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Abstract

Recurrent neural networks (RNNs) are powerful dynamical models, widely used in machine 

learning (ML) and neuroscience. Prior theoretical work has focused on RNNs with additive 

interactions. However gating i.e., multiplicative interactions are ubiquitous in real neurons and 

also the central feature of the best-performing RNNs in ML. Here, we show that gating 

offers flexible control of two salient features of the collective dynamics: (i) timescales and (ii) 

dimensionality. The gate controlling timescales leads to a novel marginally stable state, where 

the network functions as a flexible integrator. Unlike previous approaches, gating permits this 

important function without parameter fine-tuning or special symmetries. Gates also provide 

a flexible, context-dependent mechanism to reset the memory trace, thus complementing the 

memory function. The gate modulating the dimensionality can induce a novel, discontinuous 

chaotic transition, where inputs push a stable system to strong chaotic activity, in contrast to the 

typically stabilizing effect of inputs. At this transition, unlike additive RNNs, the proliferation 

of critical points (topological complexity) is decoupled from the appearance of chaotic dynamics 

(dynamical complexity). The rich dynamics are summarized in phase diagrams, thus providing a 

map for principled parameter initialization choices to ML practitioners.
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I. INTRODUCTION

Recurrent neural networks (RNNs) are powerful dynamical systems that can represent a 

rich repertoire of trajectories and are popular models in neuroscience and machine learning. 

In modern machine learning, RNNs are used to learn complex dynamics from data with 

rich sequential or temporal structure such as speech [1,2], turbulent flows [3–5], or text 
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sequences [6]. RNNs are also influential in neuroscience as models to study the collective 

behavior of a large network of neurons [7] (and references therein). For instance, they have 

been used to explain the dynamics and temporally irregular fluctuations observed in cortical 

networks [8,9] and how the motor-cortex network generates movement sequences [10,11].

Classical RNN models typically involve units that interact with each other in an additive 

fashion—i.e., each unit integrates a weighted sum of the output of the rest of the network. 

However, researchers in machine learning have empirically found that RNNs with gating—a 

form of multiplicative interaction—can be trained to perform significantly more complex 

tasks than classical RNNs [6,12]. Gating interactions are also ubiquitous in real neurons due 

to mechanisms such as shunting inhibition [13]. Moreover, when single-neuron models are 

endowed with more realistic conductance dynamics, the effective interactions at the network 

level have gating effects, which confer robustness to time-warped inputs [14]. Thus, RNNs 

with gating interactions not only have superior information processing capabilities, but they 

also embody a prominent feature found in real neurons.

Prior theoretical work on understanding the dynamics and functional capabilities of RNNs 

has mostly focused on RNNs with additive interactions. The original work by Sompolinsky, 

Crisanti, and Sommers [15] identifies a phase transition in the autonomous dynamics of 

randomly connected RNNs from stability to chaos. Subsequent work extends this analysis 

to cases where the random connectivity additionally has correlations [16], a low-rank 

structured component [17,18], strong self-interaction [19], and heterogeneous variance 

across blocks [20]. The role of sparse connectivity and the single-neuron nonlinearity is 

studied in Ref. [9]. The effect of a Gaussian noise input is analyzed in Ref. [21].

In this work, we study the consequences of gating interactions on the dynamics of RNNs. 

We introduce a gated RNN model that naturally extends a classical RNN by augmenting 

it with two kinds of gating interactions: (i) an update gate that acts like an adaptive time 

constant and (ii) an output gate which modulates the output of a neuron. The choice of these 

forms for gates are motivated by biophysical considerations (e.g., Refs. [14,22]) and retain 

the most functionally important aspects of the gated RNNs in machine learning. Our gated 

RNN reduces to the classical RNN [15,23] when the gates are open and is closely related to 

the state-of-the-art gated RNNs in machine learning when the dynamics are discretized [24]. 

We further elaborate on this connection in Sec. VIII.

We develop a theory for the gated RNN based on non-Hermitian random matrix techniques 

[25,26] and the Martin–Siggia–Rose–De Dominicis-Janssen (MSRDJ) formalism [21,27–

32] and use the theory to map out, in a phase diagram, the rich, functionally significant 

dynamical phenomena produced by gating.

We show that the update gate produces slow modes and a marginally stable critical state. 

Marginally stable systems are of special interest in the context of biological information 

processing (e.g., Ref. [33]). Moreover, the network in this marginally stable state can 

function as a robust integrator—a function that is critical for memory capabilities in 

biological systems [34–37] but has been hard to achieve without parameter fine-tuning and 

handcrafted symmetries [38]. Gating permits the network to serve this function without any 
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symmetries or fine-tuning. For a detailed discussion of these issues, we refer the reader 

to Ref. [39] (pp. 329–350) and Refs. [38,40]. Integratorlike dynamics are also empirically 

observed in gated machine learning (ML) RNNs successfully trained on complex sequential 

tasks [41]; our theory shows how gates allow for this robustly.

The output gate allows fine control over the dimensionality of the network activity; control 

of the dimensionality can be useful during learning tasks [42]. In certain regimes, this gate 

can mediate an input-driven chaotic transition, where static inputs can push a stable system 

abruptly to a chaotic state. This behavior with gating is in stark contrast to the typically 

stabilizing effect of inputs in high-dimensional systems [21,43,44]. The output gate also 

leads to a novel, discontinuous chaotic transition, where the proliferation of critical points 

(a static property) is decoupled from the appearance of chaotic transients (a dynamical 

property); this is in contrast to the tight link between the two properties in additive RNNs 

as shown by Wainrib and Touboul [45]. This transition is also characterized by a nontrivial 

state where a stable fixed point coexists with long chaotic transients. Gates also provide a 

flexible, context-dependent way to reset the state, thus providing a way to selectively erase 

the memory trace of past inputs.

We summarize these functionally significant phenomena in phase diagrams, which are 

also practically useful for ML practitioners—indeed, the choice of parameter initialization 

is known to be one of the most important factors deciding the success of training [46], 

with best outcomes occurring near critical lines [10,47–49]. Phase diagrams, thus, allow a 

principled and exhaustive exploration of dynamically distinct initializations.

II. A RECURRENT NEURAL NETWORK MODEL TO STUDY GATING

We study an extension of a classical RNN [15,23] by augmenting it with multiplicative 

gating interactions. Specifically, we consider two gates: (i) an update (or z) gate which 

controls the rate of integration and (ii) an output (or r) gate which modulates the strength of 

the output. The equations describing the gated RNN are given by

ℎ̇i(t) = σz zi −ℎi(t) + Ri(t) + Ii
ℎ(t), (1)

where hi represents the internal state of the ith unit and σ(·)(x) = [1 + exp(−α(·)x 
+ β(·))]−1 are sigmoidal gating functions. The recurrent input to a neuron is 

Ri(t) = ∑j = 1
N Jij

ℎϕ ℎj(t) ⋅ σr rj(t) , where Jij
ℎ  are the coupling strengths between the units 

and ϕ(x) = tanh(ghx + βh) is the activation function. ϕ and σz,r are parametrized by gain 

parameters (gh, αz,r) and biases (βh,z,r), which constitute the parameters of the gated RNN. 

Finally, Ih represents external input to the network. The gating variables zi(t) and ri(t) evolve 

according to dynamics driven by the output ϕ[h(t)] of the network:

τxẋi(t) = − xi(t) + ∑
j = 1

N
Jij

xϕ ℎj(t) + Ii
x, (2)
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where x ∈ {z, r}. Note that the coupling matrices Jz,r for z, r are distinct from Jh. We also 

allow for different inputs Ir and Iz being fed to the gates. For instance, they might be zero, or 

they might be equal up to a scaling factor to Ih.

The value of σz(zi) can be viewed as a dynamical time constant for the ith unit, while 

the output gate σr(ri) modulates the output strength of unit i. In the presence of external 

input, the r gate can control the relative strengths of the internal (recurrent) activity and the 

external input Ih. In the limit σz, σr → 1, we recover the dynamics of the classical RNN.

We choose the coupling weights from a Gaussian distribution with variance scaled such that 

the input to each unit remains O(1). Specifically, Jij
ℎ, z, r N 0, N−1 . This choice of couplings 

is a popular initialization scheme for RNNs in machine learning [6,46] and also in models 

of cortical neural circuits [15,20]. If the gating variables are purely internal, then (Jz,r) is 

diagonal; however, we do not consider this case below. In the rest of the paper, we analyze 

the various dynamical regimes the gated RNN exhibits and their functional significance.

III. HOW THE GATES SHAPE THE LINEARIZED DYNAMICS

We first study the linearized dynamics of the gated RNN through the lens of the 

instantaneous Jacobian and describe how these dynamics are shaped by the gates. The 

instantaneous Jacobian describes the linearized dynamics about an operating point, and 

the eigenvalues of the Jacobian inform us about the timescales of growth and decay of 

perturbations and the local stability of the dynamics. As we show below, the spectral density 

of the Jacobian depends on equal-time correlation functions, which are the order parameters 

in the mean-field picture of the dynamics, developed in the Appendix C. We study how the 

gates shape the support and the density of Jacobian eigenvalues in the steady state, through 

their influence on the correlation functions.

The linearized dynamics in the tangent space at an operating point x = (h, z, r) is given by

δẋ = D(t)δx, (3)

where  is the 3N × 3N-dimensional instantaneous Jacobian of the full network equations. 

Linearization of Eqs. (1) and (2) yields

D =
σz −1 + Jℎ ϕ′σr D σz Jℎ ϕσr′

τz−1Jz ϕ′ −τz−11 0

τr−1Jr ϕ′ 0 −τr−11

, (4)

where [x] denotes a diagonal matrix with the diagonal entries given by the vector x. 

The term Dij = δijσz′ zi −ℎi + ∑jJij
ℎϕ ℎj σr rj = −σz′ (z)ℎ + σz′ ⊙ Jℎ ϕ ⊙ σr  arises when 

we linearize about a time-varying state and is zero for fixed points. We introduce the 

additional shorthand ϕ′(t) = ϕ′(h(t)) and σr/z′ = σr/z′ (r/z(t)).

The Jacobian is a block-structured matrix involving random elements (Jz,h,r) and functions of 

various state variables. We need additional tools from non-Hermitian random matrix theory 
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(RMT) [26] and dynamical mean-field theory (DMFT) [15] to analyze the spectrum of the 

Jacobian . We provide a detailed, self-contained derivation of the calculations in Appendix 

C (DMFT) and Appendix A (RMT). Here, we state only the main results derived from these 

formalisms.

One of the main results is an analytical expression for the spectral curve, which describes 

the boundary of the Jacobian spectrum, in terms of the moments of the state variables. The 

most general expression for the spectral curve [Appendix A, Eq. (A34)] involves empirical 

averages over the 3N-dimensional state variables. However, for large N, we can appeal to 

a concentration of measure argument to replace these discrete sums with averages over the 

steady-state distribution from the DMFT (cf. Appendix C)—i.e., we can replace empirical 

averages of any function of the state variables (1/N) Σi F(hi, zi, ri) with 〈F[h(t), z(t), r(t)]〉, 
where the brackets indicate average over the steady-state distribution. The DMFT + RMT 

prediction for the spectral curve for a generic steady-state point is given in Appendix A, Eq. 

(A35). Strictly speaking, the analysis of the DMFT around a generic time-dependent steady 

state is complicated by the fact that the distribution for h is not Gaussian (while r and z are 
Gaussian). For fixed points, however, the distributions of h, z, and r are all Gaussian, and 

the expression for the spectral curve reduces simplifies. It is given by the set of λ ∈ ℂ which 

satisfy

ϕ′2 σr2 +
ϕ2 σr′2

1 + τrλ 2
σz2

λ + σz
2

z
= 1 . (5)

Here, the averages are taken over the Gaussian fixed-point distributions (h, z, r) ~ (0, 

Δh,z,r) which follow from the MFT [Eq. (C26)]. For example, ϕ′2 = Eℎ N 0, Δℎ ϕ′(ℎ)2 .

