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INTRODUCTION
High-dose chemotherapy and allogeneic hematopoietic stem 

cell transplantation (alloHSCT) can cure up to 60% of younger 
patients with adult acute myeloid leukemia (AML), but many 
patients relapse and suffer from lifelong toxicities of treatment 
(1). Patients with refractory or relapsed (R/R) AML, particu-
larly older ones, have limited treatment options, and survival 

has remained poor (1, 2). Genomic profiling has helped to 
deconvolute the biological basis, heterogeneity, and clonal evo-
lution of AML and highlighted novel therapeutic targets and 
subgroups (3–6). The FLT3 inhibitors (FLT3i) midostaurin 
(7) and gilteritinib (8), the IDH1-mutant inhibitor ivosidenib 
(9), and the IDH2-mutant inhibitor enasidenib (10) offer new 
genetically guided treatment options for patients with AML. 
However, only a fraction of patients harbor these mutations, 
and even fewer respond to the treatments assigned by genet-
ics (11, 12). Furthermore, often no actionable mutations are 
seen to guide therapy decisions, and many therapies do not 
even have any confirmed (genomic) biomarkers (13, 14). For 
example, the BCL2 inhibitor (BCL2i) venetoclax can provide 
significant clinical benefits in AML therapy, but we lack effec-
tive biomarkers to identify patients likely to benefit (15–17).

We and others have utilized high-throughput ex vivo testing 
of AML cells to functionally identify drug response patterns 
(18–24). The Beat AML study reported on the functional test-
ing of 122 small-molecule inhibitors combined with genomic 
profiling in a cohort of 562 biobanked AML patient sam-
ples (23). Snijder and colleagues applied an image-based 
drug testing assay (pharmacoscopy) to demonstrate that the 
assay predicted clinical response to chemotherapy (21). Flow 
cytometry has also been used to quantify responses in distinct 
cell subpopulations (19, 25–27). Nevertheless, many of these 
studies are retrospective and lack the integration of func-
tional and molecular data. Prospective implementation of 
these assays in the clinical decision-making process is needed.

Here, we performed ex vivo drug sensitivity and resistance 
testing (DSRT) of up to 347 emerging and 168 approved 
cancer drugs in AML patient cells. Molecular and functional 
data were interpreted and integrated for individual patients 
to consider novel therapy options for patients with R/R AML. 
To implement the results in real time for clinical translation, 
we designed a multidisciplinary functional precision medicine 
tumor board (FPMTB). We report here (i) that ex vivo DSRT 
is informative in highlighting the cancer-specific efficacy of 
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drugs; (ii) that drug responses combined with molecular pro-
files give actionable data for the treatment of R/R AML; and 
(iii) that therapies tailored based on FPMTB recommendations 
are effective and provide clinically meaningful responses. The 
three-day DSRT assay provided actionable data faster than 
genomics and transcriptomics profiling, which was advanta-
geous in rapidly recommending treatments for patients for 
whom standard therapy alternatives had been exhausted and 
for whom alternative therapy options were urgently needed.

RESULTS
FPMTB Workflow and Criteria

To quickly identify and implement selective treatment 
options for R/R AML with the help of ex vivo drug testing, we 
set up a multidisciplinary FPMTB in a large single-center aca-
demic hospital setting. The FPMTB prospectively reviewed 61 
patients with R/R AML utilizing clinical parameters, ex vivo 
drug testing from each individual patient, as well as genomic 
and transcriptomic profiling data when these were available 
in time. To uncover novel associations of genotypes and drug 
response phenotypes, we also performed the multiomic pro-
filing of all newly diagnosed patients with AML (Fig. 1).

The FPMTB composition, aims, and treatment selection 
algorithms are presented in Supplementary Table  S1, and the 
FPMTB patient and sample flow is depicted as a CONSORT  
diagram in Supplementary Fig.  S1 and the meeting sched-
uling in Supplementary Fig.  S2. Data available at the  
FPMTB meetings included: (i) full clinical patient history, (ii) 
diagnostic workup (laboratory values, cytogenetics, and clini-
cal mutation data), (iii) ex vivo drug-sensitivity testing with 515 

anticancer drugs, (iv) whole-exome sequencing, and (v) tran-
scriptomics sequencing data. Treatments for R/R AML need to 
be determined quickly, and therefore genomic and transcrip-
tomic profiling data were often not available in time for the 
clinical decision-making. In contrast, ex vivo drug testing has a 
turnaround time of four days (three-day assay, one day for data 
analysis). Thus, the treatment recommendations by the FPMTB 
were primarily based on drug-sensitivity testing, complemented 
with clinical disease history, routine molecular diagnostics (e.g., 
flow cytometry, cytogenetics, FLT3-ITD, NPM1, IDH1/2, and WT1 
mutation status), with support from genomics and transcrip-
tomics when such data were available. If the bone marrow blast 
count was low (<20%), as was observed in five relapsed patients, 
blast-specific drug sensitivity was assayed using flow cytometry.

