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ABSTRACT
A body of  literature supports the postulation that a persistent lipid metabolic imbalance causes lipotoxicity, "an 
abnormal fat storage in the peripheral organs". Hence, lipotoxicity could somewhat explain the process of  sarcope-
nia, an aging-related, gradual, and involuntary decline in skeletal muscle strength and mass associated with several 
health complications. This review focuses on the recent mechanisms underlying lipotoxicity-related sarcopenia. A vi-
cious cycle occurs between sarcopenia and ectopic fat storage via a complex interplay of  mitochondrial dysfunction, 
pro-inflammatory cytokine production, oxidative stress, collagen deposition, extracellular matrix remodeling, and 
life habits. The repercussions of  lipotoxicity exacerbation of  sarcopenia can include increased disability, morbidity, 
and mortality. This suggests that appropriate lipotoxicity management should be considered the primary target for 
the prevention and/or treatment of  chronic musculoskeletal and other aging-related disorders. Further advanced 
research is needed to understand the molecular details of  lipotoxicity and its consequences for sarcopenia and sarco-
penia-related comorbidities.
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INTRODUCTION

Several experimental and clinical studies have shown an as-
sociation between advanced age and an inevitable gradual de-
crease in skeletal muscle strength and mass, known as sarcopenia 
[1]. Sarcopenia usually begins in the fifth decade of  life and has 
been linked to an increased incidence of  falls and fractures [2], 
as well as a loss of  functionality and independence [3], which 
leads to increased morbidity and/or mortality [4]. Sarcopenia is 
histologically characterized by a reduction in the cross-bridging 
components between muscle fibers, smaller and/or fewer mito-
chondria in muscle cells, atrophy of  type II myofibers, and tissue 
necrosis [1]. Published evidence has also shown that adipose tissue 
infiltration of  the skeletal muscle predicts a loss of  muscle power 
in the elderly, even in those who maintain a healthy weight [4].

Adipose tissue is an immune endocrine organ that also 
serves an energy storage function [5]. Triglycerides are hydro-
lyzed intracellularly by lipases into free fatty acids and glycerol for 
transportation to extra-adipose tissues, where they are oxidized 
by mitochondria. If  the hydrolysis process exceeds the capacity 
to esterify intracellular free fatty acids, the resulting net release of  
free fatty acids can have many adverse effects, such as cytotoxic-
ity, ectopic storage, and susceptibility to lipotoxicity insult [6, 7]. 
In aging humans, despite an increase in the total percentage of  

visceral fat, the capacity of  white adipose tissue (lipid storage) to 
buffer plasma non-esterified fatty acids (the end products of  fast-
ing lipolysis) diminishes due to impaired adipogenesis [2]. Obe-
sity causes a further formation of  excessive triglyceride deposits, 
known as steatosis or ectopic fat deposits, in several tissues, such 
as muscle, heart, pancreas, and liver [8, 9]. 

The metabolic profile of  skeletal muscle fibers is either more 
glycolytic (essentially using glucose) in rapid-firing type II fibers 
or more oxidative (essentially using lipids) in slow-firing type I 
fibers [10, 11]. While fatty acid oxidation is relatively high in 
the skeletal muscle, lipid overload could also occur, eventually 
triggering muscle cell death through insulin resistance and other 
mechanisms.

MECHANISMS UNDERLYING THE DEVELOPMENT 
OF LIPOTOXICITY-RELATED SARCOPENIA

Lipotoxicity is a systemic disorder associated with meta-
bolic and senescence diseases, such as obesity and sarcopenia. 
The pathogenesis of  lipotoxicity-related sarcopenia takes place 
through a cascade of  intermingled mechanisms. Lipotoxicity 
leads to ectopic storage of  lipids in the skeletal muscles (myoste-
atosis) and enhances the release of  adipokines, cytokines, and 
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chemokines, eventually leading to chronic sterile inflammation 
of  muscles and impaired function of  their mitochondria. The 
end result is a reduced capacity to consume fatty acids, followed 
by oxidative stress, insulin resistance, calcium store depletion, 
protein degradation, and extracellular matrix changes (Figure 1).

