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ABSTRACT We generated ex vivo drug-response and multiomics profiling data for a prospec-

tive series of 252 samples from 186 patients with acute myeloid leukemia (AML). A
functional precision medicine tumor board (FPMTB) integrated clinical, molecular, and functional data for
application in clinical treatment decisions. Actionable drugs were found for 97% of patients with AML,
and the recommendations were clinically implemented in 37 relapsed or refractory patients. We report a
59% objective response rate for the individually tailored therapies, including 13 complete responses, as
well as bridging five patients with AML to allogeneic hematopoietic stem cell transplantation. Data inte-
gration across all cases enabled the identification of drug response biomarkers, such as the association of
IL15 overexpression with resistance to FLT3 inhibitors. Integration of molecular profiling and large-scale
drug response data across many patients will enable continuous improvement of the FPMTB recommen-
dations, providing a paradigm for individualized implementation of functional precision cancer medicine.

SIGNIFICANCE: Oncogenomics data can guide clinical treatment decisions, but often such data are
neither actionable nor predictive. Functional ex vivo drug testing contributes significant additional,
clinically actionable therapeutic insights for individual patients with AML. Such data can be generated

in four days, enabling rapid translation through FPMTB.

See related commentary by Letai, p. 290.

INTRODUCTION

High-dose chemotherapy and allogeneic hematopoietic stem
cell transplantation (alloHSCT) can cure up to 60% of younger
patients with adult acute myeloid leukemia (AML), but many
patients relapse and suffer from lifelong toxicities of treatment
(1). Patients with refractory or relapsed (R/R) AML, particu-
larly older ones, have limited treatment options, and survival
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has remained poor (1, 2). Genomic profiling has helped to
deconvolute the biological basis, heterogeneity, and clonal evo-
lution of AML and highlighted novel therapeutic targets and
subgroups (3-6). The FLT3 inhibitors (FLT3i) midostaurin
(7) and gilteritinib (8), the IDH1-mutant inhibitor ivosidenib
(9), and the IDH2-mutant inhibitor enasidenib (10) offer new
genetically guided treatment options for patients with AML.
However, only a fraction of patients harbor these mutations,
and even fewer respond to the treatments assigned by genet-
ics (11, 12). Furthermore, often no actionable mutations are
seen to guide therapy decisions, and many therapies do not
even have any confirmed (genomic) biomarkers (13, 14). For
example, the BCL2 inhibitor (BCL2i) venetoclax can provide
significant clinical benefits in AML therapy, but we lack effec-
tive biomarkers to identify patients likely to benefit (15-17).
We and others have utilized high-throughput ex vivo testing
of AML cells to functionally identify drug response patterns
(18-24). The Beat AML study reported on the functional test-
ing of 122 small-molecule inhibitors combined with genomic
profiling in a cohort of 562 biobanked AML patient sam-
ples (23). Snijder and colleagues applied an image-based
drug testing assay (pharmacoscopy) to demonstrate that the
assay predicted clinical response to chemotherapy (21). Flow
cytometry has also been used to quantify responses in distinct
cell subpopulations (19, 25-27). Nevertheless, many of these
studies are retrospective and lack the integration of func-
tional and molecular data. Prospective implementation of
these assays in the clinical decision-making process is needed.
Here, we performed ex vivo drug sensitivity and resistance
testing (DSRT) of up to 347 emerging and 168 approved
cancer drugs in AML patient cells. Molecular and functional
data were interpreted and integrated for individual patients
to consider novel therapy options for patients with R/R AML.
To implement the results in real time for clinical translation,
we designed a multidisciplinary functional precision medicine
tumor board (FPMTB). We report here (i) that ex vivo DSRT
is informative in highlighting the cancer-specific efficacy of
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Figure 1. Schematic of the design for the functional precision systems medicine study. The diagram illustrates how functional molecular preci-

sion systems medicine integrates high-throughput drug response assay and molecular profiling, aiming at individualized clinical translation of data for
patients with AML. The n=1 cycle on the left illustrates prospective real-time clinical translation through an FPMTB approach. The drug response and
sequencing data are analyzed and integrated within a patient with a goal to tailor therapies in a realistic time frame. The n=many cycle on the right
illustrates the data integration across a large sample set. The main goal here is to find possible biomarkers of drug responses, which eventually could also

help to refine the rules of the FPMTB.

drugs; (ii) that drug responses combined with molecular pro-
files give actionable data for the treatment of R/R AML; and
(iii) that therapies tailored based on FPMTB recommendations
are effective and provide clinically meaningful responses. The
three-day DSRT assay provided actionable data faster than
genomics and transcriptomics profiling, which was advanta-
geous in rapidly recommending treatments for patients for
whom standard therapy alternatives had been exhausted and
for whom alternative therapy options were urgently needed.

RESULTS
FPMTB Workflow and Criteria

To quickly identify and implement selective treatment
options for R/R AML with the help of ex vivo drug testing, we
set up a multidisciplinary FPMTB in a large single-center aca-
demic hospital setting. The FPMTB prospectively reviewed 61
patients with R/R AML utilizing clinical parameters, ex vivo
drug testing from each individual patient, as well as genomic
and transcriptomic profiling data when these were available
in time. To uncover novel associations of genotypes and drug
response phenotypes, we also performed the multiomic pro-
filing of all newly diagnosed patients with AML (Fig. 1).