FPMTB-Guided Therapy Led to Successful 
Responses in 59% of Patients with R/R AML

The FPMTB recommendations were implemented for 37 
R/R patients, of whom 29 were eligible for objective response 
evaluation. The criteria for the selection of individual drugs 
and combinations are shown in Supplementary Table  S1. 
The most frequently used targeted drugs for the clinical 
implementation of the FPMTB data were venetoclax (BCL2i),  
dasatinib (inhibitor of ABL1 and other kinases), sunitinib 
(VEGFR- and FLT3-kinase), and temsirolimus (mTORi). The 
drugs were administered as a customized combination of two 
to three drugs based on patient-specific sensitivity to single 
drugs and molecular data (Supplementary Table S2). Treat-
ment was given to individual consenting patients as prospec-
tive n = 1 case studies, not as a formal clinical drug study with 
case and control groups.

Figure 1.  Schematic of the design for the functional precision systems medicine study. The diagram illustrates how functional molecular preci-
sion systems medicine integrates high-throughput drug response assay and molecular profiling, aiming at individualized clinical translation of data for 
patients with AML. The n = 1 cycle on the left illustrates prospective real-time clinical translation through an FPMTB approach. The drug response and 
sequencing data are analyzed and integrated within a patient with a goal to tailor therapies in a realistic time frame. The n = many cycle on the right 
illustrates the data integration across a large sample set. The main goal here is to find possible biomarkers of drug responses, which eventually could also 
help to refine the rules of the FPMTB.
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Implementing the FPMTB-recommended therapy resulted in 
clinically meaningful responses (complete and partial responses, 
morphologic leukemia-free state, evaluated per ELN2017 criteria; 
ref. 28) in 17 of 29 patients (59% objective response rate), includ-
ing 13 (45%) patients achieving complete remission/complete 
remission with incomplete hematologic recovery (CR/CRi) after 
treatment (Fig. 2A). The remaining 12 patients progressed with 
resistant disease. The median time from the beginning of therapy 
to CR was 36 days (range, 23–110 days). In five R/R patients with 
no other conventional treatment options, the targeted treatments 
given enabled the patient to be bridged to alloHSCT, which then 
resulted in a long-term remission and survival. The time from 
the beginning of therapy to transplantation ranged from 1.3 to 
37.7 months (mean, 10.7). The median overall survival for all 
37 patients was 7.5 months (range, 14 days–4.7+ years), with a 
median follow-up for surviving patients of 23 months (range, 
13–66 months; Fig. 2B). Comparing the drugs applied in clinical 
translation, the best predictive value of the DSRT was observed for 
venetoclax: 11 of 15 patients who showed ex vivo sensitivity had a 
CR/CRi response to venetoclax therapy (positive predictive value 
73%; Supplementary Fig. S3A). We further explored expression 
of BCL2 family members and found that the expression of BFL1 
may be associated with venetoclax resistance whereas expression 
of MCL1 does not associate with ex vivo response to venetoclax 
(Supplementary Fig. S3B–S3E).

Novel drug combinations, such as those used in this study, 
may result in novel, unexpected toxicities. However, as most 
of the drugs used in clinical translation were molecularly 
targeted agents, with limited toxicity profiles as single-agent 
drugs, we did not observe any grade 3 to 4 adverse effects 
attributable to the drug combinations used.

Overview of Drug Response and Molecular 
Profiling Data

In order to reveal molecular patterns underlying drug 
responses, we generated comprehensive functional, genomic, 
and transcriptomic data from 252 consecutive samples from 
186 individual patients with AML. By assembling a large data-
base where molecular and functional data can be mined, we 
think we can eventually improve the FPMTB rules and clini-
cal implementation. The data set includes (i) disease status 
information for 252 samples; (ii) DSRT assay details for 164 
patient and 17 healthy control samples; (iii) drug-sensitivity 
data for each sample, along with full annotated data from the 
515 chemical compounds; (iv) exome-sequencing genomic 
data for 226 samples; (v) RNA-sequencing (RNA-seq) gene-
expression and fusion gene data for 163 patient samples; 
and (vi) DSRT and RNA-seq data for four healthy control 
samples. The AML patient cohort and sample information 
are given in Supplementary Tables S3 and S4. The overview 
of mutation and gene-expression patterns across all samples 
is given in Supplementary Figs. S4 and S5A–S5C.

Ex Vivo Drug Responses Providing Functional 
Insights in AML

Ex vivo drug-sensitivity and resistance profiles were deter-
mined for 164 consecutive AML patient samples by high-
throughput testing of a library of 515 chemical compounds 
(Supplementary Tables  S5 and S6). This analysis revealed 
selective efficacy profiles for individual drugs in individual 