We make two comments on the Jacobian of a time-varying state: (i) One might wonder 

if any useful information can be gleaned by studying the Jacobian at a time-varying state 

where the Hartman-Grobman theorem is not valid. Indeed, as we see below, the limiting 

form of the Jacobian in steady state crucially informs us about the suppression of unstable 

directions and the emergence of slow dynamics due to pinching and marginal stability in 

certain parameter regimes (also see Ref. [50]). In other words, the instantaneous Jacobian 

charts the approach to marginal stability and provides a quantitative justification for the 

approximate integrator functionality exhibited in Sec. IV B. (ii) Interestingly, the spectral 

curve calculated using the MFT [Eq. (5)] for a time-varying steady state not deep in the 

chaotic regime is a very good approximation for the true spectral curve (see Fig. 8 in 

Appendix A).

Figures 1(a)–1(d) show that the RMT prediction of the spectral support (dark outline) agrees 

well with the numerically calculated spectrum (red dots) in different dynamical regimes. 

As a consequence of Eq. (5), we get a condition for the stability of the zero fixed point. 

The leading edge of the spectral curve for the zero fixed point (FP) crosses the origin 

when gℎ < 1 + e−βr. So, in the absence of biases, gh > 2 makes the zero FP unstable. More 

generally, the leading edge of the spectrum crossing the origin gives us the condition for the 

FP to become unstable:
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ϕ′2 ϕ2 σr′2 + σr2 > 1  unstable FP . (6)

We see later on that the time-varying state corresponding to this regime is chaotic. We now 

proceed to analyze how the two gates shape the Jacobian spectrum via the equation for the 

spectral curve.

A. Update gate facilitates slow modes and output gate causes instability

To understand how each gate shapes the local dynamics, we study their effect on the density 

of Jacobian eigenvalues and the shape of the spectral support curve—the eigenvalues tell 

us about the rate of growth or decay of small perturbations and, thus, timescales in the 

local dynamics, and the spectral curve informs us about stability. For ease of exposition, we 

consider the case without biases in the main text (βr,z,h = 0); we discuss the role of biases in 

Appendix H.

Figure 1 shows how the gain parameters of the update and output gates—αz and αr, 

respectively—shape the Jacobian spectrum. In Figs. 1(a)–1(d), we see that αz has two salient 

effects on the spectrum: Increasing αz leads to (i) an accumulation of eigenvalues near zero 

and (ii) a pinching of the spectral curve for certain values of gh wherein the intercept on the 

imaginary axis gets smaller [Fig. 1(f); also see Sec. IVA]. In Figs. 1(a)–1(d), we also see 

that increasing the value of αr leads to an increase in the spectral radius, thus pushing the 

leading edge (max Reλi) to the right and thereby increasing the local dimensionality of the 

unstable manifold. This behavior of the linearized dynamics is also reflected in the nonlinear 

dynamics, where, as we show in Sec. V, αr has the effect of controlling the dimensionality of 

full phase-space dynamics.

The accumulation of eigenvalues near zero with increasing αz suggests the emergence of 

a wide spectrum of timescales in the local dynamics. To understand this accumulation 

quantitatively, it is helpful to consider the scenario where αz is large and we replace the 

tanh activation functions with a piecewise linear approximation. In this limit, the density of 

eigenvalues within a radius δ of the origin is well approximated by the following functional 

form (details in Appendix B):

P λ Dx < δ c0erf c1
αz

, (7)

where c0 and c1 are constants that, in general, depend on ar, δ, and gh. Figure 1(e) shows this 

scaling for a specific value of δ: The dashed line shows the predicted curve, and the circles 

indicate the actual eigenvalue density calculated using the full Jacobian. In the limit of αz → 
∞, we get an extensive number of eigenvalues at zero, and the eigenvalue density converges 

to (see Appendix B)

μ(λ) = 1 − fz δ(λ) + fz 1 − fℎ δ(λ + 1) + 4
πgℎ

2 I |λ | ≤ gℎ
2/4 ,
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where fz = 〈σz(z)〉 is the fraction of update gates which are nonzero and fh is the fraction 

of unsaturated activation functions ϕ(h). For other choices of saturating nonlinearities, 

the extensive number of eigenvalues at zero remains; however, the expressions are more 

complicated. Analogous phenomena are observed for discrete-time gated RNNs in Ref. [51], 

using a similar combination of analytical and numerical techniques [52].

In Sec. VA, we show that the slow modes, as seen from linearization, persist asymptotically 

(i.e., in the nonlinear regime). This can be seen from the Lyapunov spectrum in Fig. 3(a), 

which for large αz exhibits an analogous accumulation of Lyapunov exponents near zero.

In the next section, we study the profound functional consequences of the combination of 

spectral pinching and accumulation of eigenvalues near zero.

IV. MARGINAL STABILITY AND ITS CONSEQUENCES

As the update gate becomes more switchlike (higher αz), we see an accumulation of 

slow modes and a pinching of the spectral curve which drastically suppresses the unstable 

directions. In the limit αz → ∞, this can make previously unstable points marginally stable 

by pinning the leading edge of the spectral curve exactly at zero. Marginally stable systems 

are of significant interest because of the potential benefits in information processing—for 

instance, they can generate long timescales in their collective modes [33,39]. Moreover, 

achieving marginal stability often requires fine-tuning parameters close to a bifurcation 

point. As we see, gating allows us to achieve a marginally stable critical state over a wide 

range of parameters; this has been typically highly nontrivial to achieve (e.g., Ref. [39], pp. 

329–350, and Ref. [33]). We first investigate the conditions under which marginal stability 

arises, and then we touch on one of its important functional consequences: the appearance of 

“line attractors” which allow the system to be used as a robust integrator.

A. Condition for marginal stability

Marginal stability is a consequence of pinching of the spectral curve with increasing αz, 

wherein the (positive) leading edge of the spectrum and the intercept of the spectral curve 

on the imaginary axis both shrink with αz [e.g., Fig. 1(f) and compare Figs. 1(a) and 1(c)]. 

However, we see in Fig. 1(f) (via the intercept) that pinching does not happen if gh is 

sufficiently large (even as αz → ∞). Here, we provide the conditions when pinching can 

occur and, thus, marginal stability can emerge. For simplicity, let us consider the case where 

τr = 1 and there are no biases.

Marginal stability strictly exists only for αz = ∞. We first examine the conditions under 

which the system can become marginally stable in this limit, and then we explain the route 
to marginal stability for large but finite αz, i.e., how a time-varying state ends up as a 

marginally stable fixed point. For αz = ∞, the spectral density has an extensive number 

N[1 − 〈σz(z)〉] of zero eigenvalues, and the remaining eigenvalues are distributed in a disk 

centered at λ = −1 with radius ρ. If ρ < 1, then the spectral density has two topologically 

disconnected configurations (the disk and the zero modes) and the system is marginally 

stable. If ρ > 1, the zero modes get absorbed in the interior of the disk and the system 

is unstable with fast, chaotic dynamics. The radius ρ is given by ρ2 = 1
2a + 1

2 4b + a2 < 1, 
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where a = ϕ′2 σz σr2  and b = ϕ′2 σz ϕ2 σr′2 . This follows from Eq. (5) by evaluating 

the z-expectation value assuming σz is a binary variable. Thus, the system is marginally 

stable in the limit αz = ∞ as long as

ϕ′2 ϕ2 σr′2 + σr2 < σz
−1 . (8)

The crucial difference between this expression and Eq. (6) is that the rhs now has a factor 

of 〈σz〉−1 which can be greater than unity, thus pushing the transition to chaos further out 

along the gh and αr directions, as depicted in the phase diagram (Fig. 7). For concreteness, 

we report here how the transition changes at αr = 0. In this setting, the transition to chaos 

moves from gh = 2 to gh ⪅ 6.2, and the system is marginally stable for 2 < gh ⪅ 6.2.

Having identified the region in the phase diagram that can be made marginally stable for 

αz = ∞, we can now discuss the route to marginal stability for large but finite αz. In 

other words, how does an unstable chaotic state become marginally stable with increasing 

αz? Since the marginally stable region is characterized by a disconnected spectral density, 

evidently increasing αz must lead to singular behavior in the spectral curve. This takes the 

form of a pinching at the origin. We show that, for values of gh supporting marginal stability, 

the leading edge λe of the spectrum for the time-varying state gets pinched exponentially 

fast with αz as λe e−cαz Δℎ (see Appendix B). This accounts for the fact that, already for 

αz = 15, we observe the pinching in Fig. 1(c). In contrast, the parameters in Fig. 1(d) lie 

outside the marginally stable region, and, thus, there is no pinching, since the zero modes are 

asymptotically (in αz) buried in the bulk of the spectrum.

In summary, as αz → ∞ the Jacobian spectrum undergoes a topological transition from a 

single simply connected domain to two domains, both containing an extensive number of 

eigenvalues. A finite fraction of eigenvalues end up sitting exactly at zero, while the rest 

occupy a finite circular region. If the leading edge of the circular region crosses zero in this 

limit, then the state remains unstable; otherwise, the state becomes marginally stable. The 

latter case is achieved through a gradual pinching of the spectrum near zero; there is no 

pinching in the former case.

We emphasize that marginal stability requires more than just an accumulation of eigenvalues 

near zero. Indeed, this happens even when gh is outside the range supporting marginal 

stability as αz → ∞, but there is no pinching and the system remains unstable [e.g., see 

Fig. 1(d)]. We return to this when we describe the phase diagram for the gated RNN (Sec. 

VII). There, we see that the marginally stable region occupies a macroscopic volume in the 

parameter space adjoining the critical lines on one side.

B. Functional consequences of marginal stability

The marginally stable critical state produced by gating can subserve the function of a robust 

integrator. This integratorlike function is crucial for a variety of computational functions 

such as motor control [34–36], decision making [37], and auditory processing [53]. 

However, achieving this function has typically required fine-tuning or special handcrafted 
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architectures [38], but gating permits the integrator function over a range of parameters and 

without any specific symmetries in Jh,z,r. Specifically, for large αz, any perturbation in the 

span of the eigenvectors corresponding to the eigenvalues with a magnitude close to zero is 

integrated by the network, and, once the input perturbation ceases, the memory trace of the 

input is retained for a duration much longer than the intrinsic time constant of the neurons; 

perturbations along other directions, however, relax with a spectrum of timescales dictated 

by the inverse of (the real part of) their eigenvalues. Thus, the manifold of slow directions 

forms an approximate continuous attractor on which input can effortlessly move the state 

vector around. These approximate continuous attractor dynamics are illustrated in Fig. 2. 

At time t = 0, an input Ih (with Ir = Iz = 0) is applied till t = 10 (between dashed vertical 

lines) along an eigenvector of the Jacobian with an eigenvalue close to zero. Inputs along 

this slow manifold with varying strengths (different shades of red) are integrated by the 

network as evidenced by the excess projection of the network activity on the left eigenvector 

uλ corresponding to the slow mode; on the other hand, inputs not aligned with the slow 

modes decay away quickly (dashed black line). Recall that the intrinsic time constant of 

the neurons here is set to one unit. The exponentially fast (in αz) pinching of the spectral 

curve (discussed above in Sec. IVA) suggests this slow-manifold behavior should also hold 

for moderately large αz (as in Fig. 2). Therefore, even though the state is technically 

unstable, the local structure of the Jacobian is responsible for giving rise to extremely long 

timescales and allows the network to operate as an approximate integrator within relatively 

long windows of time, as demonstrated in Fig. 2.

Of course, after sufficiently long times, the instability causes the state to evolve and the 

memory is lost. Exactly how long the memory lasts depends on the asymptotic stability of 

the network, which is revealed by the Lyapunov spectrum, discussed below in Sec. VA.

V. OUTPUT GATE CONTROLS DIMENSIONALITY AND LEADS TO A 

NOVEL CHAOTIC TRANSITION

We thus far use insights from local dynamics to study the functional consequences of the 

gates. To study the salient features of the output gate, it is useful to analyze the effect of 

inputs and the long-time behavior of the network through the lens of Lyapunov spectra. We 

see that the output gate controls the dimensionality of the dynamics in the phase space; 

dimensionality is a salient aspect of the dynamics for task function [42]. The output gate 

also gives rise to a novel discontinuous chaotic transition, near which inputs (even static 

ones) can abruptly push a stable system into strongly chaotic behavior—contrary to the 

typically stabilizing effect of inputs. Below, we begin with the Lyapunov analyses of the 

dynamics and then proceed to study the chaotic transition.