The FPMTB composition, aims, and treatment selection
algorithms are presented in Supplementary Table S1, and the
FPMTB patient and sample flow is depicted as a CONSORT
diagram in Supplementary Fig. S1 and the meeting sched-
uling in Supplementary Fig. S2. Data available at the
FPMTB meetings included: (i) full clinical patient history, (ii)
diagnostic workup (laboratory values, cytogenetics, and clini-
cal mutation data), (iii) ex vivo drug-sensitivity testing with 515

anticancer drugs, (iv) whole-exome sequencing, and (v) tran-
scriptomics sequencing data. Treatments for R/R AML need to
be determined quickly, and therefore genomic and transcrip-
tomic profiling data were often not available in time for the
clinical decision-making. In contrast, ex vivo drug testing has a
turnaround time of four days (three-day assay, one day for data
analysis). Thus, the treatment recommendations by the FPMTB
were primarily based on drug-sensitivity testing, complemented
with clinical disease history, routine molecular diagnostics (e.g.,
flow cytometry, cytogenetics, FLT3-ITD, NPM1,IDHI1/2, and WT1
mutation status), with support from genomics and transcrip-
tomics when such data were available. If the bone marrow blast
count was low (<20%), as was observed in five relapsed patients,
blast-specific drug sensitivity was assayed using flow cytometry.

FPMTB-Guided Therapy Led to Successful
Responses in 59% of Patients with R/R AML

The FPMTB recommendations were implemented for 37
R/R patients, of whom 29 were eligible for objective response
evaluation. The criteria for the selection of individual drugs
and combinations are shown in Supplementary Table S1.
The most frequently used targeted drugs for the clinical
implementation of the FPMTB data were venetoclax (BCL21i),
dasatinib (inhibitor of ABL1 and other kinases), sunitinib
(VEGFR- and FLT3-kinase), and temsirolimus (mTORi). The
drugs were administered as a customized combination of two
to three drugs based on patient-specific sensitivity to single
drugs and molecular data (Supplementary Table S2). Treat-
ment was given to individual consenting patients as prospec-
tive n = 1 case studies, not as a formal clinical drug study with
case and control groups.
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Implementing the FPMTB-recommended therapy resulted in
clinically meaningful responses (complete and partial responses,
morphologicleukemia-free state, evaluated per ELN2017 criteria;
ref. 28) in 17 of 29 patients (59% objective response rate), includ-
ing 13 (45%) patients achieving complete remission/complete
remission with incomplete hematologic recovery (CR/CRi) after
treatment (Fig. 2A). The remaining 12 patients progressed with
resistant disease. The median time from the beginning of therapy
to CR was 36 days (range, 23-110 days). In five R/R patients with
no other conventional treatment options, the targeted treatments
given enabled the patient to be bridged to alloHSCT, which then
resulted in a long-term remission and survival. The time from
the beginning of therapy to transplantation ranged from 1.3 to
37.7 months (mean, 10.7). The median overall survival for all
37 patients was 7.5 months (range, 14 days-4.7+ years), with a
median follow-up for surviving patients of 23 months (range,
13-66 months; Fig. 2B). Comparing the drugs applied in clinical
translation, the best predictive value of the DSRT was observed for
venetoclax: 11 of 15 patients who showed ex vivo sensitivity had a
CR/CRi response to venetoclax therapy (positive predictive value
73%; Supplementary Fig. S3A). We further explored expression
of BCL2 family members and found that the expression of BFLI
may be associated with venetoclax resistance whereas expression
of MCLI does not associate with ex vivo response to venetoclax
(Supplementary Fig. S3B-S3E).

Novel drug combinations, such as those used in this study,
may result in novel, unexpected toxicities. However, as most
of the drugs used in clinical translation were molecularly
targeted agents, with limited toxicity profiles as single-agent
drugs, we did not observe any grade 3 to 4 adverse effects
attributable to the drug combinations used.

Overview of Drug Response and Molecular
Profiling Data

In order to reveal molecular patterns underlying drug
responses, we generated comprehensive functional, genomic,
and transcriptomic data from 252 consecutive samples from
186 individual patients with AML. By assembling a large data-
base where molecular and functional data can be mined, we
think we can eventually improve the FPMTB rules and clini-
cal implementation. The data set includes (i) disease status
information for 252 samples; (ii) DSRT assay details for 164
patient and 17 healthy control samples; (iii) drug-sensitivity
data for each sample, along with full annotated data from the
515 chemical compounds; (iv) exome-sequencing genomic
data for 226 samples; (v) RNA-sequencing (RNA-seq) gene-
expression and fusion gene data for 163 patient samples;
and (vi) DSRT and RNA-seq data for four healthy control
samples. The AML patient cohort and sample information
are given in Supplementary Tables S3 and S4. The overview
of mutation and gene-expression patterns across all samples
is given in Supplementary Figs. S4 and S5A-S5C.