patients, hence enabling us to determine the proportion of 
samples sensitive to each of the drugs in the library (Sup-
plementary Tables S7 and S8). The DSRT was performed in 
mononuclear cell medium (MCM) or conditioned medium 
(CM), which provide different response levels for the FLT3, 
BET, and JAK inhibitors, as shown previously (29). The data 
for the two media types were therefore analyzed separately. 
The drug responses were quantified as an area under the 
curve (calculated as described previously; ref.  30) and then 
normalized using data from healthy control and expressed as 
selective drug-sensitivity scores (sDSS). The distribution of 
blast cell percentage and cell viability without drug treatment 
is given in Supplementary Fig. S6A. These two variables were 
not significantly associated with drug responses in the 164 
samples (Supplementary Fig.  S6B). The cutoff for a signifi-
cant drug response was defined by an sDSS value of 8.7 that 
represents the 95th percentile of the sDSS distribution of all  
drugs in all cases (Supplementary Fig. S7A). The most often 
effective 50 drugs that were most frequently effective were fur-
ther categorized into subclasses based on their known mecha-
nisms of action, such as BCL2i, PI3Ki, HSP90i, JAKi, MEKi, 
CDKi, and BETi (Supplementary Fig. S7B). We observed that 
about half of all the chemical compounds (n  =  272) in the 
drug library were effective in three or more samples (Sup-
plementary Fig.  S7C). Of these ex vivo effective drugs, 15% 
(n = 77) were drugs that were already approved for some oncol-
ogy indications and hence could readily be repurposed for 
AML. The effective drugs included chemotherapeutics such as 
topoisomerase inhibitors but also targeted drugs, e.g., tyrosine 
kinase inhibitors, immunomodulators, mTORi, JAKi, MEKi, 
BCL2i, CDKi, and PI3Ki (Supplementary Fig. S7D).

Drugs with the same mode of action or with the same 
molecular targets often clustered together as expected (Sup-
plementary Fig. S8A). Interestingly, drugs representing differ-
ent molecular mechanisms also sometimes showed clustering. 
For example, we found a strong association of responses to 
the BCL2i venetoclax and the MDM2 antagonist idasanutlin. 
These two drugs clustered in their own branch of the dendro-
gram with a significant correlation (Supplementary Fig. S8B). 
Another example of drugs with different molecular mecha-
nisms showing similar response patterns was the coclustering 
of BETi, MEKi, and HDACi (Supplementary Fig. S8C), with 
correlation coefficients between the individual drugs ranging 
from 0.64 to 0.71 (P < 0.001; Supplementary Fig. S8D).

We then analyzed drug responses in paired diagnostic and 
relapsed samples from the same patients, tested in identical 
conditions. We found that the average responses to BCL2 and 
PI3K/mTOR inhibitors were higher at the time of diagnosis. 
In contrast, responses to MEK inhibitors and dexamethasone 
responses were stronger in the relapsed samples (Supplemen-
tary Fig. S9).

Drug Sensitivities Associated with Mutations
We first analyzed ex vivo drug-response profiles of all AML 

patient samples in distinct molecular groups defined by the 
common AML mutations (FLT3, NPM1, IDH1 or IDH2, and 
NRAS or KRAS) to obtain an overview of genomic subset-
specific drug response (Fig.  3). For this analysis, 146 drugs 
were selected based on sample-wise average sDSS values (>5) 
and variance (>10; Supplementary Fig.  S10A). A total of 
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Figure 2.  The outcome of patients treated with FPMTB-guided personalized therapies. A, The overall survival estimated by the Kaplan–Meier method 
of all patients (gray area denotes 95% confidence interval). B, Swimmer plot illustrates survival and therapy responses in 37 patients with R/R AML upon 
FPMTB-guided therapies, where the asterisk represents patients who received allogeneic hematopoietic stem cell transplantation after the treatment, 
and arrows represent the patients who are alive. The zero month represents the starting time point of the FPMTB-recommended therapy. The therapy 
responses—CR-MRDneg, complete response with minimal residual disease negative; CR-MRDpos, complete response with minimal residual disease posi-
tive; CR, complete remission; CRi, complete remission with incomplete hematologic recovery; PR, progressive disease; MLFS, bone marrow blasts <5%; 
RD, resistant disease—were defined by ELN-2017 criteria.
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121 significant associations were observed between muta-
tions (Supplementary Fig. S10B) and responses of individual 
drugs. Many of these associations were between a mutation 
and several drugs of the same class (Fig. 4A; Supplementary 
Table S9). Previously known findings included the association 
of FLT3 mutations (point mutations and ITD) with response 
to several FLT3 and tyrosine kinase inhibitors (23), or between 
RAS mutations with different MEKi (ref. 31; Supplementary 
Fig.  S11A and S11B). The FLT3-mutated samples, includ-
ing ITD and point mutations, clustered functionally in two 
distinct subgroups based on the response patterns to FLT3i 
and other multikinase inhibitors. When we compared the 
average sDSS values for all drugs in FLT3-mutant and RAS-
mutant samples, a clear pattern emerged where all MEKi were 
more effective in RAS-mutant and all FLT3i in FLT3-mutant 
AML samples (Supplementary Fig.  S11C). Similar segrega-
tion between key genetic lesions causing constitutive activa-
tion of cytokine receptor STAT5 and RAS–MEK signaling 
pathways was found in B-cell acute lymphoblastic leukemia 
(B-ALL; ref. 32). NPM1-mutated samples showed ex vivo sen-
sitivity to JAKi. This was observed for drugs targeting JAK1i, 
JAK2i, and pan-JAKi, particularly in the CM (Fig. 4B and C). 
NPM1-mutated cases that also harbored IDH1 or IDH2 muta-
tions were even more strongly sensitive to all JAKi (Fig. 4D), 
including the clinically approved JAK1/2i ruxolitinib (Fig. 4E). 
This observation was also validated in the Beat AML data set 
(Fig.  4F). We then analyzed combinations of two mutations 
predicting stronger sensitivity to individual drugs using the 
LOBICO method (33). For example, navitoclax sensitivity was 
strongly associated with IDH1 and IDH2 mutations (Supple-
mentary Fig. S12).

