN is first focused on, in which the maximum semantic probability
is denoted as Pmax(z) and the respective semantic concept is denoted as
Smax. Then, for each semantic concept, the class that has the maximum
semantic probability (except the predicted class) is discovered, and the
difference of the semantic probabilities between the predicted class and
the discovered class are defined as ΔP(z). Among ΔP(z) for all semantic
spaces, the maximum is termed as ΔmaxP(z). The standard of a trustwor-
thiness assessment is determined by Pmax(z), ΔP(z), and ΔmaxP(z), which
identify the confidence by using different words (e.g., sure, probably, may,
confusing, etc.). The rules for generating the explanation by S-XAI is pro-
vided in Table 1. The rules to generate S-XAI output are not restricted and
are determined empirically in this work. An empirical criterion can work
well in this work because S-XAI essentially provides a qualitative explana-
tion from a semantic perspective. It is worth noting that the explanation
given by S-XAI is generated automatically without any additional informa-
tion or manual processing. Once the semantic spaces have been extracted
and the distribution of the weighted average activation has been fixed, the
proposed S-XAI can make the trustworthiness assessment and provide a
corresponding explanation as soon as the network makes the prediction.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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