Ex Vivo Drug Responses Providing Functional
Insights in AML

Ex vivo drug-sensitivity and resistance profiles were deter-
mined for 164 consecutive AML patient samples by high-
throughput testing of a library of 515 chemical compounds
(Supplementary Tables S5 and S6). This analysis revealed
selective efficacy profiles for individual drugs in individual

patients, hence enabling us to determine the proportion of
samples sensitive to each of the drugs in the library (Sup-
plementary Tables S7 and S8). The DSRT was performed in
mononuclear cell medium (MCM) or conditioned medium
(CM), which provide different response levels for the FLT3,
BET, and JAK inhibitors, as shown previously (29). The data
for the two media types were therefore analyzed separately.
The drug responses were quantified as an area under the
curve (calculated as described previously; ref. 30) and then
normalized using data from healthy control and expressed as
selective drug-sensitivity scores (sDSS). The distribution of
blast cell percentage and cell viability without drug treatment
is given in Supplementary Fig. S6A. These two variables were
not significantly associated with drug responses in the 164
samples (Supplementary Fig. S6B). The cutoff for a signifi-
cant drug response was defined by an sDSS value of 8.7 that
represents the 95th percentile of the sDSS distribution of all
drugs in all cases (Supplementary Fig. S7A). The most often
effective 50 drugs that were most frequently effective were fur-
ther categorized into subclasses based on their known mecha-
nisms of action, such as BCL2i, PI3Ki, HSP90i, JAKi, MEKi,
CDKi, and BETi (Supplementary Fig. S7B). We observed that
about half of all the chemical compounds (» = 272) in the
drug library were effective in three or more samples (Sup-
plementary Fig. S7C). Of these ex vivo effective drugs, 15%
(n=77) were drugs that were already approved for some oncol-
ogy indications and hence could readily be repurposed for
AML. The effective drugs included chemotherapeutics such as
topoisomerase inhibitors but also targeted drugs, e.g., tyrosine
kinase inhibitors, immunomodulators, mTORi, JAKi, MEKi,
BCL2i, CDKi, and PI3Ki (Supplementary Fig. S7D).

Drugs with the same mode of action or with the same
molecular targets often clustered together as expected (Sup-
plementary Fig. S8A). Interestingly, drugs representing differ-
ent molecular mechanisms also sometimes showed clustering.
For example, we found a strong association of responses to
the BCL2i venetoclax and the MDM2 antagonist idasanutlin.
These two drugs clustered in their own branch of the dendro-
gram with a significant correlation (Supplementary Fig. S8B).
Another example of drugs with different molecular mecha-
nisms showing similar response patterns was the coclustering
of BETi, MEKi, and HDACI (Supplementary Fig. S8C), with
correlation coefficients between the individual drugs ranging
from 0.64 to 0.71 (P < 0.001; Supplementary Fig. S8D).

We then analyzed drug responses in paired diagnostic and
relapsed samples from the same patients, tested in identical
conditions. We found that the average responses to BCL2 and
PI3K/mTOR inhibitors were higher at the time of diagnosis.
In contrast, responses to MEK inhibitors and dexamethasone
responses were stronger in the relapsed samples (Supplemen-
tary Fig. S9).

Drug Sensitivities Associated with Mutations

We first analyzed ex vivo drug-response profiles of all AML
patient samples in distinct molecular groups defined by the
common AML mutations (FLT3, NPM1, IDHI or IDH2, and
NRAS or KRAS) to obtain an overview of genomic subset-
specific drug response (Fig. 3). For this analysis, 146 drugs
were selected based on sample-wise average sDSS values (>5)
and variance (>10; Supplementary Fig. S10A). A total of
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Figure 2. The outcome of patients treated with FPMTB-guided personalized therapies. A, The overall survival estimated by the Kaplan-Meier method
of all patients (gray area denotes 95% confidence interval). B, Swimmer plot illustrates survival and therapy responses in 37 patients with R/R AML upon
FPMTB-guided therapies, where the asterisk represents patients who received allogeneic hematopoietic stem cell transplantation after the treatment,
and arrows represent the patients who are alive. The zero month represents the starting time point of the FPMTB-recommended therapy. The therapy
responses—CR-MRDneg, complete response with minimal residual disease negative; CR-MRDpos, complete response with minimal residual disease posi-
tive; CR, complete remission; CRi, complete remission with incomplete hematologic recovery; PR, progressive disease; MLFS, bone marrow blasts <5%;

RD, resistant disease—were defined by ELN-2017 criteria.
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Figure 3. Drug-response patterns in molecular subsets of AML. AML patient samples were categorized into molecular subclasses according to muta-
tion status in common AML driver genes. Hierarchical clustering of samples using Euclidean distance and ward linkage for sDSS of 146 drugs in individual
molecular subsets. The drugs were selected considering variance >10 and data points available in at least 20% of the samples. Gray bars in the drug-
response heatmap indicate missing data. Fourteen recurrent AML driver genes, with at least three samples recurrently mutated and VAF > 25%, were
displayed to indicate the mutation patterns in the molecular subsets. The disease status, age, medium used for drug testing, and cytogenetics informa-

tion for each patient are displayed in the lower panel.