Actionability of Mutation Data in AML
Samples were divided into those with an actionable driver 

mutation (52%) and those without (48%; Fig.  5A). The muta-
tions considered “potentially actionable” included FLT3-ITD 
and FLT3 (point mutation), IDH1/2, NPM1, and KRAS/NRAS. 
The efficacy of FLT3i in FLT3-mutant AML and venetoclax 
in patients with IDH1/2-mutant AML, as well as increased 
efficacy of JAKi in NPM1-mutated samples and of MEKi in 
KRAS/NRAS-mutated samples represent significant associations 
of mutations with ex vivo drug efficacies in our study. However, 
not all samples carrying these mutations were sensitive to the 
corresponding drugs (Fig. 5B). Furthermore, efficacies of these 
drugs were also observed in cases where no mutations in the 
corresponding genes were found. For example, 16% of the FLT3 
wild-type cases responded to the FLT3i midostaurin, and 35% of 
the RAS wild-type cases also responded to the MEKi trametinib.

Integration of Drug Response with Mutations 
and Pathway Data: A Basis for Continuous 
Development and Refinement of FPMTB Rules

In 97% of the samples (119/122), drug response data alone 
provided potential clinically applicable information for 
approved drugs (Fig. 5C, drug response panel). We found that 
activity of key pathways measured by gene expression (34) 
was associated with drug sensitivities in cases where muta-
tions were not informative. Thus, by incorporation of ex vivo 
DSRT, mutations, and gene-expression data, we were able to 
define groups of patients responding to drugs based on three 
lines of evidence. For example, such associations were defined 
for midostaurin with FLT3mut, ruxolitinib with NPM1mut–
JAK–STAT pathway, venetoclax with IDH1/2mut apoptosis 
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Figure 3.  Drug-response patterns in molecular subsets of AML. AML patient samples were categorized into molecular subclasses according to muta-
tion status in common AML driver genes. Hierarchical clustering of samples using Euclidean distance and ward linkage for sDSS of 146 drugs in individual 
molecular subsets. The drugs were selected considering variance >10 and data points available in at least 20% of the samples. Gray bars in the drug-
response heatmap indicate missing data. Fourteen recurrent AML driver genes, with at least three samples recurrently mutated and VAF > 25%, were 
displayed to indicate the mutation patterns in the molecular subsets. The disease status, age, medium used for drug testing, and cytogenetics informa-
tion for each patient are displayed in the lower panel.
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Figure 4.  Somatic mutations as a molecular denominator of drug sensitivities. A, An overview of the 
mutation–drug response association analysis results. The top part of the table lists the total number of 
positive (drug sensitivity) and negative (drug resistance) gene–drug associations identified separately in 
the MCM and CM sample sets. The associations at FDR < 0.1 were considered significant. The lower part 
shows the number of drugs significantly associated with each selected gene mutation. For example, the 
FLT3-ITD mutation is positively associated with six drug responses in the MCM sample set and with three 
drugs in the CM sample set. B, The volcano plot illustrates the mean difference of sDSS values on the x-axis 
and adjusted P values on y-axis for each drug–gene pair in the CM sample set. The significant (FDR < 0.1, 
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BCL2i venetoclax, FLT3i midostaurin, TKi dasatinib, JAKi ruxolitinib, MEKi trametinib, and JAKi ruxolitinib. E, The drug-wise percentage of samples show-
ing any evidence and no evidence from effective drug response, mutation, and/or pathway upregulation.
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pathway, trametinib with RASmut–MAPK pathway, dasatinib 
with KIT pathway (as was previously observed in a smaller sam-
ple set; ref. 35), and temsirolimus with mTOR pathway activa-
tion (Fig. 5C; Supplementary Fig. S13A–S13C). We believe that 
the combination of DSRT, genomic, and transcriptomic data 
will provide a means to further improve the reliability of the 
FPMTB recommendations for specific therapeutic alternatives. 
To demonstrate this, we quantified the overlap among drug 
efficacies and corresponding mutation and pathway activities. 
For example, expression of the BCL2 pathway genes (n = 23) 
was more concordant with ex vivo efficacy of venetoclax as 
compared with IDH1/IDH2 mutation (n = 4). The combination 
of mutation and deregulated pathways together gave comple-
mentary data in support of ex vivo drug responses (Fig. 5D and 
E). The results suggested that a systematic data-driven strategy 
combining all the profiling data will enable further refinement 
of drug response predictions.