A. Long-time behavior of the network

We study the asymptotic behavior of the network and the nature of the time-varying state 

through the lens of its Lyapunov spectra. In this section, where we study the effects of 

αz, our results are numerical except in cases where αz = 0 [e.g., in Fig. 3(d)]. Lyapunov 

exponents specify how infinitesimal perturbations δx(t) grow or shrink along the trajectories 

of the dynamics—in particular, if the growth or decay is exponentially fast, then the rate 
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is dictated by the maximal Lyapunov exponent defined as [54] λmax ≔ limT→∞ T−1 

lim‖δx(0)‖→0 ln[‖δx(T)‖/‖δx(0)‖]. More generally, the set of all Lyapunov exponents—the 

Lyapunov spectrum—yields the rates at which perturbations along different directions shrink 

or diverge and, thus, provide a fuller characterization of asymptotic behavior. We first 

numerically study how the gates shape the full Lyapunov spectrum (details in Appendix D) 

and derive an analytical prediction for the maximum Lyapunov exponent using the DMFT 

(Sec. VA1) [55].

Figures 3(a) and 3(b) show how the update (z) and output (r) gates shape the Lyapunov 

spectrum. We see that, as the update gets more sensitive (larger αz), the Lyapunov spectrum 

flattens, pushing more exponents closer to zero, generating long timescales. As the output 

gate becomes more sensitive (larger αr), all Lyapunov exponents increase, thus increasing 

the rate of growth in unstable directions.

We can estimate the dimensionality of the activity in the chaotic state by calculating an 

upper bound DA on the dimension according to a conjecture by Kaplan and Yorke [54]. The 

Kaplan-Yorke upper bound for the attractor dimension DA is given by

DA = M +
∑i = 1

M λi
λM + 1

, where M = max
j

∑
i = 1

j
λi ≥ 0 , (9)

where λi are the rank-ordered Lyapunov exponents. We see in Fig. 3(c) that the sensitivity 

of the output gate (αr) can shape the dimensionality of the dynamics—a more sensitive 

output gate leads to higher dimensionality. As we see below, this effect of the output gate 

is different from how the gain gh shapes dimensionality and can lead to a novel chaotic 

transition. Even more directly, if the r gate for neurons i1…iK is set to zero, then the activity 

is constrained to evolve in an N − K-dimensional subspace; however, the r gate allows the 

possibility—i.e., the “inductive bias”—of doing this dynamically.

1. DMFT prediction for λmax—We would also like to study the chaotic nature of the 

time-varying phase by means of the maximal Lyapunov exponent and characterize when 

the transition to chaos occurs. We extend the DMFT for the gated RNN to calculate the 

maximum Lyapunov exponent, and, to do this, we make use of a technique suggested by 

Refs. [56,57] and clearly elucidated in Ref. [21]. The details are provided in Appendix 

E, and the end result of the calculation is the DMFT prediction for λmax as the solution 

to a generalized eigenvalue problem for κ involving the correlation functions of the state 

variables:

σz + κ 2 − ∂τ
2 + Cσz(τ) − σz

2 χℎ(τ) = Cσz′ (τ) Cϕ ⋅ σr(τ) − Cℎ(τ) χz(τ)

+ Cσz(τ)
∂Cϕ ⋅ σr(τ)

∂Cℎ
χℎ(τ),

(10)

1 + τz/rκ 2 − τz/r
2 ∂τ

2 χz/r(τ) = ∂Cϕ(τ)
∂Cℎ

χℎ(τ), (11)
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where we denote the two-time correlation function Cx(t, t′) ≡ 〈x(t)x(t′)〉 for different 

(functions of) state variables x(t) [see Eq. (C25) for more context]. The largest eigenvalue 

solution to this problem is the required maximal Lyapunov exponent [58]. Note that this is 

the analog of the Schrodinger equation for the maximal Lyapunov exponent in the vanilla 

RNN. When αz = 0 (or small), the h field is Gaussian, and we can use Price’s theorem for 

Gaussian integrals to replace the variational derivatives on the rhs of Eqs. (10) and (11) by 

simple correlation functions, for instance, ∂Cϕ(τ)/∂Ch(τ) = Cϕ′(τ). In this limit, we see good 

agreement between the numerically calculated maximal Lyapunov exponent [Fig. 3(c), dots] 

compared to the DMFT prediction [Fig. 3(c), solid line] obtained by solving the eigenvalue 

problem [Eqs. (10) and (11)]. For large values of αz, we see quantitative deviations between 

the DMFT prediction and the true λmax. Indeed, for large αz, the distribution of h is strongly 

non-Gaussian, and there is no reason to expect that variational formulas given by Price’s 

theorem are even approximately correct. For more on this point, see the discussion toward 

the end of Appendix C.

2. Condition for continuous transition to chaos—The value of αz affects the 

precise value of the maximal Lyapunov exponent λmax; however, numerics suggest that, 

across a continuous transition to chaos, the point at which λmax becomes positive is not 

dependent on αz (data not shown). We can see this more clearly by calculating the transition 

to chaos when the leading edge of the spectral curve (for a FP) crosses zero. This condition 

is given by Eq. (6), and we see that it has no dependence on αz or the update gate. We 

stress that this condition [Eq. (6)] for the transition to chaos—when the stable fixed point 

becomes unstable—is valid when the chaotic attractor emerges continuously from the fixed 

point [Fig. 3(c), αr = 0, 2]. However, in the gated RNN, there is another discontinuous 

transition to chaos [Fig. 3(c), αr = 20]: For sufficiently large αr, the transition to chaos is 

discontinuous and occurs at a value of gh where the zero FP is still stable (gh < 2 with 

no biases). To our knowledge, this is a novel type of transition which is not present in the 

vanilla RNN and not visible from an analysis that considers only the stability of fixed points. 

We characterize this phenomenon in detail below.

B. Output gate induces a novel chaotic transition

Here, we describe a novel phase, characterized by a proliferation of unstable fixed points and 

the coexistence of a stable fixed point with chaotic dynamics. It is the appearance of this 

state that gives rise to the discontinuous transition observed in Fig. 3(c). The appearance of 

this state is mediated by the output gate becoming more switchlike (i.e., increasing αr) in 

the quiescent region for gh. To our knowledge, no such comparable phenomenon exists in 

RNNs with additive interactions. The full details of the calculations for this transition are 

provided in Appendix G. Here, we simply state and describe the salient features. For ease 

of presentation, the rest of the section assumes that all biases are zero. The results in this 

section are strictly valid only for αz = 0. In Appendix G3, we argue that they should also 

hold for moderate αz.

This discontinuous transition is characterized by a few noteworthy features.
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1. Spontaneous emergence of fixed points—When gh < 2.0, the zero fixed point 

is stable. Moreover, for 2 < gℎ < 2, when αr crosses a threshold value αr, FP* gℎ , unstable 

fixed points spontaneously appear in the phase space. The only dynamical signature of these 

unstable FPs are short-lived transients which do not scale with system size (see Fig. 11). 

Thus, we have a condition for fixed-point transition:

2 < gℎ ≤ 2  and  αr > αr, FP* gℎ . (12)

These unstable fixed points correspond to the emergence of nontrivial solutions to the 

time-independent MFT. Figure 4(a) shows the appearance of fixed-point MFT solutions for 

a fixed gh, and Fig. 4(b) shows the critical αr, FP* gℎ  as a function of gh. As gh → 2−, we see 

that αr, FP* 8.

These spontaneous MFT fixed-point solutions are unstable according to the criterion Eq. 

(6) derived from RMT. Moreover, in Appendix J, using a Kac-Rice analysis, we show that 

in this region the full 3N-dimensional system does indeed have a number of unstable fixed 

points that grows exponentially fast with N. Thus, this transition line αr, FP*  represents a 

topological trivialization transition as conceived by, e.g., Refs. [59,60]. Our analysis shows 

that instability is intimately connected to the proliferation of fixed points. Remarkably, 

however, a time-dependent solution to the DMFT does not emerge across this transition, 

and the microscopic dynamics are insensitive to the transition in topological complexity, 

bringing us to the next point.

2. A delayed dynamical transition that shows a decoupling between 
topological and dynamical complexity—On increasing αr beyond αr, FP* , there is a 

second transition when αr crosses a critical value αr, DMFT* . This happens when we satisfy the 

condition for dynamical transition:

8
3 < gℎ ≤ 2  and  αr > αr, DMFT* gℎ , (13)

derived in Appendix G2. Figure 4(c) shows how αr, DMFT* gℎ  varies with gh. As gh → 2−, 

we see that αr, DMFT* 12. Across this transition, a dynamical state spontaneously emerges, 

and the maximum Lyapunov exponent jumps from a negative value to a positive value 

[Fig. 4(d)]. This state exhibits chaotic dynamics that coexist with the stable zero fixed 

point. The presence of the stable FP means that the dynamical state is not strictly a chaotic 

attractor but rather a spontaneously appearing “chaotic set.” On increasing gh beyond 2.0, 

for large but fixed αr, the stable fixed point disappears, and the state smoothly transitions 

into a full chaotic attractor that is characterized above. This picture is summarized in the 

schematic in Fig. 4(e). This gap between the proliferation of unstable fixed points and the 

appearance of the chaotic dynamics differs from the result of Wainrib and Touboul [45] for 

purely additive RNNs, where the proliferation (topological complexity) is tightly linked to 

the chaotic dynamics (dynamical complexity). Thus, for gated RNNs, there appears to be 
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another distinct mechanism for the transition to chaos, and the accompanying transition is a 

discontinuous one.

3. Long chaotic transients—For finite systems, across the transition the dynamics 

eventually flow into the zero FP after chaotic transients. Moreover, we expect this transient 

time to scale with the system size, and, in the infinite system size limit, the transient time 

should diverge in spite of the fact that the stable fixed point still exists. This is because the 

relative volume of the basin of attraction of the fixed point vanishes as N → ∞. In Appendix 

G [Figs. 11(c) and 11(d)], we do indeed see that the transient time for a fixed gh scales 

with system size [Fig. 11(c)] once αr is above the second transition (dashed line) and not 

otherwise [see Figs. 11(a) and 11(e), dashed lines].

4. An input-induced chaotic transition—The discontinuous chaotic transition has a 

functional consequence: Near the transition, static inputs can push a stable system to strong 

chaotic activity. This is in contrast to the typically stabilizing effects of inputs on the activity 

of random additive RNNs [21,43,44]. In Figs. 5(a) and 5(b), we see that, when static input 

with variance σβℎ is applied to a stable system (a) near the discontinuous chaotic transition 

(in region 2 in Fig. 7), it induces chaotic activity (b); however, for the same input when 

applied to the system in the chaotic state [Fig. 5(c)], the dynamics are stabilized (d) as 

reported before.

This phenomenon for static inputs can be understood using the phase diagram with nonzero 

biases, discussed in Sec. VII. There, we see how the transition curves move when a random 

bias βh is included. Near the classic chaotic transition (αr = 0), the bias moves the curve 

toward larger gh, thus suppressing chaos. Near the discontinuous chaotic transition αr, DMFT* , 

the bias pulls the curve toward smaller values of αr, thus promoting chaos. Thus, inputs can 

have opposite effects of inducing or stabilizing chaos within the same model in different 

parameter regimes. This phenomenon could, in principle, be leveraged for shaping the 

interaction between inputs and internal dynamics.

VI. GATES PROVIDE A FLEXIBLE RESET MECHANISM

Here, we discuss how the gates provide another critical function—a mechanism to flexibly 

reset the memory trace depending on external input or the internal state. This function 

complements the memory function; a memory that cannot be erased when needed is not 

very useful. To build intuition, let us consider a linear network ḣ = −h + Jh, where the 

matrix −1 + J has a few eigenvalues that are zero, while the rest have a negative real part. 