121 significant associations were observed between muta-
tions (Supplementary Fig. S10B) and responses of individual
drugs. Many of these associations were between a mutation
and several drugs of the same class (Fig. 4A; Supplementary
Table S9). Previously known findings included the association
of FLT3 mutations (point mutations and ITD) with response
to several FLT3 and tyrosine kinase inhibitors (23), or between
RAS mutations with different MEKi (ref. 31; Supplementary
Fig. S11A and S11B). The FLT3-mutated samples, includ-
ing ITD and point mutations, clustered functionally in two
distinct subgroups based on the response patterns to FLT3i
and other multikinase inhibitors. When we compared the
average sDSS values for all drugs in FLT3-mutant and RAS-
mutant samples, a clear pattern emerged where all MEKi were
more effective in RAS-mutant and all FLT3i in FLT3-mutant
AML samples (Supplementary Fig. S11C). Similar segrega-
tion between key genetic lesions causing constitutive activa-
tion of cytokine receptor STATS and RAS-MEK signaling
pathways was found in B-cell acute lymphoblastic leukemia
(B-ALL; ref. 32). NPMI-mutated samples showed ex vivo sen-
sitivity to JAKi. This was observed for drugs targeting JAK1i,
JAK2i, and pan-JAKi, particularly in the CM (Fig. 4B and C).
NPMI-mutated cases that also harbored IDHI or IDH2 muta-
tions were even more strongly sensitive to all JAKi (Fig. 4D),
including the clinically approved JAK1/2i ruxolitinib (Fig. 4E).
This observation was also validated in the Beat AML data set
(Fig. 4F). We then analyzed combinations of two mutations
predicting stronger sensitivity to individual drugs using the
LOBICO method (33). For example, navitoclax sensitivity was
strongly associated with IDHI and IDH2 mutations (Supple-
mentary Fig. S12).

Actionability of Mutation Data in AML

Samples were divided into those with an actionable driver
mutation (52%) and those without (48%; Fig. 5A). The muta-
tions considered “potentially actionable” included FLT3-ITD
and FLT3 (point mutation), IDH1/2, NPM1, and KRAS/NRAS.
The efficacy of FLT3i in FLT3-mutant AML and venetoclax
in patients with IDH1/2-mutant AML, as well as increased
efficacy of JAKi in NPMI-mutated samples and of MEKi in
KRAS/NRAS-mutated samples represent significant associations
of mutations with ex vivo drug efficacies in our study. However,
not all samples carrying these mutations were sensitive to the
corresponding drugs (Fig. 5B). Furthermore, efficacies of these
drugs were also observed in cases where no mutations in the
corresponding genes were found. For example, 16% of the FLT3
wild-type cases responded to the FLT3i midostaurin, and 35% of
the RAS wild-type cases also responded to the MEKi trametinib.

Integration of Drug Response with Mutations
and Pathway Data: A Basis for Continuous
Development and Refinement of FPMTB Rules

In 97% of the samples (119/122), drug response data alone
provided potential clinically applicable information for
approved drugs (Fig. 5C, drug response panel). We found that
activity of key pathways measured by gene expression (34)
was associated with drug sensitivities in cases where muta-
tions were not informative. Thus, by incorporation of ex vivo
DSRT, mutations, and gene-expression data, we were able to
define groups of patients responding to drugs based on three
lines of evidence. For example, such associations were defined
for midostaurin with FLT3mut, ruxolitinib with NPMImut-
JAK-STAT pathway, venetoclax with IDHI/2mut apoptosis
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Figure 4. Somatic mutations as a molecular denominator of drug sensitivities. A, An overview of the
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for NPM1 mutation-associated JAKi including the approved drugs ruxolitinib, baricitinib, and tofacitinib

in the CM sample set. D, Hierarchical clustering of NPMI-mutant samples and sDSS of nine JAKi divide
samples into two distinct subsets based on the presence of IDHI or IDH2. E, The coexisting IDH1 or IDHZ in
NPMI-mutated samples were significantly associated with strong JAKi sensitivity. F, The same association
was significantly observed for ruxolitinib in the Beat AML data set (23).
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Figure 5. Genomic and transcriptomics-based prediction of ex vivo drug efficacies. A, The division of 143 AML patient samples in actionable and non-
actionable subsets. B, Ex vivo drug sensitivity of FLT3iin FLT3-ITD and point mutation-positive samples and of MEKi in KRAS/NRAS mutation-positive
samples. C, Samples with complete molecular profiling and drug-response data ordered as per actionable driver mutations and subsequently nonactiona-
ble mutations. Selective drug responses for FDA/EMA-approved 77 drugs are depicted on the Y-axis and individual patient samples on the X-axis, where
ineffective drugs below sDSS 8.7 were marked with gray rings. The common effective drugs were highlighted for integration with mutation and pathway
activation. The bottom panel illustrates integrated ex vivo efficacy and the presence of respective mutations and pathways for each sample. D, Statistics
of patient samples showing evidence of drug sensitivity, the presence of mutation, and pathway activation for key targeted drugs in AML including the
BCL2i venetoclax, FLT3i midostaurin, TKi dasatinib, JAKi ruxolitinib, MEKi trametinib, and JAKi ruxolitinib. E, The drug-wise percentage of samples show-
ing any evidence and no evidence from effective drug response, mutation, and/or pathway upregulation.
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pathway, trametinib with RASmut-MAPK pathway, dasatinib
with KIT pathway (as was previously observed in a smaller sam-
ple set; ref. 35), and temsirolimus with mTOR pathway activa-
tion (Fig. 5C; Supplementary Fig. S13A-S13C). We believe that
the combination of DSRT, genomic, and transcriptomic data
will provide a means to further improve the reliability of the
FPMTB recommendations for specific therapeutic alternatives.
To demonstrate this, we quantified the overlap among drug
efficacies and corresponding mutation and pathway activities.
For example, expression of the BCL2 pathway genes (n = 23)
was more concordant with ex vivo efficacy of venetoclax as
compared with IDHI/IDH2 mutation (n =4). The combination
of mutation and deregulated pathways together gave comple-
mentary data in support of ex vivo drug responses (Fig. 5D and
E). The results suggested that a systematic data-driven strategy
combining all the profiling data will enable further refinement
of drug response predictions.