IL15 Overexpression as a Functional Biomarker for 
Resistance to FLT3 Inhibitors

This integrated data resource on AML provides insights 
on biomarkers of drug response and potential mechanistic 
insights that could help us to understand the sensitivity, 
resistance, and development of combinatorial therapies. We 
analyzed here the value of transcriptomic data in predict-
ing the response to FLT3i in the subgroup of FLT3-mutant 
AML cases. Analogous to the clinical situation, FLT3-ITD–
mutant AML samples clustered in two distinct groups based 
on DSRT data, indicating that about half of these patients are 
responsive (Fig.  6A). Analysis of differential gene expression 
between FLT3i-sensitive versus FLT3i-resistant AML patient 
samples resulted in 57 genes with FDR <  0.1 and a log fold 
change  >2 (Supplementary Table  S10). We discovered IL15 
as one of the most significantly overexpressed (average 4-fold 
upregulated) genes in FLT3i-resistant samples (Fig. 6B). This 
was validated in FLT3i-resistant samples by RT-qPCR (Sup-
plementary Fig. S14A). Furthermore, data mining of the Beat 
AML data set confirmed this association (Fig.  6C; Supple-
mentary Fig. S14B). In line with Mathew and colleagues (36), 
we observed that the addition of recombinant IL15 protein 
reduced the sensitivity of FLT3-ITD–mutated AML cell lines to 
FLT3i, sorafenib in particular (Supplementary Fig. S14C). The 
MAPK pathway was the most upregulated [false discovery rate 
(FDR) < 0.001] pathway in the FLT3i-resistant cases (Fig. 6D). 
We then tested ERK phosphorylation after IL15 stimula-
tion in AML patient samples using phospho-flow cytometry 
analysis. The treatment of human recombinant IL15 markedly 
increased phosphorylation of ERK and reduced phospho-
rylation of AKT in FLT3i-sensitive samples compared with 
FLT3i-resistant samples (Fig. 6E; Supplementary Fig. S14D). 
The results suggest not only that IL15 may be a biomarker but 
that the overexpression and production of IL15 protein may 
activate the ERK–MAPK pathway and hence contribute to 
FLT3i resistance. Finally, our ex vivo DSRT data from the same 
samples indicated a higher efficacy of MEKi in the FLT3i-
resistant samples compared with the sensitive samples, sug-
gesting activation of this pathway leads to subsequent MEKi 
sensitivity, which could provide novel treatment options to 
be tested in clinical trials (Supplementary Fig.  S14E and 
S14F). We retrospectively assessed whether IL15 expression 

could predict the clinical response to FLT3i. We validated the 
high expression of IL15 in the patients who did not respond 
to the FLT3i-based treatments (Supplementary Table  S11). 
Also, higher expression of IL15 along with the development 
of resistance to FLT3i was seen in serial samples from patient 
AML_129, thus further validating a potential functional link 
between IL15 and FLT3i resistance (Fig. 6F).

To explore the origin of the IL15 and the nature of the sig-
naling in patient samples in vivo, we explored both the origi-
nal RNA-seq data and a new data set of single-cell RNA-seq 
(scRNA-seq) data from eight AML patient samples in a previ-
ously published study (37). scRNA-seq data indicated that 
both IL15 and IL15 receptor are expressed not only in many 
cell types, including the monocytic lineage as expected, but also 
in the CD34-positive AML blast cells (Fig. 6G; Supplementary 
Fig.  S15A–S15C). The bulk RNA-seq data indicated that the 
FLT3i-resistant FLT3-ITD–mutant AML cells have a higher 
expression of not just IL15, but also the monocyte markers 
CD14 and CD300E (Fig. 6B; Supplementary Table S10). Taken 
together, these findings suggest that in the FLT3i-resistant 
cases, production of IL15 takes place in the blast cells and/or 
within the monocytic lineage and that these cells also harbor 
the IL15 receptor. These findings are compatible with an auto-
crine signaling hypothesis, although paracrine signaling from 
other cell types or the stroma cannot be excluded.

DISCUSSION
Multidisciplinary molecular tumor boards increasingly 

interpret cancer genomic data in order to match patients 
with cancer to clinical trials with targeted agents or to allo-
cate novel clinical treatments to patients with cancer (38, 
39). However, for many patients, genomic analyses often fail 
to provide clues on clinically actionable therapies (13, 14). 
Furthermore, across all cancer types, fewer than half of the 
patients receiving genetically assigned approved therapies 
successfully respond as predicted (40, 41).

Here, we developed and implemented an FPMTB to inte-
grate functional drug testing with genomics, transcriptomics, 
and clinical laboratory data to define patient treatments. The 
FPMTB processed consecutive patients with AML during 2011 
to 2019 and recommended therapeutic options for individual 
R/R patients. The outcome of FPMTB-recommended indi-
vidualized treatments in 37 patients with multirefractory, often 
end-stage AML was encouraging, with an overall response rate 
of 59%. Five patients could be bridged to curative hematopoietic 
stem cell transplantation therapy. In many of these patients, 
the FPMTB-guided therapy was started at a low disease burden 
[minimal residual disease (MRD)]. Persistent MRD is a major 
cause for treatment failure in AML and may be the ideal setting 
for implementing personalized targeted therapies.