The slow modes are good for memory function; however, that fact also makes it hard to 

forget memory traces along the slow modes. This trade-off is pointed out in Ref. [61]. 

To be functionally useful, it is critical that the memory trace can be erased flexibly in a 

context-dependent manner. The r gate allows this function naturally. Consider the same net, 

but now augmented with an r gate: ḣ = −h + Jh ⊙ σr. If the gate is turned off (σr = 0) for a 

short duration, the state h is reset to zero. One can actually be more specific: We may choose 

a Jr = − 1uT  with σr = σ[Jr(ϕh)], such that the r gate turns off whenever ϕ(h) gets aligned 

with u, thus providing an internal-context-dependent reset.
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Apart from resetting to zero, the z gate also allows the possibility of rapidly scrambling 

the state to a random value by means of the input-induced chaos. This phenomenon is 

illustrated in Fig. 6, where the network in the marginally stable state normally functions as 

a memory (retains traces for long times, as in Fig. 2), but positive inputs Iz (with Ih = Ir 

= 0) to the z gate above a threshold strength even for a short duration can induce chaos, 

thereby scrambling the state and erasing the previous memory state (Fig. 6, bottom panel). 

The mechanism for this scrambling can be understood by appealing to Eq. (8). A finite input 

Iz with nonzero mean is able to change 〈σ(z)〉 and, thus, push the critical line for marginal 

stability in one way or the other. For instance, if 〈Iz〉 > 0, 〈σ(z)〉 > 1/2, which (for αr = 

0) moves the transition to marginal stability to a smaller value of gh. This implies that a 

marginally stable state can be made chaotic in the presence of Iz with finite mean. This 

mechanism for input-induced chaos actually appears to be different from that explored in the 

previous section, which occurs across the discontinuous chaotic transition. We discuss this 

more in Sec. VII.

In summary, gating imbues the RNN with the capacity to flexibly reset memory traces, 

providing an “inductive bias” for context-dependent reset. The specific method of reset 

depends on the task or function, and this can be selected, e.g., by gradient-based training. 

This inductive bias for resetting is found to be critical for performance in ML tasks [62].

VII. PHASE DIAGRAMS FOR THE GATED NETWORK

Here, we summarize the rich dynamical phases of the gated RNN and the critical lines 

separating them. The key parameters determining the critical lines and the phase diagram are 

the activation and output-gate gains and the associated biases: (gh, βh, αr, βr). The update 

gate does not play a role in determining continuous or critical chaotic transitions. On the 

other hand, it influences the discontinuous transition to chaos for sufficiently large values 

of αz (see Sec. G3 for discussion). Furthermore, the update gate has a strong effect on the 

dynamical aspects of the states near the critical lines. There are macroscopic regions of the 

parameter space adjacent to the critical lines where the states can be made marginally stable 

in the limit of αz → ∞. The shape of this marginal stability region is influenced by βz and 

Iz.

Figure 7(a) shows the dynamical phases for the network with no biases in the (gh, αr) plane. 

When gh is below 2.0 and αr < αr, FP* , the zero fixed point is the only solution (region 1). 

As discussed in Sec. VB, on crossing the fixed-point bifurcation line [green line, Fig. 7(a)], 

there is a spontaneous proliferation of unstable fixed points in the phase space (region 2). 

This can occur only when gℎ > 2. The proliferation of fixed points is not accompanied by 

any obvious dynamical signatures. However, if 8/3 < gℎ < 2, we can increase αr further 

to cross a second discontinuous transition where a dynamical state spontaneously appears 

featuring the coexistence of chaotic activity and a stable fixed point (region 3). When gh 

is increased beyond the critical value of 2.0, the stable zero fixed point becomes unstable 

for all αr, and we get a chaotic attractor (region 4). All the critical lines are determined by 

gh and αr, and αz has no explicit role; however, for large αz there is a large region of the 
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parameter space on the chaotic side of the chaotic transition that can be made marginally 

stable [thatched region 5 in Fig. 7(a)].

A. Role of biases and static inputs

Biases have the effect of generating nontrivial fixed points and controlling stability by 

moving the edge of the spectral curve. Another key feature of biases is the suppression of 

the discontinuous bifurcation transition observed without biases. This is explained in detail 

in Appendix H. A particularly illuminating illustration of the effects of a bias can be inferred 

from the critical line (red dashed) for finite bias shown in Fig. 7. This curve, computed using 

the FP stability criterion (6) combined with the MFT equations [(C28)–(C30)], represents 

the transition between stability and chaos for finite bias with zero mean and nonzero 

variance. Equivalently, we may think of this as the critical line for a network with static 

input Ii
ℎ N 0, σℎ

2  (with Ir = Iz = 0). Along the gh axis, we can observe the well-documented 

phenomena whereby an input suppresses chaos. This corresponds to the region gh > 2 which 

lies to the left of the red dashed critical line, which is chaotic in the absence of input and 

flows to a stable fixed point in the presence of input. However, this behavior is reversed for 

gh < 2. Here, we see a significant swath of phase space which is stable in the absence of 

input but which becomes chaotic when input is present. Thus, the stability-to-chaos phase 

boundary in the presence of biases (or inputs) reveals that the output (r) gate can facilitate an 

input-induced transition to chaos.

VIII. DISCUSSION

Gating is a form of multiplicative interaction that is a central feature of the best-performing 

RNNs in machine learning, and it is also a prominent feature of biological neurons. Prior 

theoretical work on RNNs has considered only RNNs with additive interactions. Here, we 

present the first detailed study on the consequences of gating for RNNs and show that gating 

can produce dramatically richer behavior that have significant functional benefits.

The continuous-time gated RNN (gRNN) we study resembles a popular model used in 

machine learning applications, the gated recurrent unit (GRU) [see the note below Eq. 

(C27)]. Previous work [51] looks at the instantaneous Jacobian spectrum for the discrete-

time GRU using RMT methods similar to those presented in Appendix A; however, this 

work does not go beyond time-independent MFT and presents a phase diagram showing 

only boundaries across which the MFT fixed points become unstable [63]. In the present 

manuscript, we illuminate the full dynamical phase diagram for our gated RNN, uncovering 

much richer structure. Both the GRU and our gRNN have a gating function which 

dynamically scales the time constant, which in both cases leads to a marginally stable phase 

in the limit of a binary gate. However, the dynamical phase diagram presented in Fig. 7 

reveals a novel discontinuous transition to chaos. We conjecture that such a phase transition 

should also be present in the GRU. Also, Ref. [51] lacks any discussion of the influence 

of inputs or biases. The present paper includes discussion of the functional significance of 

the gates in the presence of inputs. We believe these results, combined with the refined 

dynamical phase diagram, can shed some light on the role of analogous gates in the GRU 
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and other gated ML architectures. We review the significance of the gates in more detail 

below.

A. Significance of the update gate

The update gate modulates the rate of integration. In single-neuron models, such a 

modulation is shown to make the neuron’s responses robust to time-warped inputs [14]. 

Furthermore, normative approaches, requiring time reparametrization invariance in ML 

RNNs, naturally imply the existence of a mechanism that modulates the integration rate 

[64]. We show that, for a wide range of parameters, a more sensitive (or switchlike) update 

gate leads to marginal stability. Marginally stable models of biological function have long 

been of interest with regard to their benefits for information processing (cf. Ref. [33] 

and references therein). In the gated RNN, a functional consequence of the marginally 

stable state is the use of the network as a robust integrator—such integratorlike function 

is shown to be beneficial for a variety of computational functions such as motor control 

[34–36], decision making [37], and auditory processing [53]. However, previous models 

of these integrators often require handcrafted symmetries and fine-tuning [38]. We show 

that gating allows this function without fine-tuning. Signatures of integratorlike behavior 

are also empirically observed in successfully trained gated ML RNNs on complex tasks 

[41]. We provide a theoretical basis for how gating produces these. The update gate 

facilitates accumulation of slow modes and a pinching of the spectral curve which leads 

to a suppression of unstable directions and overall slowing of the dynamics over a range 

of parameters. This is a manifestly self-organized slowing down. Other mechanisms for 

slowing down dynamics have been proposed where the slow timescales of the network 

dynamics are inherited from other slow internal processes such as synaptic filtering [65,66]; 

however, such mechanisms differ from the slowing due to gating; they do not seem to 

display the pinching and clumping, and they also do not rely on self-organized behavior.

B. Significance of the output gate

The output gate dynamically modulates the outputs of individual neurons. Similar shunting 

mechanisms are widely observed in real neurons and are crucial for performance in ML 

tasks [62]. We show that the output gate offers fine control over the dimensionality of the 

dynamics in phase space, and this ability is implicated in task performance in ML RNNs 

[42]. This gate also gives rise to a novel discontinuous chaotic transition where inputs 

can abruptly push stable systems to strongly chaotic activity; this is in contrast to the 

typically stabilizing role of inputs in additive RNNs. In this transition, there is a decoupling 

between topological and dynamical complexity. The chaotic state across this transition is 

also characterized by the coexistence of a stable fixed point with chaotic dynamics—in 

finite size systems, this manifests as long transients that scale with the system size. We 

note that there are other systems displaying either a discontinuous chaotic transition or 

the existence of fixed points overlapping with chaotic (pseudo)attractors [19] or apparent 

chaotic attractors with finite alignment with particular directions [67]; however, we are not 

aware of a transition in large RNNs where static inputs can induce strong chaos or the 

topological and dynamical complexity are decoupled across the transition. In this regard, the 

chaotic transition mediated by the output gated seems to be fundamentally different. More 
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generally, the output gate is likely to have a significant role in controlling the influence of 

external inputs on the intrinsic dynamics.

We also show how the gates complement the memory function of the update gate by 

providing an important, context- and input-dependent reset mechanism. The ability to erase 

a memory trace flexibly is critical for function [62]. Gates also provide a mechanism 

to avoid the accuracy-flexibility trade-off noted for purely additive networks—where the 

stability of a memory comes at the cost of the ease with which it is rewritten [61].

We summarize the rich behavior of the gated RNN via phase diagrams indicating the critical 

surfaces and regions of marginal stability. From a practical perspective, the phase diagram 

is useful in light of the observation that it is often easier to train RNNs initialized in the 

chaotic regime but close to the critical points. This is often referred to as the “edge of 

chaos” hypothesis [68–70]. Thus, the phase diagrams provide ML practitioners with a map 

for principled parameter initialization—one of the most critical choices deciding training 

success.
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APPENDIX A: DETAILS OF RANDOM MATRIX THEORY FOR SPECTRUM OF 

THE JACOBIAN

In this section, we provide details of the calculation of the bounding curve for the Jacobian 

spectrum for both fixed points and time-varying states. Our approach to the problem utilizes 

the method of Hermitian reduction [25,26] to deal with non-Hermitian random matrices.The 

analysis here resembles that in Ref. [51], which also considers Jacobians that are highly 

structured random matrices arising from discrete-time gated RNNs.