Myosteatosis

In lean individuals, triacylglycerol (TAG) normally rep-
resents 0.5% of  the skeletal muscle volume, but this percentage 
can increase to 3.5% in obesity [12]. The increase in body fat 
mass is associated with ectopic fat deposits that occur preferen-
tially in muscles. This is termed myosteatosis [9] and appears 
to act synergistically with sarcopenia, as shown in Figure 1. 
Myosteatosis should be regarded as a physiologically accelerated 
degenerative process arising due to concomitant lipotoxic stress 
[3, 13]. It materializes as intramyocellular lipids that accumulate 
due to an increased inflow of  fatty acids that exceeds the oxi-
dative capacity of  skeletal muscles [14] and the intramyocellu-
lar adipocytes of  the extramuscular adipose tissue as a result of  
stimulation of  adipogenic metabolism. Some research has shown 
that aged persons with high muscle fat infiltration in the mid-
thigh have a high incidence of  mobility impairment during a 
2.5-year follow-up period [15]. Similarly, fat accumulation in the 
middle-aged can develop into fibrosis, further impairing muscle 
movement and function [16].

Chronic sterile low-grade inflammation

Adipose tissue secretes many different factors, includ-
ing pro-inflammatory cytokines, extracellular matrix proteins, 
pro-thrombotic factors, and chemokines [17]. Macrophages also 
release pro-inflammatory cytokines that activate a large number 
of  stress-signaling cascades. These cascades upregulate CD11c 

surface expression in adipose-resident macrophages and stimu-
late them to assume a pro-inflammatory secretory profile [18]. 
The released chemical factors exacerbate and trigger other 
stress-signaling cascades, causing the release of  free fatty acids 
and, ultimately, lipotoxicity [19]. 

Crosstalk has recently been identified between inflamed 
skeletal muscle and adipose tissue, generating an age-related and 
harmful vicious cycle that may be the key conjoining mecha-
nism between lipotoxicity and sarcopenia [12, 20]. Sequences of  
pro-inflammatory cytokine signaling and cellular stress responses 
are triggered by lipotoxicity, thereby depleting the preadipocyte 
progenitor pool. The muscles then switch to a pro-inflammatory 
condition similar to that of  macrophages [21]. 

These changes are exacerbated by aging, as skeletal muscle 
fibers become damaged by fatty acids and inflammation while 
also losing their capacity to store lipotoxic acids. The further re-
lease of  pro-inflammatory cytokine signals and the vicious feed-
back loop has a profound impact on skeletal muscle fibers and 
motor function and can play a significant role in sarcopenia [22].

Oxidative stress

Many studies have shown that feeding a high-fat diet in-
creases reactive oxygen species and causes nitric oxide imbal-
ances, thereby altering cellular antioxidant defense systems. 
The result is cellular membrane disruption, decreased protein 
synthesis due to endoplasmic reticulum stress, and activation of  
muscle fiber apoptosis [23]. In elderly individuals, changes in the 
intramyocellular ultrastructure have been correlated with tran-
scriptional alterations related to mitochondrial dysfunction and 
lipid metabolism [24]. Increased levels of  reactive oxygen species 
in type I muscle fibers, and disturbances in cellular homeostasis 
predispose muscles to impairments in the function and integrity 
of  neuromuscular junctions [25].

Figure 1. Integrated mechanisms caused by lipotoxicity in sarcopenia.
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Insulin resistance

In skeletal muscle, exercise and binding insulin with its ty-
rosine-kinase receptors exert several biological effects, including 
protein synthesis and glucose metabolism (Figure 2). Auto-phos-
phorylation of  the receptor leads to the recruitment of  insulin 
receptor substrate (IRS)-1, which guides downstream pathways 
[26]. When the phosphatidylinositol 3-kinase (PI3K) is activat-
ed, it promotes phosphorylation of  protein kinase B (PKB)/AKT 
and allows the internalization of  glucose by translocation of  glu-
cose transporter (GLUT)-4. The phosphorylation of  glycogen 
synthase kinase 3 (GSK3) promotes glycogen synthesis. All of  
these mechanisms aim to store and dispose of  glucose. Addition-
ally, PKB/AKT stimulates the mammalian target of  rapamycin 
(mTOR), ribosomal S6 kinase 1 (S6K1), and 4E-binding protein 
1 (4E-PB1), which are involved in the importance of  tropism, 
muscle mass anabolic metabolism and protein synthesis [26].