The response and survival rates of these patients war-
rant a randomized, controlled clinical trial to be launched 
to formally validate the benefit of FPMTB-based therapeu-
tic recommendations. The approach has become more and 
more informative over the years, as the number of clinically 
approved, better-tolerated drugs has increased (13, 42). We 
found that the clinical efficacy of venetoclax could be pre-
dicted by ex vivo testing in AML. This is of particular impor-
tance as this drug is a major advance in AML, and also had 
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a significant impact on the positive clinical responses in the 
present study. Particularly in the R/R AML setting, where 
many patients do not respond well to venetoclax (or experi-
ence short responses), an ex vivo drug-sensitivity assay may 
prove valuable for selecting patients most likely to respond 
and directing nonresponding patients to alternative therapies.

Compared with genomics-based precision medicine, ex vivo 
testing provides informative results in a substantially higher 
fraction of patients as well as for more drugs. One or more 
clinically applicable drugs were considered selectively effec-
tive in 97% of the evaluated AML cases. Furthermore, ex vivo 
drug testing assay provided results in a clinically applicable 
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time frame (median of 4 days), and with comparative efficacy 
estimates across all the 515 tested drugs in each sample. This 
timescale is particularly relevant for aggressive, rapidly pro-
gressing cancers such as AML.

There is a need to further standardize the approaches used 
for functional laboratory testing and the molecular analyses 
used to characterize each patient sample. For example, we 
have documented the effect of different media types (regular 
and stromal cell conditioned media; ref.  29) and readouts 
(cell viability and flow-cytometric assays) on drug testing 
results (26). Further refinement and standardization will 
improve our ability to predict drug responses in the clinic  
as well as to understand the driver signals and vulnerabilities 
of each patient with AML.

The large integrated data set described here enables contin-
uous improvement of the FPMTB rules as well as exploration 
of the data to identify potential biological insights and bio-
markers of drug efficacy in subsets of patients. The continuous 
improvement of FPMTB could, in the future, include machine 
learning–based decision trees as key components of a learn-
ing health care infrastructure. Our analysis of these data has 
already revealed insights on mechanisms of action that could 
be clinically applied. For example, our data suggested that 
IL15 may both act as a biomarker and functionally contribute 
to FLT3i resistance in FLT3-ITD–mutant AML. This observa-
tion was validated in independent gene-expression data from 
the Beat AML data set (23). The administration of recombi-
nant IL15 protein reduced efficacy of FLT3i in FLT3-ITD–
positive AML cells in vitro. The mechanistic link between IL15 
and FLT3 was previously proposed by Mathew and colleagues  
(36). We showed how IL15 increased phosphorylation of ERK 
in FLT3i-resistant but not in FLT3i-sensitive samples, point-
ing to the ERK–MAPK pathway as a possible escape route for 
FLT3 inhibition (43, 44). FLT3i-resistant FLT3-ITD–mutant 
AML cells showed ex vivo sensitivity to MEK inhibition, sug-
gesting potential combinatorial strategies for future clinical 
studies. Data integration also revealed insights into the role 
of AML blasts and monocytes in producing IL15, including a 
potential signaling loop involving the IL15 receptor.

A major hurdle in implementing precision medicine is 
the limited access to potentially effective drugs for patients. 
Many drugs showing ex vivo efficacy are neither available for 
off-label indications nor approved at all, or not even in clinical 
trials. There are also financial, legislative, and policy-related 
implications that make the design of clinical drug studies for 
individually tailored (combinatorial) therapies challenging. 
However, n  =  1 proof-of-concept studies as described here 
should be highly encouraging and informative for the design 
of formal clinical studies. The FPMTB approach and the spe-
cific findings on ex vivo drug response described here should 
be explored to set up international multicenter collabora-
tions between private and public stakeholders to solve issues 
that currently hinder the application of individually tailored 
functional precision medicine.

In conclusion, ex vivo drug testing is a powerful approach 
for understanding AML biology and drug sensitivity as well 
as for facilitating repositioning known and emerging drugs 
for AML therapy. Systematic data integration prioritizes the 
most promising drugs and biomarkers for drug development 
and clinical trials. Although further research is warranted, the 

combination of molecular and functional assays is warranted 
in a clinical cancer drug trial setting.

METHODS
AML Patient Cohort and Samples

Samples (n  =  252) from 186 adult patients with AML and 17 
healthy donors were collected with signed informed consent 
with protocols in accordance with the Declaration of Helsinki 
[study acronym HRUHLAB2, HUS Ethical Committee Statement 
303/13/03/01/2011 (original), latest amendment 7 dated June 15, 
2016. Latest HUS study permit HUS/395/2018 dated February 13, 
2018]. Mononuclear cells (MNC) were isolated by Ficoll-Paque cen-
trifugation from freshly collected bone marrow and peripheral blood 
specimens of 133 diagnosed, 78 relapsed, 41 chemorefractory-stage 
patients. For 42 patients we profiled two or more consecutive sam-
ples. Skin biopsies were collected from all patients for germline 
DNA analysis. The median age at diagnosis of the patient cohort was 
62 years. Other clinical details of the patients with AML are given 
in Supplementary Table  S1. A summary of the cohort of patients 
including demographic information and clinical and treatment data 
is given in Supplementary Table S1.