The Jacobian  is a block-structured matrix constructed from the random coupling matrices 

Jh,z,r and diagonal matrices of the state variables. In the limit of large N, we expect the 

spectrum to be self-averaging—i.e., the distribution of eigenvalues for a random instance of 

the network approaches the ensemble-averaged distribution. We can, thus, gain insight about 

typical dynamical behavior by studying the ensemble- (or disorder-) averaged spectrum of 

the Jacobian. Our starting point is the disorder-averaged spectral density μ(λ) defined as

μ(λ) = 1
3N E ∑

i = 1

3N
δ λ − λi , (A1)
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where the λi are the eigenvalues of  for a given realization of Jh,z,r and the expectation 

is taken over the distribution of real Ginibre random matrices from which Jh,z,r are 

drawn. Using an alternate representation for the Dirac delta function in the complex plane 

δ(λ) = π−1∂λλ−1 , we can write the average spectral density as

μ(λ) = 1
π

∂
∂λ E 1

3N Tr λ13N − D −1 , (A2)

where 13N is the 3N-dimensional identity matrix.  is in general non-Hermitian, so the 

support of the spectrum is not limited to the real line, and the standard procedure of 

studying the Green’s function G(λ, λ) = (3N)−1TrE λ13N − D −1  by analytic continuation 

is not applicable, since it is nonholomorphic on the support. Instead, we use the method of 

Hermitization [25,26] to analyze the resolvent for an expanded 6N × 6N Hermitian matrix 

H:

G(η, λ, λ) = E η16N − H −1 , (A3)

H =
0 λ − D

λ − DT 0
, (A4)

and the Green’s function for the original problem is obtained by considering the lower-left 

block of :

G(λ, λ) = lim
η i0+

1
3N TrG21(η, λ, λ) . (A5)

To make this problem tractable, we invoke an ansatz called the local chaos hypothesis 

[57,71], which posits that, for large random networks in steady state, the state variables are 

statistically independent of the random coupling matrices Jz,h,r (also see Ref. [72]). This 

implies that the Jacobian [Eq. (4)] has an explicit linear dependence only on Jh,z,r, and the 

state variables are governed by their steady-state distribution from the disorder-averaged 

DMFT (Appendix C). These assumptions make the random matrix problem tractable, and 

we can evaluate the Green’s function by using the self-consistent Born approximation, 

which is exact as N → ∞. We detail this procedure below.

The Jacobian itself can be decomposed into structured (A, L, R) and random parts ( ):

D =
− σz D 0

0 −τz−11 0
0 0 −τr−11

A

+
σz 0 0
0 τz−11 0
0 0 τr−11

L

×
Jℎ 0 0
0 Jz 0
0 0 Jr

J

ϕ′σr 0 ϕσr′
ϕ′ 0 0
ϕ′ 0 0

R

.
(A6)
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At this point, we must make a crucial assumption: The structured matrices A, L, and 

R are independent of the random matrices appearing . This implies that the dynamics 

is self-averaging and that the state variables reach a steady-state distribution determined 

by the DMFT and insensitive to the particular quenched disorder . This self-averaging 

assumption leads to theoretical predictions which are in very good agreement with 

simulations of large networks, as presented in Fig. 1.

This independence assumption renders  a linear function of the random matrix , whose 

entries are Gaussian random variables. The next steps are to develop an asymptotic series in 

the random components of H, compute the resulting moments, and perform a resummation 

of the series. This is conveniently accomplished by the self-consistent Born approximation 

(SCBA). The output of the SCBA is a self-consistently determined self-energy functional 

Σ[ ] which succinctly encapsulates the resummation of moments. With this, the Dyson 

equation for  is given by

G−1 = G0
−1 − Σ[G], (A7)

where the matrices on the right are defined in terms of 3N × 3N blocks:

G0
−1 =

η1 λ − A
λ − AT η1

, (A8)

Σ[G] =
LQ RG22RT L 0

0 RTQ LTG11L R
, (A9)

and Q is a superoperator which acts on its argument as follows:

Q[M] =

1
N TrM11 0 0

0 1
N TrM22 0

0 0 1
N TrM33

. (A10)

Here, we express the self-energy using the 3N × 3N subblocks of the Green’s function :

G =
G11 G12
G21 G22

. (A11)

At this point, we have presented all of the necessary ingredients for computing the Green’s 

function and, thus, determining the spectral properties of the Jacobian. These are the Dyson 

equation (A7), along with the free Green’s function (A8) and the self-energy (A9). Most 

of what is left is complicated linear algebra. However, in the interest of completeness, we 
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proceed to unpack these equations and give a detailed derivation of the main equation of 

interest, the bounding curve of the spectral density.

To proceed further, it is useful to define the following transformed Green’s functions, which 

can be written in terms of N × N subblocks:

G11 ≡ LTG11L =
G11 G12 G13

G21 G22 G23

G31 G32 G33

, (A12)

G22 ≡ RG22RT =
G44 G45 G46

G54 G55 G56

G64 G65 G66

. (A13)

Denote also the mean trace of these subblocks as

gij = 1
N Tr Gij . (A14)

Then the self-energy matrix in Eq. (A9) is block diagonal, i.e., Σ[ ] = bdiag(Σ11, Σ22), with

Σ11 =
σz2 g44 0 0

0 τz−2g55 0
0 0 τr−2g66

, (A15)

Σ22 =
ϕ′σr

2g11 + ϕ′ 2 g22 + g33 0 ϕ′σr ϕσr′ g11
0 0 0

ϕ′σr ϕσr′ g11 0 ϕσr′ 2g11

.  (A16)

With the self-energy in this form, we are able to solve the Dyson equation for the full 

Green’s function  by direct matrix inversion:

G =
η − Σ11 λ − A

λ − AT η − Σ22

−1
, (A17)

which can be carried out easily by symbolic manipulation software. The rhs of Eq. (A17) 

is a function of gii, whereas the lhs is a function of the Green’s function before the 

transformations (A12) and (A13). Thus, to get a set of equations we can solve, we apply 

these same transformations to both sides of Eq. (A17) after solving the Dyson equation. The 

final step is to take the limit η → 0, recovering the problem we originally wished to solve.
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The result of these manipulations is a set of six equations for the mean traces of the 

transformed Green’s function defined in Eq. (A14). In order to write these down, we 

introduce some additional notation. The self-consistent equations are of the form

gii = Γi
Γ , (A18)

where we denote 〈M〉 ≡ N−1TrM for shorthand and i runs from 1 to 6. Denote the state-

variable-dependent diagonal matrices as

p = ϕ′ , q = ϕσr′ , r = ϕ′σr , (A19)

and, because they appear frequently in the resulting equations, define

X = g11 λτr + 1 2r2 + g22 + g33 p2Z, (A20)

Y = D2g55 + λτz + 1 2 σz2 g44, (A21)

Z = λτr + 1 2 − g11g66q2 . (A22)

The denominator in Eq. (A18) is then given by

Γ = λτz + 1 2 λ + σz
2Z − XY , (A23)

and the numerators Γi are given by

Γ1 = σz2 λτz + 1 2X, (A24)

Γ2 = D2X, (A25)

Γ3 = g11 λτz + 1 2 λ + σz
2q2 − g11 g22 + g33 p2q2Y , (A26)

Γ4 = g66 λτz + 1 2 λ + σz
2q2 + λτr + 1 2r2 − g66 g22 + g66 p2q2 Y , (A27)

Γ5 = Γ6 = p2Y Z . (A28)

The numerators and denominator are all diagonal matrices with real entries, which is why 

we use the simple notation of a ratio when referring to matrix inversion.

Solving these equations gives us the gii as implicit functions of λ. They are, in general, 

complicated and resist exact solution. However, the situation simplifies considerably when 
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we are looking for the spectral curve. In this case, we are looking for all λ ∈ ℂ that satisfy 

the self-consistent equations with gii 0.

We must take this limit carefully, since the ratio of these functions can remain constant. For 

this reason, it is necessary to define

x2 = g22/g11, x3 = g33/g11 . (A29)

We may do the same for g44, g55, and g66, but it turns out that x2 and x3 are sufficient to 

compute the spectral curve. Next, divide by g11 and send all gii 0, keeping the ratios fixed. 

Applying this to the equation for g11 results in

1 = lim
gii 0

1
g11

Γ1
Γ = γ1 + γ2 x2 + x3 . (A30)

Similarly, for g22 and g33, we get

x2 = γ3 + γ4 x2 + x3 , (A31)

x3 = γ5, (A32)

where the coefficients γi, which are functions of λ, are given by

γ1 =
σz2r2

λ + σz
2 , γ2 =

p2σz2

λ + σz
2 , γ5 = q2

λτr + 1 2,

γ3 = D2r2

λτz + 1 2 λ + σz
2 , γ4 = D2p2

λτz + 1 2 λ + σz
2 .

The linear system of equations (A30)–(A32) is consistent iff

1 − γ1 1 − γ4 = γ2 γ3 + γ5 . (A33)

In other words, γi must satisfy Eq. (A33) when gii 0. This expression depends on λ and 

implicitly defines a curve in ℂ, which is the boundary of the support of the spectral density.

Plugging in the explicit expression for γi, we get the implicit equation for the spectral curve 

as all λ ∈ ℂ that satisfy
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1 − r2σz2

λ + σz
2 1 − D2p2

λτz + 1 2 λ + σz
2

= σz2p2

λ + σz
2

D2r2

λτz + 1 2 λ + σz
2 + q2

λτr + 1 2 .
(A34)

For large systems, we can replace the empirical traces of the state variable by their averages 

given by the DMFT variances. Then, the equation for the curve for a general steady state is 

given by

σr2 +
ϕ2σr′2

1 + τrλ 2
ϕ′2σz2

λ + σz
2 + 1

1 + τzλ 2
D2ϕ′2

λ + σz
2 = 1. (A35)

FIG. 8. 
Jacobian spectrum at a time-varying state. Red dots are the Jacobian eigenvalues for the full 

network in a (time-varying) steady state, and the spectral curve of the Jacobian is calculated 

using moments from (i) the full state vectors (blue curve) or using the variances from 

the fixed-point MFT (green). Surprisingly, the agreement is reasonably good. For network 

simulations, N = 1000, gh = 2.5, αr = 1, αz = 15, and all biases are zero.
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For fixed points, we have D = 0, which makes γ3 = γ4 = 0. The equation for the spectral 

curve simplifies to that which is quoted in the main text [Eq. (5)]:

1 = r2σz2

λ + σz
2 + q2

λτr + 1 2
σz2p2

λ + σz
2 . (A36)

1. Jacobian spectrum for the case αr = 0

In the case when αr = 0, it is possible to express the Green’s function [Eq. (A5)] in a simpler 

form. Recall that

G(λ, λ) = lim
η i0+

1
3N trG21(η, λ, λ) . (A37)

Let Y = D2 + σr2σz2 λτz + 1 2. Then, the Green’s function is given by

G(λ, λ) = 1
3

λτz + 1 2 λ + σz
λτz + 1 2 λ + σz

2 − ξ(λ, λ)p2Y
(A38)

+ 1
3

λ + τz−1 λ + σz
2 − ξ(λ, λ)p2σz2

λ + τz−1 2 λ + σz
2 − ξ(λ, λ)p2Y

(A39)

+ 1
3

1
λ + τr−1 , (A40)

where ξ(λ, λ) is defined implicitly to satisfy the equation

1 = p2Y
λτz + 1 2 λ + σz

2 − ξ(λ, λ)p2Y
. (A41)

The function ξ(λ, λ) acts as a sort of order parameter for the spectral density, indicating the 

transition on the complex plane between zero and finite density μ. Outside the spectral 

support, λ ∈ Σc, this order parameter vanishes, ξ = 0, and the Green’s function is 

holomorphic:

G(λ, λ) = 1
3

1
λ + σz

+ 1
λ + τz−1 + 1

λ + τr−1 , (A42)

which, of course, indicates that the density is zero since μ(λ) = ∂λG(λ, λ). Inside the support 

λ ∈ Σ, the order parameter ξ ≠ 0, and the Green’s function consequently picks up 

nonanalytic contributions, proportional to λ. Since the Green’s function is continuous on 

the complex plane, it must be continuous across the boundary of the spectral support. This 
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must then occur precisely when the holomorphic solution meets the nonanalytic solution, at 

ξ = 0. This is the condition used to find the boundary curve above.

APPENDIX B: SPECTRAL CLUMPING AND PINCHING IN THE LIMIT αz → ∞

In this section, we provide details on the accumulation of eigenvalues near zero and the 

pinching of the leading spectral curve (for certain values of gh) as the update gate becomes 

switchlike (αz → ∞). To focus on the key aspects of these phenomena, we consider the 

case when the reset gate is off and there are no biases (αr = 0 and βr,h,z = 0). Moreover, 

we consider a piecewise linear approximation—sometimes called “hard” tanh—to the tanh 

function given by

ϕlin(x) =
1 x > 1/gℎ,
gℎx |x | ≤ 1/gℎ,
−1 x < − 1/gℎ .

(B1)

This approximation does not qualitatively change the nature of the clumping.