IL15 Overexpression as a Functional Biomarker for
Resistance to FLT3 Inhibitors

This integrated data resource on AML provides insights
on biomarkers of drug response and potential mechanistic
insights that could help us to understand the sensitivity,
resistance, and development of combinatorial therapies. We
analyzed here the value of transcriptomic data in predict-
ing the response to FLT3i in the subgroup of FLT3-mutant
AML cases. Analogous to the clinical situation, FLT3-ITD-
mutant AML samples clustered in two distinct groups based
on DSRT data, indicating that about half of these patients are
responsive (Fig. 6A). Analysis of differential gene expression
between FLT3i-sensitive versus FLT3i-resistant AML patient
samples resulted in 57 genes with FDR < 0.1 and a log fold
change >2 (Supplementary Table S10). We discovered IL1S
as one of the most significantly overexpressed (average 4-fold
upregulated) genes in FLT3i-resistant samples (Fig. 6B). This
was validated in FLT3i-resistant samples by RT-qPCR (Sup-
plementary Fig. S14A). Furthermore, data mining of the Beat
AML data set confirmed this association (Fig. 6C; Supple-
mentary Fig. S14B). In line with Mathew and colleagues (36),
we observed that the addition of recombinant IL15 protein
reduced the sensitivity of FLT3-ITD-mutated AML cell lines to
FLT3i, sorafenib in particular (Supplementary Fig. S14C). The
MAPK pathway was the most upregulated [false discovery rate
(FDR) < 0.001] pathway in the FLT3i-resistant cases (Fig. 6D).
We then tested ERK phosphorylation after IL15 stimula-
tion in AML patient samples using phospho-flow cytometry
analysis. The treatment of human recombinant IL1S markedly
increased phosphorylation of ERK and reduced phospho-
rylation of AKT in FLT3i-sensitive samples compared with
FLT3i-resistant samples (Fig. 6E; Supplementary Fig. S14D).
The results suggest not only that IL15 may be a biomarker but
that the overexpression and production of IL15 protein may
activate the ERK-MAPK pathway and hence contribute to
FLT3i resistance. Finally, our ex vivo DSRT data from the same
samples indicated a higher efficacy of MEKi in the FLT3i-
resistant samples compared with the sensitive samples, sug-
gesting activation of this pathway leads to subsequent MEKi
sensitivity, which could provide novel treatment options to
be tested in clinical trials (Supplementary Fig. S14E and
S14F). We retrospectively assessed whether IL1S expression

could predict the clinical response to FLT3i. We validated the
high expression of IL15 in the patients who did not respond
to the FLT3i-based treatments (Supplementary Table S11).
Also, higher expression of IL15 along with the development
of resistance to FLT3i was seen in serial samples from patient
AML_129, thus further validating a potential functional link
between IL15 and FLT3i resistance (Fig. 6F).

To explore the origin of the IL15 and the nature of the sig-
naling in patient samples in vivo, we explored both the origi-
nal RNA-seq data and a new data set of single-cell RNA-seq
(scRNA-seq) data from eight AML patient samples in a previ-
ously published study (37). scRNA-seq data indicated that
both IL1S and ILIS receptor are expressed not only in many
cell types, including the monocytic lineage as expected, but also
in the CD34-positive AML blast cells (Fig. 6G; Supplementary
Fig. S15A-S15C). The bulk RNA-seq data indicated that the
FLT3i-resistant FLT3-ITD-mutant AML cells have a higher
expression of not just IL15, but also the monocyte markers
CD14 and CD300E (Fig. 6B; Supplementary Table S10). Taken
together, these findings suggest that in the FLT3i-resistant
cases, production of IL15 takes place in the blast cells and/or
within the monocytic lineage and that these cells also harbor
the IL1S receptor. These findings are compatible with an auto-
crine signaling hypothesis, although paracrine signaling from
other cell types or the stroma cannot be excluded.

DISCUSSION

Multidisciplinary molecular tumor boards increasingly
interpret cancer genomic data in order to match patients
with cancer to clinical trials with targeted agents or to allo-
cate novel clinical treatments to patients with cancer (38,
39). However, for many patients, genomic analyses often fail
to provide clues on clinically actionable therapies (13, 14).
Furthermore, across all cancer types, fewer than half of the
patients receiving genetically assigned approved therapies
successfully respond as predicted (40, 41).