FPMTB
The FPMTB consisted of the AML tumor group chair and clini-

cians managing the patients, clinical laboratory specialists, transla-
tional scientists familiar with the functional assays and multiomics 
data, bioinformaticians, study nurses, and by referral a genetic coun-
selor for actionable germline variants (Supplementary Table  S1). 
The meetings were scheduled every week (Wednesdays) and also ad 
hoc if necessary, when a patient case was submitted (meeting within 
1 week of sampling). The task of the FPMTB was to overview and 
analyze clinical, molecular, and functional characterization of all 
consecutive patients with newly diagnosed or R/R AML, assign risk 
groups, evaluate standard-of-care options, and open clinical trials. 
In addition, in the case of R/R AML, candidate drugs were evaluated 
for on- or off-label treatment to make rational therapy recommen-
dations based on DSRT and other profiling data. The board also 
analyzed treatment follow-up and responses for eligible patients, 
and recommended bridging to alloHSCT (Supplementary Fig. S1). 
More detailed criteria for patient and treatment selection are shown 
in Supplementary Table S1.

DSRT
A library of 515 commercially available chemotherapeutic and 

targeted oncology compounds consisted of 168 approved drugs, 
261 investigational compounds, and 86 probes (Supplementary 
Table S2). The chemical compounds DMSO (negative control) and 
benzethonium chloride (positive control) were added to 384-well 
plates using an acoustic liquid dispensing system Echo 500/550 (Lab-
cyte). Freshly isolated MNCs were counted and resuspended in MCM 
(PromoCell) with 0.5 μg/mL gentamicin and 2.5 μg/mL amphotericin 
or in CM constituted of 77.5% RPMI 1640, 10% FCS, 12.5% human 
HS-5 bone marrow stromal cell line–derived CM, and 1% penicillin 
and streptomycin. A 5-μL cell-free medium was added to dissolve 
compounds followed by 20  μL cell suspension containing 5,000 to  
10,000 cells to each well using multidrop (Thermo Fisher). The 
plates were incubated at 37°C in 5% CO2 for 72 hours. Subsequently,  
CellTiter-Glo (Promega) reagent was added to all wells, and cell via-
bility as luminescence generated by total cellular ATP was measured 
using a PHERAstar (BMG Labtech).

The drug responses passing the data quality assessment were 
included in further analysis (45). DSS were calculated as shown previ-
ously (30) and sDSS were calculated by normalizing drug responses 
against 17 healthy controls.
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Exome and RNA Sequencing
Exome and RNA sequencing analyses were performed in real time 

under individualized systems medicine program using DNA and 
RNA materials isolated from MNCs as described previously (20, 46). 
The skin biopsies from the same patient were used as germline con-
trol for exome-sequencing data analysis. Detailed methods are given 
in the Supplementary text.

Mutation and Drug Response Association Analysis
Cancer and AML-specific genes were selected for the drug–mutation 

association analysis. The AML genes were collected from published 
studies, TCGA (ref. 5; n = 23), InToGen (n = 32), and Papeammanuil and 
colleagues (ref. 6; n = 111); and other cancer-associated genes (n = 616) 
were obtained from the Census database (47). Out of altogether 667 
genes, 340 genes were found mutated in our data set. Furthermore, the 
genes with mutation in at least two samples and tumor variant allele 
frequency (VAF) >25% were selected for the analysis. The VAF below 25% 
was disregarded for the analysis considering no significant impact on 
drug responses. The drugs were selected based on effectiveness across 
all samples. The analysis was done independently on MCM (n = 61) and 
CM (n = 82) subsets to avoid the impact of media on the efficacy of key 
AML drugs and misleading the biological signal. To test significant dif-
ferences in drug responses, the Wilcoxon signed-rank test was applied 
using R package “exactRankTests” (version 0.8-29) between mutated 
and wild-type samples for each gene. For adjusting drug-wise multiple 
comparisons, FDR was calculated using the Benjamini and Hochberg 
(BH) method. FDR < 0.1 and mean sDSS difference ≤5 or ≥5 between 
wild-type and mutated samples was considered significant.

Gene Set Variance Analysis
Gene set variance analysis (GSVA; ref. 48) was used to calculate path-