In the limit αz → ∞, the update gate σz becomes binary with a distribution given by

P σz = x = fzδ(x − 1) + 1 − fz δ(x), (B2)

where fz = 〈σz〉 is the fraction of update gates that are open (i.e., equal to one). Using this, 

along with the assumption that D ≈ 0—which is valid in this regime—we can simplify the 

expression for the Green’s function [Eqs. (A38)–(A42)] to yield

G(λ, λ) = 1 − fz
λ + fz 1 − fℎ

1
λ + 1 + 1

λ + τz−1 + (1 + λ)
gℎ

2σ βr
2 I |λ | < gℎ

2σ βr 2 , (B3)

where fh is the fraction of hard tanh activations that are not saturated. In the limit of small τz 

and βr = 0, we get the expression for the density given in the text:

μ(λ) = 1 − fz δ(λ) + fz 1 − fℎ δ(λ + 1) + 4
πgℎ

2 I |λ | ≤ gℎ
2/4 . (B4)

Thus, we see an extensive number of eigenvalues at zero.

Now, let us study the regime where αz is large but not infinite. We would like to get 

the scaling behavior of the leading edge of the spectrum and the density of eigenvalues 

contained in a radius δ around the origin. We make an ansatz for the spectral edge close 

to zero λ e−cαz Δℎ, where c is a positive constant. With this ansatz, the equation for the 

spectral curve reads

∫ Dz σz Δz ⋅ z 2

λ0e−cαz Δℎ + σz Δz
2 2 = σr βr

−2

ϕ′ Δℎ ⋅ ℎ 2 . (B5)
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In the limit of large αz and βr = 0, this implies

erfc c
2 ≈ 4

ϕ′ Δℎ ⋅ ℎ 2 . (B6)

If this has a positive solution for c, then the scaling of the spectral edge as λ e−cαz Δℎ holds. 

Moreover, whenever there is a positive solution for c, we also expect pinching of the spectral 

curve, and in the limit αz → ∞ we have marginal stability.

Under the same approximation, we can approximate the eigenvalue density in a radius δ 
around zero as

P[ |λ(D) | < δ] = 1
2πi∮C

dzG(z), (B7)

where we choose the contour along z = e−cαz Δℎ + iθ for θ ∈ [0, 2π) and δ = e−cαz Δℎ. In the 

limit of large αz (thus, δ ≪ 1), we get the scaling form described in the main text:

P[ |λ(D) | < δ] ≈ 1
2erfc − log(δ)

αz 2Δℎ
. (B8)

APPENDIX C: DETAILS OF THE DYNAMICAL MEAN-FIELD THEORY

The DMFT is a powerful analytical framework used to study the dynamics of disordered 

systems, and it traces its origins to the study of dynamical aspects of spin glasses [73,74] 

and has been later applied to the study of random neural networks [9,15,21,75]. In our 

case, the DMFT reduces the description of the full 3N-dimensional (deterministic) ordinary 

differential equations (ODEs) describing (h, z, r) to a set of three coupled stochastic 

differential equations for scalar variables (h, z, r).

Here, we provide a detailed, self-contained description of the dynamical mean-field theory 

for the gated RNN using the Martin–Siggia–Rose–De Dominicis–Janssen formalism. The 

starting point is a generating functional—akin to the generating function of a random 

variable—which takes an expectation over the paths generated by the dynamics. The 

generating functional is defined as

ZJ[b, b] = E exp i ∑
j = 1

N ∫ bj(t)Txj(t)dt , (C1)

where xj(t) ≡ [hj(t), zj(t), rj(t)] is the trajectory and bj(t) = b j
ℎ, b j

z, b j
r  is the argument of 

the generating functional. We also include external fields bj = bj
ℎ, bj

z, bj
r , which are used 

to calculate the response functions. The measure in the expectation is a path integral over 

the dynamics. The generating functional is then used to calculate correlation and response 

functions using the appropriate (variational) derivatives. For instance, the two-point function 

for the h field is given by
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ℎi(t)ℎi t′ = δ2

δb i
ℎ t′ δb i

ℎ(t)
ZJ[b, b]

b = 0
. (C2)

Up until this point, things are quite general and do not rely on the specific form of the 

dynamics. However, for large random networks, we expect certain quantities such as the 

population averaged correlation function Ch ≡ N−1 Σi〈hi(t)hi(t′)〉 to be self-averaging and, 

thus, not vary much across realizations. Thus, we can study the disorder averaged (over 

), the generating functional Z = ZJ J, and approximate Z with its value evaluated at 

the saddle point of the action. This approximation gives us the single-site DMFT picture of 

dynamics described in Eqs. (C19) and (C20).

To see how this all works, we start with the equations of motion (in vector form)

τzż = − z + Jzϕz(ℎ), (C3)

τrṙ = − r + Jrϕr(ℎ), (C4)

ℎ̇ = σz(z) ⊙ −ℎ + Jℎ σr(r) ⊙ ϕℎ(ℎ) , (C5)

where ⊙ stands for elementwise multiplication.

To write down the MSRDJ generating functional, let us discretize the dynamics (in the Itô 

convention). Note that in this convention the Jacobian is unity.

ℎi(t + 1) − ℎi(t) = σz, i(t) −ℎi(t)+∑
j

Jijℎσr, j(t)ϕj(t) + biℎ(t) δt,

τz zi(t + 1) − zi(t) = −zi(t) + ∑
i

Jij
z ϕ(t) + bi

z(t) δt,

τr ri(t + 1) − ri(t) = −ri(t) + ∑
j

Jijr ϕ(t) + bir(t) δt,

where we introduce external fields in the dynamics bi
ℎ(t) , bi

z(t) , and bi
r(t) . The 

generating functional is given by

ZJ[b, b] = E exp i ∑
j = 1

N
∑

t
bj(t)Txj(t)δt , (C6)
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where b = b j
ℎ, b j

z, b j
r , b = bj

ℎ, bj
z, bj

r , and xj(t) ≡ [hj(t), zj(t), rj(t)]; also, the expectation is 

over the dynamics generated by the network. Writing this out explicitly, with δ functions 

enforcing the dynamics, we get the following integral for the generating functional:

ZJ[b, b] = ∫ ∏
i, t
∏
k, t′

∏
m, t″

dℎi(t)dzk t′ drm t″

⋅ exp i ∑
i, t

b i
ℎ(t)ℎi(t) + b i

z(t)zi(t) + b i
r(t)ri(t) δt

× δ ℎi(t + 1) − ℎi(t) + ℎi(t)σz, i(t) − σz, i(t) ∑
j

Jij
ℎσr, j(t)ϕj(t) − bi

ℎ(t) δt

× δ zk t′ + 1 − zk t′ + 1
τz

zk t′ + ∑
l

Jkl
z ϕl t′ + bk

z t′ δt

× δ rm t″ + 1 − rm t″ + 1
τr

rm t″ + ∑
n

Jmn
r ϕn t″ + bm

r t′ δt .

(C7)

Now, let us introduce the Fourier representation for the δ function; this introduces an 

auxiliary field variable, which as we see allows us to calculate the response function in the 

MSRDJ formalism. The generating functional can then be expressed as

ZJ[b, b] = ∫ ∏
i, t
∏
k, t′

∏
m, t″

dℎi(t)
dℎi(t)

2π dzk t′ dzk t′
2π drm t″ drm t″

2π

× exp −i∑
i, t

ℎi(t) ℎi(t + 1) − ℎi(t) − fℎ ℎi, zi, ri δt − bi
ℎ(t)δt + i∑

i, t
b i

ℎ(t)ℎi(t)δt

× exp −i∑
k, t′

zk(t) zk t′ + 1 − zk t′ − fz ℎk, zk
δt
τz

− bk
z t′ δt

τz

+ i∑
k, t′

bk
z t′ zk t′ δt × exp −i ∑

m, t″
rm t″

rm t″ + 1 − rm t″ − fr ℎm, rm
δt
τr

− bm
r t″ δt

τr
+ i ∑

m, t″
bm

r t″ rm t″ δt ,

(C8)

where the functions fh,z,r summarize the gated RNN dynamics

fℎ ℎi, zi, ri = σz, i(t) −ℎi(t) + ∑
j

Jijℎσr, j(t)ϕj(t) ,

fz ℎk, zk = − zk t′ + ∑
l

Jkl
z ϕl t′ ,

fr ℎm, rm = − rm t″ + ∑Jmnr ϕn t″ .
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Let us now take the continuum limit δt → 0 and formally define the measures hi = limδt→0 

∏t dhi(t). We can then write the generating functional as a path integral:

ZJ[b, b] = ∫ ∏
i

DℎiDℎiDziDziDriDr i exp − S[x, x

]+i∫ dt b(t)Tx(t) + b(t)T x(t) ,
(C9)

where b = b i
ℎ, b i

z, b j
r , x = (hi, zi, ri), x = ℎi, zi/τz, r i/τr , and the action S which gives 

weights to the paths is given by

S[x, x] = i∑
i
∫ dtℎi(t) ∂tℎi(t) − fℎ ℎi, zi, ri + i∑

k
∫ dtzk(t

) ∂tzk(t) − fz ℎk, zk
τz

+ i∑
k
∫ dtrm(t) ∂trm(t) − fr ℎm, rm

τr
.

(C10)

The functional is properly normalized, so Z [0, b] = l. We can calculate correlation 

functions and response functions by taking appropriate variational derivatives of the 

generating functional Z, but first we address the role of the random couplings.

1. Disorder averaging

We are interested in the typical behavior of ensembles of the networks, so we work with the 

disorder-averaged generating functional Z; Z  is properly normalized, so we are allowed to 

do this averaging on Z . Averaging over Jij
ℎ  involves the following integral:

∫ dJijℎ
N
2π exp −

N Jijℎ
2

2 + i ⋅ Jijℎ∫ dtℎi(t)σz, i(t)ϕj(t)σr, j(t) ,

which evaluates to

exp −(1/2N) ⋅ ∫ dtℎi(t)σz, i(t)ϕj(t)σr, j(t)
2

,

and similarly for Jz and Jr we get terms

exp −(1/2N) ⋅ ∫ dtzk(t)ϕl(t)
2
τz−2 ,

exp −(1/2N) ⋅ ∫ dtrm(t)ϕn(t)
2
τr−2 .

The disorder-averaged generating functional is then given by
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Z[b, b] = ∫ ∏
i

DℎiDℎiDziDziDriDr i exp

−S[x, x] + i∫ dt b(t)Tx(t) + b(t)T x(t) ,
(C11)

where the disorder-averaged action S is given by

S[x, x] = i∑
i
∫ dtℎi(t) ∂tℎi(t) + ℎi(t)σz, i(t)

+ 1
2N ∑

i, j
∫ dtℎi(t)σz, i(t)ϕj(t)σr, j(t)

2
+ i∑

k
∫ dtzk(t) ∂tzk(t) + zk(t)

τz

+ 1
2N ∑

k, l
∫ dtzk(t)

τz
⋅ ϕl(t)

2
+ i∑

m
∫ dtrm(t) ∂trm(t) + rm(t)

τr

+ 1
2N ∑

m, n
∫ dtrm(t)

τr
⋅ ϕn(t)

2
.

(C12)

With some foresight, we see the action is extensive in the system size, and we can try to 

reduce it to a single-site description. However, the issue now is that we have nonlocal terms 

(e.g., involving both i and j), and we can introduce the following auxiliary fields to decouple 

these nonlocal terms:

Cϕσr t, t′ ≔ 1
N ∑

i
ϕi(t)ϕi t′ σr, i(t)σr, i t′ ,

Cϕ t, t′ ≔ 1
N ∑

k
ϕk(t)ϕk t′ . (C13)

To make the C’s free fields that we integrate over, we enforce these relations using the 

Fourier representation of δ functions with additional auxiliary fields:

δ NCϕσr t, t′ − ∑
i

ϕi(t)ϕi t′ σr, i(t)σr, i t′ = ∫ N
π dCϕσr t, t′ exp

− i
2Cϕσr t, t′ N ⋅ Cϕσr t, t′ − ∑

i
ϕi(t)ϕi t′ σr, i(t)σr, i t′ ,

δ NCϕ t, t′ − ∑
k

ϕk(t)ϕk t′ = ∫ N
π dCϕ t, t′ exp − i

2Cϕ t, t′ N ⋅ Cϕ t, t′ − ∑
k

ϕk(t)ϕk t′ .