Here, we developed and implemented an FPMTB to inte-
grate functional drug testing with genomics, transcriptomics,
and clinical laboratory data to define patient treatments. The
FPMTB processed consecutive patients with AML during 2011
to 2019 and recommended therapeutic options for individual
R/R patients. The outcome of FPMTB-recommended indi-
vidualized treatments in 37 patients with multirefractory, often
end-stage AML was encouraging, with an overall response rate
of 59%. Five patients could be bridged to curative hematopoietic
stem cell transplantation therapy. In many of these patients,
the FPMTB-guided therapy was started at a low disease burden
[minimal residual disease (MRD)]. Persistent MRD is a major
cause for treatment failure in AML and may be the ideal setting
for implementing personalized targeted therapies.

The response and survival rates of these patients war-
rant a randomized, controlled clinical trial to be launched
to formally validate the benefit of FPMTB-based therapeu-
tic recommendations. The approach has become more and
more informative over the years, as the number of clinically
approved, better-tolerated drugs has increased (13, 42). We
found that the clinical efficacy of venetoclax could be pre-
dicted by ex vivo testing in AML. This is of particular impor-
tance as this drug is a major advance in AML, and also had
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a significant impact on the positive clinical responses in the Compared with genomics-based precision medicine, ex vivo
present study. Particularly in the R/R AML setting, where testing provides informative results in a substantially higher
many patients do not respond well to venetoclax (or experi- fraction of patients as well as for more drugs. One or more
ence short responses), an ex vivo drug-sensitivity assay may clinically applicable drugs were considered selectively effec-
prove valuable for selecting patients most likely to respond tive in 97% of the evaluated AML cases. Furthermore, ex vivo
and directing nonresponding patients to alternative therapies. drug testing assay provided results in a clinically applicable
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time frame (median of 4 days), and with comparative efficacy
estimates across all the 515 tested drugs in each sample. This
timescale is particularly relevant for aggressive, rapidly pro-
gressing cancers such as AML.

There is a need to further standardize the approaches used
for functional laboratory testing and the molecular analyses
used to characterize each patient sample. For example, we
have documented the effect of different media types (regular
and stromal cell conditioned media; ref. 29) and readouts
(cell viability and flow-cytometric assays) on drug testing
results (26). Further refinement and standardization will
improve our ability to predict drug responses in the clinic
as well as to understand the driver signals and vulnerabilities
of each patient with AML.

The large integrated data set described here enables contin-
uous improvement of the FPMTB rules as well as exploration
of the data to identify potential biological insights and bio-
markers of drug efficacy in subsets of patients. The continuous
improvement of FPMTB could, in the future, include machine
learning-based decision trees as key components of a learn-
ing health care infrastructure. Our analysis of these data has
already revealed insights on mechanisms of action that could
be clinically applied. For example, our data suggested that
IL15S may both act as a biomarker and functionally contribute
to FLT3i resistance in FLT3-ITD-mutant AML. This observa-
tion was validated in independent gene-expression data from
the Beat AML data set (23). The administration of recombi-
nant IL15 protein reduced efficacy of FLT3i in FLT3-ITD-
positive AML cells in vitro. The mechanistic link between IL15
and FLT3 was previously proposed by Mathew and colleagues
(36). We showed how IL15 increased phosphorylation of ERK
in FLT3i-resistant but not in FLT3i-sensitive samples, point-
ing to the ERK-MAPK pathway as a possible escape route for
FLT3 inhibition (43, 44). FLT3i-resistant FLT3-ITD-mutant
AML cells showed ex vivo sensitivity to MEK inhibition, sug-
gesting potential combinatorial strategies for future clinical
studies. Data integration also revealed insights into the role
of AML blasts and monocytes in producing IL15, including a
potential signaling loop involving the IL15 receptor.

A major hurdle in implementing precision medicine is
the limited access to potentially effective drugs for patients.
Many drugs showing ex vivo efficacy are neither available for
off-label indications nor approved at all, or not even in clinical
trials. There are also financial, legislative, and policy-related
implications that make the design of clinical drug studies for
individually tailored (combinatorial) therapies challenging.
However, n = 1 proof-of-concept studies as described here
should be highly encouraging and informative for the design
of formal clinical studies. The FPMTB approach and the spe-
cific findings on ex vivo drug response described here should
be explored to set up international multicenter collabora-
tions between private and public stakeholders to solve issues
that currently hinder the application of individually tailored
functional precision medicine.

In conclusion, ex vivo drug testing is a powerful approach
for understanding AML biology and drug sensitivity as well
as for facilitating repositioning known and emerging drugs
for AML therapy. Systematic data integration prioritizes the
most promising drugs and biomarkers for drug development
and clinical trials. Although further research is warranted, the

combination of molecular and functional assays is warranted
in a clinical cancer drug trial setting.