way activation scores (R package version 1.22.4). As an input, log2 CPM 
of protein-coding genes from all the AML patient samples and four 
healthy controls (CD34+ sorted cells) was used. GSVA calculates rela-
tive enrichment of a gene set for each sample across the sample space, 
allowing for sample-wise comparison of gene set enrichment within 
a data set. A positive enrichment value for a sample indicates overall 
higher expression of the genes in the pathway in the sample, compared 
with the other samples analyzed. Pathway definitions were taken for 
canonical pathways (CP) that had 1,329 gene sets (MSigDB database 
v6.2). The gene sets used were (i) CP:BIOCARTA (n = 217), (ii) CP:KEGG 
(n  =  186), and (iii) CP:REACTOME (n  =  674). To consider a pathway 
to be active, we used a robust, four-step methodology. First, to get the 
highly significant active pathways (P values) in a sample, we applied 
1,000 bootstrap iterations on GSVA scores. Pathway-wise P values were 
corrected by applying the BH method, and FDR < 0.01 was considered 
significant. Second, we chose highly variable pathways that had a GSVA 
score > 0.2 (cutoff based on overall distribution). Third, these significant 
pathways were further normalized to four healthy controls (CD34+). A 
given pathway was considered active only when it had a GSVA score 
more than the average GSVA score of healthy controls. The final step 
involved choosing only those active pathways that passed the above 
three criteria and were also active in at least two databases. For example, 
apoptosis pathway was considered active if found to be deregulated in 
at least two of the databases: BIOCARTA_TCAPOPTOSIS_PATHWAY, 
KEGG_APOPTOSIS, and REACTOME_APOPTOSIS.

Differential Gene-Expression and  
Pathway Enrichment Analysis

Differential gene-expression analysis was performed using the R 
package DESeq2 (49). The analysis was performed using raw read 
counts from FLT3i-sensitive and FLT3i-resistant samples. To remove 
any batch effects in the data, we corrected for RNA-seq library 
preparation protocols and gender by modifying the design formula 
(∼batch + condition) and then applied a likelihood ratio test to get 

the differentially expressed genes. The BH method was used to con-
trol the FDR. A cutoff value of absolute log2 fold change of greater 
than or equal to 2 and FDR < 0.1 were used as additional filters to 
select differentially expressed genes for the downstream analysis. 
Pathway analysis was performed using the genes upregulated in 
FLT3i-resistant samples. Enrichr web-tool was used for pathway 
enrichment analysis. Outputs from KEGG 2016 and Wiki pathways 
were considered for further analysis.

Phospho-Flow Cytometry and Data Analysis
Viably frozen MNCs from patients with AML were thawed and 

resuspended in RPMI 1640 medium supplemented with 10% FBS 
and penicillin and streptomycin. Cells were treated with 50  μL of 
DNase (Promega) for two hours at 37°C to dissolve dead cell clumps. 
Cells were centrifuged and resuspended in RPMI 1640 medium 
with penicillin and streptomycin without serum. Cells were stained 
with Zombie violet cell viability dye (423113, BioLegend) stimu-
lated with  100 ng/mL human recombinant IL15 (PeproTech) for 
20 minutes at 37°C. Subsequently, cells were washed with ice-cold 
PBS, centrifuged at 1,000 × g, fixed with 500 μL of 4% formaldehyde, 
and incubated at 37°C for 10 minutes. PBS was directly added to 
the fixed cells and centrifuged at 1,000 × g, and the supernatant was 
discarded. Ice-cold methanol was added dropwise to the cell pellets 
and incubated on ice for 30 minutes to permeabilize the cell mem-
brane. Cells were washed with PBS, counted, and added to 96-well 
V bottom plates. The surface IgG was blocked using human IgG 
Fc receptor inhibitor (Invitrogen) in staining buffer (0.5% bovine 
serum albumin in PBS) for 15 minutes on shaker at room tempera-
ture and washed with PBS. The antibodies for CD45 (563716, BD 
Biosciences), pERK (612566, BD Biosciences), pAKT S473 (4075S, 
Cell Signaling Technologies), and isotype controls were added to the 
respective wells and incubated for 30 minutes on a plate shaker. The 
cells were washed with staining buffer and PBS before flow cytom-
etry analysis using iQue Screener Plus (Intellicyte). Antibody-stained 
UltraComp beads (01-2222-41, Invitrogen) and cells without viabil-
ity staining were used for compensation. The data were analyzed 
using Cytobank cellmass software.

Testing of FLT3 Inhibitors in FLT3-ITD–Mutated  
AML Cell Lines

FLT3-ITD–mutated AML cell lines MOLM-13 and MV4-11 were 
purchased from DSMZ and were cultured in recommended media. 
Sorafenib was dispensed in nine different doses in 384-well plates. 
MOLM-13 and MV4-11 cells were stimulated with 100 ng/mL human 
recombinant IL15 (PeproTech) at 37°C for one hour. AML cell lines 
were resuspended in their respective medium with CellTox Green rea-
gent (Promega). Cells (3,000 per well) were dispensed in predrugged 
plates and incubated at 37°C for 72 hours. Fluorescence was detected 
using a Phearastar plate reader (BMG LabTech), and dose response 
was generated using the four-parameter logistic regression.

Data Access
Basic demographics, clinical laboratory values, drug therapies, 

treatment responses, ex vivo drug testing, and sequencing (exome and 
RNA sequencing) data will be available at the publication-specific 
analysis environment at the Helsinki University Hospital datalake. 
This is an EU GDPR-compliant (General Data Protection Regulation, 
https://gdpr.eu/), secure, cloud-based data environment accessible by 
a virtual machine (IP-restricted, 2-level authentication), including all 
key analytical tooling. Datalake onboarding commences by sending 
an e-mail request to tietopalvelu@hus.fi.
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