This allows us to make the following transformations to decouple the nonlocal terms in the 

action S:
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1
2N ∑

i, j
ℎi(t)σz, i(t)ϕj(t)σr, j(t) 2 1

2 ∑
i
∫ dtdt′ℎi(t)σz, i(t)Cϕσr t, t′ ℎi t′ σz, i t′ ,

1
2N ∑

k, l
∫ dt

zk(t)
τz

⋅ ϕl(t)
2 1

2 ∑
k
∫ dtdt′

zk(t)
τz

Cϕ t, t′
zk t′

τz
,

1
2N ∑

m, n
∫ dt

rm(t)
τr

⋅ ϕn(t)
2 1

2 ∑
m
∫ dtdt′

rm(t)
τr

Cϕ t, t′
rm t′

τr
.

We see clearly that the Cϕσr and Cϕ auxiliary fields which represent the (population-

averaged) ϕσr − ϕσr and ϕ − ϕ correlation functions decouple the sites by summarizing 

all the information present in the rest of the network in terms of two-point functions; two 

different sites interact only by means of the correlation functions. The disorder-averaged 

generating functional can now be written as

Z[b, b] = ∫ DCDC exp( − N ⋅ ℒ[C, C; b, b]),

ℒ = i
2∫ dtdt′ C t, t′ TC t, t′ − W [C, C; b, b],

exp(N ⋅ W ) = ∫ ∏
i

DℎiDℎiDziDziDriDr i

× exp i∫ dt b(t)Th(t) + b(t)Th(t) − Sd[h, h; C, C ] ,

(C14)

where C = (Ch, Cz, Cr) and Ĉ = (Ĉh, Ĉz, Ĉr). The sitewise decoupled action Sd contains only 

terms involving a single site (and the C fields). So, for a given value of Ĉ and C, the different 

sites are decoupled and driven by the sitewise action

Sd[h, h; C, C ] = i∫ dt h(t)T ∂th(t) + hτ(t)Th(t) + 1
2

∫ dtdt′hτ(t)TDC t, t′ hτ t′ − i
2∫ dtdt′Sx(t)TDC t, t′ Sx t′ ,

(C15)

where

hτ(t) = ℎiσz, i, zi/τz, ri/τr ,

h(t) = ℎi, zi, r i ,

Sx = ϕiσr, i, ϕi, ϕi ,
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DC t, t′ = Diag Cϕσr t, t′ , Cϕ t, t′ , Cϕ t, t′ ,

ℂC t, t′ = Diag Cϕσr t, t′ , Cϕ t, t′ , Cϕ t, t′ .

2. Saddle-point approximation for N → ∞

So far, we do not make any use of the fact that we are considering large networks. However, 

noting that N appears in the exponent in the expression for the disorder-averaged generating 

functional, we can approximate it using a saddle-point approximation:

Z[b, b] ≃ eN ⋅ ℒ0 b, b; C0, C0 ∫ DQDQe−N ⋅ ℒ2[Q, Q, b, b] .

We approximate the action ℒ in Eq. (C14) by its saddle-point value plus a Hessian term: ℒ 
≃ ℒ0 + ℒ2 and the Q and Q̂ fields represent Gaussian fluctuations about the saddle-point 

values C0 and Ĉ0, respectively. At the saddle-point the action is stationary with respect to 

variations; thus, the saddle-point values of C fields satisfy

Cϕσr
0 t, t′ = 1

N ∑
i = 1

N
ϕi(t)σr, i(t)ϕi t′ σr, i t′ 0,

Cϕσr
0 t, t′ = 1

N ∑
i = 1

N
ℎi(t)σz, i(t)ℎi t′ σz, i t′ 0

=
δ2 σz, i(t)σz, i t′ 0

δbi(t)δbi t′ = 0,

Cϕ
0 t, t′ = 1

N ∑
k = 1

N
ϕk(t)ϕk t′ 0,

Cϕ
0 t, t′ = 0.

(C16)

In evaluating the saddle-point correlation function in the second line, we use the fact that 

equal-time response functions in the Itô convention are zero [29]. This is perhaps the first 

significant point of departure from previous studies of disordered neural networks and 

forces us to confront the multiplicative nature of the z gate. Here, 〈⋯〉0 denotes averages 

with respect to paths generated by the saddle-point action; thus, these equations are a self-

consistency constraint. With the correlation fields fixed at their saddle-point values, if we 

neglect the contribution of the fluctuations (i.e., ignore ℒ2), then the generating functional is 

given by a product of identical sitewise generating functionals:

Z[b, b] = Z0[b, b]N, (C17)

where the sitewise functionals are given by
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Z0[b, b] = ∫ DℎDℎDzDzDrDr

× e i∫ dt b(t)T h(t) + b(t)Th(t) − Sd h, h; C0, 0 ,
(C18)

where C0 = Cϕσ
0 , Cϕ

0 .

The sitewise decoupled action is now quadratic with the correlation functions taking on 

their saddle-point values. This corresponds to an action for each site containing three 

scalar variables driven by Gaussian processes. This can be seen explicitly by using a 

Hubbard-Stratonovich transform which makes the action linear at the cost of introducing 

three auxiliary Gaussian fields ηh, ηz, and ηr with correlation functions Cϕσr
0 t, t′ , Cϕ

0 t, t′ , 

and Cϕ
0 t, t′ , respectively. With this transformation, the action for each site corresponds to 

stochastic dynamics for three scalar variables given by

ℎ̇(t) = − σz(z) ⋅ ℎ(t) + σz(z) ⋅ ηℎ(t), (C19)

τzż(t) = − z(t) + ηz(t), (C20)

τrṙ(t) = − r(t) + ηr(t), (C21)

where the Gaussian noise processes ηh, ηz, and ηr have correlation functions that must be 

determined self-consistently:

ηℎ(t) ⋅ ηℎ t′ = ϕ(t)σr(t) ⋅ ϕ t′ σr t′ ,

ηz(t) ⋅ ηz t′ = ϕ(t) ⋅ ϕ t′ ,

ηr(t) ⋅ ηr t′ = ϕ(t) ⋅ ϕ t′ .

The intuitive picture of the saddle-point approximation is as follows: The sites of the 

full network become decoupled, and they are each driven by a Gaussian processes whose 

correlation functions summarize the activity of the rest of the network “felt” by each site. It 

is possible to argue about the final result heuristically, but one does not have access to the 

systematic corrections that a field theory formulation affords.

We comment here on the unique difficulty that gating presents to an analysis of the DMFT. 

While r(t) and z(t) are both described by Gaussian processes in the DMFT, the multiplicative 

σz(z) interaction in Eq. (C19) spoils the Gaussianity of h(t). Note that r(t) is always Gaussian 

and uncorrelated to h(t). In order to try solving for the correlation functions, we need to 
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make a factorization assumption, justified numerically in Fig. 10. The story simplifies at a 

fixed point, where h = ηh (since σz > 0), and is, thus, Gaussian and independent of r.

In order to solve the DMFT equations, we use a numerical method described in Ref. [76]. 

Specifically, we generate noise paths ηh,z,r starting with an initial guess for the correlation 

functions and then iteratively update the correlation functions using the mean-field equations 

till convergence. The classical method of solving the DMFT by mapping the DMFT 

equations to a second-order ODE describing the motion of a particle in a potential cannot 

be used in the presence of multiplicative gates. In Fig. 9, we see that the solution to the 

mean-field equations agrees well with the true population-averaged correlation function; Fig. 

9 also shows the scale of fluctuations around the mean-field solutions (Fig. 9, thin black 

lines).

The correlation functions in the DMFT picture such as Ch(t, t′) = 〈h(t)h(t′)〉 are the 

order parameters and correspond to the population-averaged correlation functions in the full 

network. These turn out to useful in our analysis of the RNN dynamics in some analyses. 

Qualitative changes in the correlation functions correspond to transitions between dynamical 

regimes of the RNN.

In general, the non-Gaussian nature of h makes it impossible to get equations governing 

the correlation functions. However, when αz is not too large, Eqs. (C19) and (C20) can 

be extended to get equations of motions for the correlation functions Ch, Cz, and Cr, 

which proves useful later on. This requires a separation assumption between the h and σz 

correlators, which seems reasonable for moderate αz (see Fig. 10). “Squaring” Eqs. (C19) 

and (C20), we get

− ∂τ
2 + Cσz(τ) Cℎ(τ) = Cσz(τ)Cσr(τ)Cϕ(τ), (C22)

−τz2∂τ
2 + 1 Cz(τ) = Cϕ(τ), (C23)

−τr2∂τ
2 + 1 Cr(τ) = Cϕ(τ), (C24)

where we use the shorthand σz(t) ≡ σz[z(t)], ϕ(t) ≡ ϕ[h(t)], and denote the two-time 

correlation functions as

Cx t, t′ = x(t)x t′ , (C25)

where x ∈ {h, z, r, σz, σr, ϕ} and the expectation here is over the random Gaussian fields in 

Eqs. (C19)–(C21). We assume that the network reaches steady state, so that the correlation 

functions are only a function of the time difference τ = t − t′. The role of the z gate as an 

adaptive time constant is evident in Eq. (C22).
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FIG. 9. 
Validating the DMFT. We show the comparison between the population-averaged correlation 

functions Cϕ(τ) ≡ 〈ϕ(t)ϕ(t + τ)〉 obtained from the full network simulations of a single 

instantiation in steady state (purple line) and from solving the DMFT equations (red line) 

for three distinct parameter values. The lag τ is relative to τh (taken to be unity). Thin 

black lines are the time-averaged correlation functions for individual neurons sampled from 

the network, to show the scale of fluctuations around the population-averaged correlation 

functions. N = 5000 for all the panels.
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FIG. 10. 
The validity of the approximation Cℎσz = CℎCσz for two values of αz. The correlation 

functions are calculated numerically in a network with n = 1000, gh = 3.5, and αr = 0.

For time-independent solutions, i.e., fixed points, Eqs. (C22)–(C24) simplify to read

Δz ≡ z2 = ∫ Dxϕ Δℎx 2 = Δr, (C26)

Δℎ ≡ ℎ2 = ∫ DxDyϕ Δℎx 2σr Δry
2, (C27)

where we use Δ instead of C to indicate fixed-point variances and Dx is the standard 

Gaussian measure. It is interesting to note that these mean-field equations can be mapped to 

those obtained in Ref. [51] for the discrete-time GRU.