A more important signaling pathway is represented by the 
AMP-activated kinase (AMPK), which promotes free fatty acids 
and glucose metabolism as well as modulates long-term respons-
es in mitochondria by interacting with peroxisome proliferator 
receptor-gamma activator 1α (PGC-1α) [27]. In the presence of  
intracellular energy deficiency, AMPK inhibits protein synthesis 
by suppressing mTOR signaling [28].

One direct effect of  insulin on the muscle phenotype is the 
suppression of  protein catabolism [29]. Insulin resistance is a 
senescence morbidity reciprocally associated with sarcopenia 
[30]. Insulin resistance inhibits β-oxidation, increases the supply 
of  free fatty acids, and alters triglyceride transport, resulting in 
steatosis [31] and suppression of  the growth hormone (GH)-insu-
lin-like growth factor 1 (IGF1) axis responsible for muscle protein 
synthesis [32]. The hyperinsulinemia resulting from insulin re-
sistance directly accelerates muscle degradation and decelerates 

protein synthesis [33], thereby leading to an increased produc-
tion of  myostatin that reduces muscle mass [34].

Leptin resistance

Central (visceral) obesity is a well-known pathological condi-
tion where the adipose tissue represents an actively secreting or-
gan, contributing to the release of  several pro-inflammatory cy-
tokines that enhance local and systemic inflammation (Figure 3).

Leptin, secreted by adipose tissue, acts as a pro-inflammato-
ry hormone, especially in subjects with sarcopenic obesity rather 
than in those with either visceral obesity or sarcopenia alone [4]. 
Hyperleptinemia could be due to defective signaling at the hypo-
thalamic neurons and leptin resistance [35].

In healthy subjects, leptin stimulates AMPK in skeletal mus-
cles. Meanwhile, this pathway is suppressed in obese individuals, 
which is attributed to the increased hypothalamic expression of  
the obesity-related suppressors of  cytokine signaling 3 (SOCS3). 
In the experimental model, SOSC3 inhibits leptin activation of  
AMPK, contributing to the impaired fatty acid metabolism in 
skeletal muscle [36].

In an obesogenic mimicking environment, studies showed 
that macrophages interfere with muscle function "by decreasing 
phosphorylated PKB/AKT and nuclear factor (NF)-κβ inhibit-
ing protein (Inhibiting κβ-α [Iκβ-α])" [37].

Extracellular matrix remodeling

The extracellular matrix (ECM) plays crucial roles in skel-
etal muscle development [38], biomechanics [39–41], regener-
ation [42, 43], motor endplate function [44, 45], and glucose 
metabolism [46]. Consequently, the pathophysiologies of  many 
skeletal muscle diseases, such as different varieties of  muscular 

Figure 2. Molecular pathways of diet and exercise which are compromised during aging. PGC-1α, peroxisome proliferator receptor gamma 
activator 1α; FFA, free fatty acids; PI3K, phosphatidylinositol 3-kinase; PKB/AKT, protein kinase B; GLUT, glucose transporter; mTOR, mam-
malian target of rapamycin; 4E-PB1, 4E-binding protein 1; S6K1, ribosomal S6 kinase 1; AMPK, AMP-activated kinase.
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dystrophy [47] and senescence-associated sarcopenia [48, 49], 
likely involve a remodeling of  ECM components. ECM remod-
eling is associated with the consumption of  high-fat diets, and 
an increased collagen content has an apparent association with 
insulin resistance in skeletal muscles [46]. The collagen deposi-
tion and extracellular matrix remodeling triggered by lipotoxicity 
cause changes in the functionality of  the sarcoplasmic reticulum, 
resulting in impaired fiber contractility [50]. An involvement of  
lipotoxicity is claimed in tubulointerstitial fibrosis in the kidney 
due to the increased expression of  connective tissue growth fac-
tors and the promotion of  apoptosis [51]. However, evidence for 
the operation of  a similar mechanism in lipotoxicity-related sar-
copenia is presently lacking. 

Calcium imbalance

Lipid stress may cause transitions in calcium cycling protein 
isoforms, thereby influencing calcium homeostasis, calcium sig-
naling, and muscle twitch (fiber excitation, contraction, and re-
laxation) [52, 53]. Sarcopenia is associated with the dysfunction-
al enlargement of  mitochondria, which increases mitochondrial 
Ca2+ uptake and depletes calcium in the myofibers [54].