METHODS

AML Patient Cohort and Samples

Samples (n = 252) from 186 adult patients with AML and 17
healthy donors were collected with signed informed consent
with protocols in accordance with the Declaration of Helsinki
[study acronym HRUHLAB2, HUS Ethical Committee Statement
303/13/03/01/2011 (original), latest amendment 7 dated June 15,
2016. Latest HUS study permit HUS/395/2018 dated February 13,
2018]. Mononuclear cells (MNC) were isolated by Ficoll-Paque cen-
trifugation from freshly collected bone marrow and peripheral blood
specimens of 133 diagnosed, 78 relapsed, 41 chemorefractory-stage
patients. For 42 patients we profiled two or more consecutive sam-
ples. Skin biopsies were collected from all patients for germline
DNA analysis. The median age at diagnosis of the patient cohort was
62 years. Other clinical details of the patients with AML are given
in Supplementary Table S1. A summary of the cohort of patients
including demographic information and clinical and treatment data
is given in Supplementary Table S1.

FPMTB

The FPMTB consisted of the AML tumor group chair and clini-
cians managing the patients, clinical laboratory specialists, transla-
tional scientists familiar with the functional assays and multiomics
data, bioinformaticians, study nurses, and by referral a genetic coun-
selor for actionable germline variants (Supplementary Table S1).
The meetings were scheduled every week (Wednesdays) and also ad
hoc if necessary, when a patient case was submitted (meeting within
1 week of sampling). The task of the FPMTB was to overview and
analyze clinical, molecular, and functional characterization of all
consecutive patients with newly diagnosed or R/R AML, assign risk
groups, evaluate standard-of-care options, and open clinical trials.
In addition, in the case of R/R AML, candidate drugs were evaluated
for on- or off-label treatment to make rational therapy recommen-
dations based on DSRT and other profiling data. The board also
analyzed treatment follow-up and responses for eligible patients,
and recommended bridging to alloHSCT (Supplementary Fig. S1).
More detailed criteria for patient and treatment selection are shown
in Supplementary Table S1.

DSRT

A library of 515 commercially available chemotherapeutic and
targeted oncology compounds consisted of 168 approved drugs,
261 investigational compounds, and 86 probes (Supplementary
Table S2). The chemical compounds DMSO (negative control) and
benzethonium chloride (positive control) were added to 384-well
plates using an acoustic liquid dispensing system Echo 500/550 (Lab-
cyte). Freshly isolated MNCs were counted and resuspended in MCM
(PromoCell) with 0.5 ug/mL gentamicin and 2.5 pg/mL amphotericin
or in CM constituted of 77.5% RPMI 1640, 10% FCS, 12.5% human
HS-5 bone marrow stromal cell line-derived CM, and 1% penicillin
and streptomycin. A 5-uL cell-free medium was added to dissolve
compounds followed by 20 uL cell suspension containing 5,000 to
10,000 cells to each well using multidrop (Thermo Fisher). The
plates were incubated at 37°C in 5% CO, for 72 hours. Subsequently,
CellTiter-Glo (Promega) reagent was added to all wells, and cell via-
bility as luminescence generated by total cellular ATP was measured
using a PHERAstar (BMG Labtech).

The drug responses passing the data quality assessment were
included in further analysis (45). DSS were calculated as shown previ-
ously (30) and sDSS were calculated by normalizing drug responses
against 17 healthy controls.
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Exome and RNA Sequencing

Exome and RNA sequencing analyses were performed in real time
under individualized systems medicine program using DNA and
RNA materials isolated from MNCs as described previously (20, 46).
The skin biopsies from the same patient were used as germline con-
trol for exome-sequencing data analysis. Detailed methods are given
in the Supplementary text.

Mutation and Drug Response Association Analysis

Cancer and AML-specific genes were selected for the drug-mutation
association analysis. The AML genes were collected from published
studies, TCGA (ref. 5;n = 23), InToGen (n = 32), and Papeammanuil and
colleagues (ref. 6; » = 111); and other cancer-associated genes (n = 616)
were obtained from the Census database (47). Out of altogether 667
genes, 340 genes were found mutated in our data set. Furthermore, the
genes with mutation in at least two samples and tumor variant allele
frequency (VAF) >25% were selected for the analysis. The VAF below 25%
was disregarded for the analysis considering no significant impact on
drug responses. The drugs were selected based on effectiveness across
all samples. The analysis was done independently on MCM (n = 61) and
CM (n = 82) subsets to avoid the impact of media on the efficacy of key
AML drugs and misleading the biological signal. To test significant dif-
ferences in drug responses, the Wilcoxon signed-rank test was applied
using R package “exactRankTests” (version 0.8-29) between mutated
and wild-type samples for each gene. For adjusting drug-wise multiple
comparisons, FDR was calculated using the Benjamini and Hochberg
(BH) method. FDR < 0.1 and mean sDSS difference <5 or >5 between
wild-type and mutated samples was considered significant.