Myofiber atrophy

A synergistic relationship exists between muscle loss and 
skeletal muscle fatty infiltration, suggesting that fat accumulation 
might accelerate the pathogenesis of  sarcopenia [13]. In aged 
rats, a high-fat diet results in intramyocellular accumulation of  
fatty acids. This increase in fatty acids is correlated with impaired 
skeletal muscle protein synthesis [55] and may indicate that the 
increased accumulation of  lipid metabolism byproducts, such 
as ceramide, has adverse effects on mitochondrial performance 
[56]. By contrast, the accumulation of  adipocytes in skeletal mus-

cles has negative effects on the muscle phenotype and promotes 
muscle atrophy, as shown in both humans and rats by Pellegrinelli 
and collaborators [57]. Impaired autophagy and reduced num-
bers of  satellite cells, as occur in overweight-related sarcopenia, 
further contribute to muscle wasting [58].

Lipotoxicity triggers cell death in smooth muscles [59] as 
well as in cardiac muscles [60]. The result is smooth muscle cell 
proliferation, muscle remodeling, pathological alterations in vas-
cular tone, vascular foam cell formation, and plaque destabiliza-
tion. In the heart, the effects can include abnormal right ventricle 
geometry, increased left ventricular mass, enlarged atrial chemo-
taxis, and cardiomyopathy [61, 62].

Endoplasmic reticulum stress

The endoplasmic reticulum (ER) has a significant role in 
protein, lipid, glycogen, and calcium metabolism [63]. Lipotox-
icity, through increasing reactive oxygen species and oxidative 
stress, can trigger ER stress and, consequently, the accumulation 
of  unfolded proteins in ER [64]. Normally, unfolded protein re-
sponse (UPR) compensates for this stress, and the ER restores 
its normal function in maintaining protein and lipid homeostasis 
[65]. Nevertheless, in the case of  prolonged stress, as in lipotox-
icity, ER stress can lead to apoptosis [66]. ER stress can also in-
duce insulin resistance [67] and anabolic intolerance in skeletal 
myocytes [68].

HISTOLOGICAL CRITERIA OF 
LIPOTOXICITY-RELATED SARCOPENIA

Quantitative histological staining using Sudan black dye re-
veals myosteatosis as one of  the most apparent histological chang-
es occurring in lipotoxicity-related sarcopenia. The relative fat 

Figure 3. Schematic pathological pathways in central obesity contributed to the development of sarcopenia. SOCS3, suppressors of cy-
tokine signaling 3; TNF-α, Tumor Necrosis Factor – α; PKB/AKT, Protein kinase B/AKT; FFA, free fatty acids; NF-κB, Nuclear Factor-κB; FA, 
fatty acids; AMPK, AMP-activated protein kinase.
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mass in muscles can be measured using the Lipid Accumulation 
Index (LAI) and quantified as described previously [55]: total 
area with lipid droplets of  muscle fiber × 100/total cross-sec-
tional area of  muscle fiber. Myofiber atrophy has been histologi-
cally defined in obese rat skeletal muscles as heterogenicity in the 
cross-sectional areas of  the myofibers [57]. In elderly humans 
with sarcopenia, the fast-twitch myofibers show considerable re-
ductions in diameter [69]. 

Satellite cells decline in number and function in aging skele-
tal muscles [70–72]. Proteomic analysis, quantitative immunoflu-
orescence, and ultrastructural morphological and morphomet-
rical analysis have shown that matrisome changes accompany 
the aging of  skeletal muscle in the form of  increases in some 
proteins, such as collagens IV and VI and laminin. In aged rats, 
these changes present as more linear and larger collagen bundles 
in the perimysium and thickening of  the endomysium of  the gas-
trocnemius [49]. 

CONCLUSION

The important repercussions of  lipotoxicity in patients with 
sarcopenia are that it increases disability, morbidity, and mortal-
ity. Therefore, appropriate lipotoxicity management should be 
considered a primary target for the prevention and/or treatment 
of  chronic musculoskeletal and other aging-related disorders. 
Further research advances are needed to better understand the 
molecular details underlying lipotoxicity and its consequences for 
sarcopenia and sarcopenia-related comorbidities.
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