Gene Set Variance Analysis

Gene set variance analysis (GSVA; ref. 48) was used to calculate path-
way activation scores (R package version 1.22.4). As an input, log, CPM
of protein-coding genes from all the AML patient samples and four
healthy controls (CD34* sorted cells) was used. GSVA calculates rela-
tive enrichment of a gene set for each sample across the sample space,
allowing for sample-wise comparison of gene set enrichment within
a darta set. A positive enrichment value for a sample indicates overall
higher expression of the genes in the pathway in the sample, compared
with the other samples analyzed. Pathway definitions were taken for
canonical pathways (CP) that had 1,329 gene sets (MSigDB database
v6.2). The gene sets used were (i) CP:BIOCARTA (n = 217), (ii) CP:KEGG
(n = 186), and (iii) CP:REACTOME (n = 674). To consider a pathway
to be active, we used a robust, four-step methodology. First, to get the
highly significant active pathways (P values) in a sample, we applied
1,000 bootstrap iterations on GSVA scores. Pathway-wise P values were
corrected by applying the BH method, and FDR < 0.01 was considered
significant. Second, we chose highly variable pathways that had a GSVA
score>0.2 (cutoff based on overall distribution). Third, these significant
pathways were further normalized to four healthy controls (CD34%). A
given pathway was considered active only when it had a GSVA score
more than the average GSVA score of healthy controls. The final step
involved choosing only those active pathways that passed the above
three criteria and were also active in at least two databases. For example,
apoptosis pathway was considered active if found to be deregulated in
at least two of the databases: BIOCARTA_TCAPOPTOSIS_PATHWAY,
KEGG_APOPTOSIS, and REACTOME_APOPTOSIS.

Differential Gene-Expression and
Pathway Enrichment Analysis

Differential gene-expression analysis was performed using the R
package DESeq2 (49). The analysis was performed using raw read
counts from FLT3i-sensitive and FLT3i-resistant samples. To remove
any batch effects in the data, we corrected for RNA-seq library
preparation protocols and gender by modifying the design formula
(~batch + condition) and then applied a likelihood ratio test to get

the differentially expressed genes. The BH method was used to con-
trol the FDR. A cutoff value of absolute log, fold change of greater
than or equal to 2 and FDR < 0.1 were used as additional filters to
select differentially expressed genes for the downstream analysis.
Pathway analysis was performed using the genes upregulated in
FLT3i-resistant samples. Enrichr web-tool was used for pathway
enrichment analysis. Outputs from KEGG 2016 and Wiki pathways
were considered for further analysis.

Phospho-Flow Cytometry and Data Analysis

Viably frozen MNCs from patients with AML were thawed and
resuspended in RPMI 1640 medium supplemented with 10% FBS
and penicillin and streptomycin. Cells were treated with 50 uL of
DNase (Promega) for two hours at 37°C to dissolve dead cell clumps.
Cells were centrifuged and resuspended in RPMI 1640 medium
with penicillin and streptomycin without serum. Cells were stained
with Zombie violet cell viability dye (423113, BioLegend) stimu-
lated with 100 ng/mL human recombinant IL15 (PeproTech) for
20 minutes at 37°C. Subsequently, cells were washed with ice-cold
PBS, centrifuged at 1,000 x g, fixed with 500 pL of 4% formaldehyde,
and incubated at 37°C for 10 minutes. PBS was directly added to
the fixed cells and centrifuged at 1,000 x g, and the supernatant was
discarded. Ice-cold methanol was added dropwise to the cell pellets
and incubated on ice for 30 minutes to permeabilize the cell mem-
brane. Cells were washed with PBS, counted, and added to 96-well
V bottom plates. The surface IgG was blocked using human IgG
Fc receptor inhibitor (Invitrogen) in staining buffer (0.5% bovine
serum albumin in PBS) for 15 minutes on shaker at room tempera-
ture and washed with PBS. The antibodies for CD45 (563716, BD
Biosciences), pERK (612566, BD Biosciences), pAKT S473 (407SS,
Cell Signaling Technologies), and isotype controls were added to the
respective wells and incubated for 30 minutes on a plate shaker. The
cells were washed with staining buffer and PBS before flow cytom-
etry analysis using iQue Screener Plus (Intellicyte). Antibody-stained
UltraComp beads (01-2222-41, Invitrogen) and cells without viabil-
ity staining were used for compensation. The data were analyzed
using Cytobank cellmass software.

Testing of FLT3 Inhibitors in FLT3-ITD-Mutated
AML Cell Lines

FLT3-ITD-mutated AML cell lines MOLM-13 and MV4-11 were
purchased from DSMZ and were cultured in recommended media.
Sorafenib was dispensed in nine different doses in 384-well plates.
MOLM-13 and MV4-11 cells were stimulated with 100 ng/mL human
recombinant IL15 (PeproTech) at 37°C for one hour. AML cell lines
were resuspended in their respective medium with CellTox Green rea-
gent (Promega). Cells (3,000 per well) were dispensed in predrugged
plates and incubated at 37°C for 72 hours. Fluorescence was detected
using a Phearastar plate reader (BMG LabTech), and dose response
was generated using the four-parameter logistic regression.

Data Access

Basic demographics, clinical laboratory values, drug therapies,
treatment responses, ex vivo drug testing, and sequencing (exome and
RNA sequencing) data will be available at the publication-specific
analysis environment at the Helsinki University Hospital datalake.
This is an EU GDPR-compliant (General Data Protection Regulation,
https://gdpr.eu/), secure, cloud-based data environment accessible by
avirtual machine (IP-restricted, 2-level authentication), including all
key analytical tooling. Datalake onboarding commences by sending
an e-mail request to tietopalvelu@hus.fi.
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