We also make use of the MFT with static random inputs. For completeness, we include 

the resulting equations here. With Ii
ℎ, z, r N 0, σℎ, z, r

2 , the MFT time-independent solution 

satisfies

Δz = ∫ Dxϕ Δℎx 2 + σz2, (C28)

Δr = ∫ Dxϕ Δℎx 2 + σr2, (C29)

Δℎ = ∫ DxDyϕ Δℎx 2σr Δry
2 + σℎ

2 . (C30)
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APPENDIX D: DETAILS OF THE NUMERICS FOR THE LYAPUNOV 

SPECTRUM

The evolution of perturbations δx(t) along a trajectory follow the tangent-space dynamics 

governed by the Jacobian

∂tδx(t) = D(t)δx(t) . (D1)

So, after a time T, the initial perturbation δx(0) is given by

δx(t) = U(t, 0)δx(0), U(t, 0) = T e∫0
tdsD(s) , (D2)

where [⋯] is the time-ordering operator applied to the contents of the bracket. When the 

infinitesimal perturbations grow (shrink) exponentially, the rate of this exponential growth 

(decay) is dictated by the maximal Lyapunov exponent defined as [54]

λmax ≔ lim
T ∞

1
T lim
∥ δx(0) ∥ 0

ln∥ δx(T) ∥
∥ δx(0) ∥ , (D3)

For ergodic systems, this limit is independent of almost all initial conditions, as guaranteed 

by the Oseledets multiplicative ergodic theorem [54]. Positive values of λmax imply that 

the nearby trajectories diverge exponentially fast, and the system is chaotic. More generally, 

the set of all Lyapunov exponents—the Lyapunov spectrum—yields the rates at which 

perturbations along different directions shrink or diverge and, thus, provides a fuller 

characterization of asymptotic behavior. The first k-ordered Lyapunov exponents are given 

by the growth rates of k linearly independent perturbations. These can be obtained as the 

logarithms of the eigenvalues of the Oseledets matrix, defined as [54]

M(t) = lim
t ∞

U(t, 0)TU(t, 0) 1/2t . (D4)

However, this expression cannot be directly used to calculate the Lyapunov spectra in 

practice, since M(t) rapidly becomes ill conditioned. We instead employ a method suggested 

by Ref. [77] (also cf. Ref. [78] for Lyapunov spectra of RNNs). We start with k orthogonal 

vectors Q0 = [q1, …, qk] and evolve them using the tangent-space dynamics [Eq. (D1)] for a 

short time interval t0. Therefore, the new set of vectors is given by

Q = U t0, 0 Q0 . (D5)

We now decompose Q̂ = Q1R1 using a QR decomposition, into an orthogonal matrix Q1 

and a upper-triangular matrix R1 with positive diagonal elements, which give the rate of 

shrinkage or expansion of the volume element along the different directions. We iterate this 

procedure for a long time, t0 × Nl, and the first k-ordered Lyapunov exponents are given by
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λi = lim
Nl ∞

1
Nlt0 ∑

j = 1

Nl
lnRii

j , i ∈ 1,…, k . (D6)

APPENDIX E: DETAILS OF THE DMFT PREDICTION FOR λmax

The starting point of the method to calculate the DMFT prediction for λmax is two replicas 

of the system x1(t) and x2(t) with the same coupling matrices Jh,z,r and the same parameters. 

If the two systems are started with initial conditions which are close, then the rate of 

convergence or divergence of the trajectories reveals the maximal Lyapunov exponent. To 

this end, let us define d(t, s) ≔ N−1∑i xi1(t) − xi2(s) 2
 and study the growth rate of d(t, t). 

In the large N limit, we expect population averages like C12(t, s) ≔ N−1∑ixi1(t)xi2(s) to be 

self-averaging (like in the DMFT for a single system) [79], and, thus, we can write

d(t, s) = C11(t, t) + C22(s, s) − C12(t, s) − C21(t, s) . (E1)

For trajectories that start nearby, the asymptotic growth rate of d(t) is the maximal Lyapunov 

exponent. In order to calculate this using the DMFT, we need a way to calculate C12—the 

correlation between replicas—for a typical instantiation of systems in the large N limit. As 

suggested by Ref. [21], this can be achieved by considering a joint generating functional for 

the replicated system:

ZJ b1, b2, b1, b2 = E exp i ∑
μ = 1

2
∑
j = 1

N ∫ bj
μ(t)Txj

μ(t)dt . (E2)

We then proceed to take the disorder average of this generating functional—in much the 

same way as a single system—and this introduces correlations between the state vectors of 

the two replicas. A saddle-point approximation as in the single system case (cf. Appendix 

C) yields a system of coupled stochastic differential equations (SDEs) (one for each replica), 

similar to Eq. (C20), but now the noise processes in the two replicas are coupled, so that 

terms like ηℎ
1(t)ηℎ

2 t′  need to be considered. As before, the SDEs imply the equations of 

motion for the correlation functions

− ∂τ
2 + Cσz

μν(τ) Cℎ
μν(τ) = Cσz

μν(τ)Cϕ
μν(τ)Cσr

μν(τ), (E3)

−τz2∂τ
2 + 1 Cz

μν(τ) = Cϕ
μν(τ), (E4)

−τr2∂τ
2 + 1 Cr(τ) = Cϕ

μν(τ), (E5)

where μ, v ∈ {1, 2} are the replica indices. Note that the single-replica solution clearly is a 

solution to this system, reflecting the fact that marginal statistics of each replica is the same 
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as before. When the replicas are started with initial conditions that are ϵ-close, we expect the 

inter-replica correlation function to diverge from the single-replica steady-state solution, so 

we expand C12 to linear order as Cℎ, z, r
12 (t, s) ≈ Cℎ, z, r(t − s) + ϵχℎ, z, r(t, s). From Eq. (E1), we 

see that d(t, t) ϵχ(t, t), and, thus, the growth rate of χ yields the required Lyapunov exponent. 

To this end, we make an ansatz χℎ, z, r = eκTχ(τ), where 2T = t + s, 2τ = t − s, and κ 
is the DMFT prediction of the maximum Lyapunov exponent that needs to be solved for. 

Substituting this back into Eq. (E3), we get a generalized eigenvalue problem for κ as stated 

in the text [Eqs. (10) and (11)].

APPENDIX F: CALCULATION OF MAXIMAL LYAPUNOV EXPONENT FROM 

RMT

The DMFT prediction for how gates shape λmax (via the correlation functions) is somewhat 

involved; thus, we provide an alternate expression for the maximal Lyapunov exponent 

λmax, derived using RMT which relates it to the relaxation time of the dynamics. The 

starting point to get λmax is the Oseledets multiplicative ergodic theorem, which guarantees 

that [80]

λmax = lim
t ∞

1
2t log∥ χ(t) ∥2

N (F1)

= lim
t ∞

1
2t log 1

N Tr χ(t)χ(t)T , (F2)

where χ(t) = Te∫0
tdt′D t′  and  is the Jacobian. For the vanilla RNN, the Jacobian is given 

by

D = − 1 + J ϕ′(t) . (F3)

We expect the maximal Lyapunov exponent to be independent of the random network 

realization and, thus, equal to its value after disorder averaging. Furthermore, to make any 

progress, we use a short-time approximation for χ(t) ≈ e∫0
tdt′D t′ . Defining the diagonal 

matrix R(t) = ∫t [ϕ′(t′)]dt′, these assumptions give

1
N Tr χ(t)χ(t)T ≈ e−2t 1

N TreJR(t)eR(t)JT
(F4)

= e−2t ∑
n = 0

∞ 1
(n!)2

1
N TrR(t)2 n

, (F5)

where the second line in Eq. (F5) follows after disorder averaging over J and keeping only 

terms to leading order in N. Next, we may apply the DMFT to write
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1
N TrR(t)2 = ∫ t

dt′dt″ 1
N ∑

i = 1

N
ϕi′ t″ ϕi′ t′ (F6)

≈ ∫ dt′dt″Cϕ′ t′, t″ . (F7)

In steady state, the correlation function depends only on the difference of the two times, and, 

thus, we can write

∫ dt′dt″Cϕ′ t′, t″ ≈ ∫
0

2t du
2 ∫0

t
dτCϕ′(τ) ≡ t2τR, (F8)

where we define the relaxation time for the Cϕ′ correlation function

τR ≡ 1
t∫0

t
dτCϕ′(τ) . (F9)

Substituting Eq. (F8) in Eq. (F4), we get

1
N Tr χ(t)χ(t)T = e−2tI0 2t τR , (F10)

which for long times behaves like exp 2 τR − 1 t . By inserting this into Eq. (F1), we obtain 

a bound for the maximal Lyapunov exponent for the vanilla RNN:

λmax ≥ τR − 1, (F11)

 where τR ≡ 1
t∫0

t
dτCϕ′(τ) . (F12)

This formula relates the asymptotic Lyapunov exponent to relaxation time of a local 

correlation function in steady state. It is interesting to note that the bound also follows 

by applying the variational theorem to the potential energy obtained from the Schrodinger 

equation that arises in computing the Lyapunov exponent using DMFT (e.g., see Refs. 

[15,32]). Specifically, if one uses the potential obtained in these works V(τ) = 1 − Cϕ′(τ), 

and assumes a uniform “ground state wave function,” the variational theorem implies that 

the true ground state energy E0 is upper bounded E0 ≤ limT ∞(1/T )∫−T /2
T /2 V (τ)dτ ≡ 1 − τR, 

which consequently implies the bound (F11).

Now we present the derivation for the mean-squared singular value of the susceptibility 

matrix for the gated RNN with αz = 0 and βz = −∞. In this limit, σz = 1, and the 

instantaneous Jacobian becomes the 2N × 2N matrix
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Dt = − 12N + Jr 0
0 Jℎ

0 Pt
Qt Rt

≡ − 12N + JSt, (F13)

Qt = ϕ(h) ⊙ σr′(r) , Pt = ϕ′(h) , (F14)

Rt = ϕ′(h) ⊙ σr(r) , (F15)

where h = h(t) and r = r(t) are time dependent.

Let us define the quantity of interest

σχ2 = 1
2N Tr χ(t)χT(t) (F16)

= e−2t 1
2N TreJSteSt

TJT
, (F17)

where we additionally define Ŝt = ∫t dt′St and the integration is performed elementwise. 

Expanding the exponentiated matrices and computing moments directly, one finds that the 

leading order in N moments must have an equal number of Ĵ and ĴT. Thus, we must 

evaluate

cn = 1
2N Tr JSt

n St
TJT n

. (F18)

The ordering of the matrices is important in this expression. Since all of the Ĵ appear to 

the left of ĴT, the leading-order contributions to the moment come from Wick contractions 

that are “noncrossing”—in the language of diagrams, the moment is given by a “rainbow” 

diagram. Consequently, we may evaluate cn by induction. First, the induction step. Define 

the expected value of the matrix moment

cn = JSt
n St

TJT n
(F19)

= J St JSt
n − 1 St

TJT n − 1
St

T JT
(F20)

=
an1 0
0 bn1 + O N−1 . (F21)

We wish to determine an and bn. Next, define

Krishnamurthy et al. Page 41

Phys Rev X. Author manuscript; available in PMC 2023 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gP = 1
N Tr∫ t

dt′dt″Pt′Pt″, (F22)

gQ = 1
N Tr∫ t

dt′dt″Qt′Qt″, (F23)

gR = 1
N Tr∫ t

dt′dt″Rt′Rt″ . (F24)

Now we can directly determine the induction step at the level of matrix moments by Wick 

contraction of the rainbow diagram:

cn = JSt JSt
n − 1 St

TJT n − 1
St

TJT
(F25)

= JStcn − 1St
TJT + O N−1 (F26)

=
bn − 1gP1 0

0 an − 1gQ + bn − 1gR 1
+ O N−1 . (F27)

This implies the following recursion for the diagonal elements of ĉn:

an = gPbn − 1, bn = gRbn − 1 + gQan − 1 . (F28)

The initial condition is given by observing that c0 = 1, which implies a0 = b0 = 1. The 

solution to this recursion relation can be written in terms of a transfer matrix

an
bn

=
0 gP
gO gR

n 1
1 , (F29)

which implies the moment cn = 1
2 an + bn  is given by

cn = 1
2 1 1

0 gP
gQ gR

n 1
1 . (F30)

To evaluate this, we use the fact that the eigenvalues of the transfer matrix are

v± = 1
2 gR ± gR

2 + 4gPgQ , (F31)

which are real valued. The eigenvectors are
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v± = − v∓
gQ

, 1 . (F32)

Then, defining l = (1, 1), the moment can be written

cn = 1
2lT v+nv+v+T + v−nv−v−T l (F33)

= 1
2 1 − v−

gQ

2
v+n + 1

2 1 − v+
gQ

2
v−n . (F34)

The final expression for the mean-squared singular value is then

σχ2 = e−2t ∑
n = 0

∞ cn
(n!)2 . (F35)

After resumming this infinite series, we wind up with an expression in terms of the modified 

Bessel function:

σχ2 = 1
2e−2t 1 − v−

gQ

2
I0 2 v+ + 1 − v+

gQ

2
I0 2 v− . (F36)

In the steady state, we approximate these expressions by assuming the correlation functions 

are time-translation invariant. Thus, we may write, for instance,

gR = ∫ dtdt′RtRt′ ≈ t21
t∫ dτCR(τ) = t2τR, (F37)

and similarly for gQ and gP. Then, the eigenvalues of the transfer matrix become

v± = t21
2 τR ± τR

2 + 4τPτQ . (F38)

At late times, using the asymptotic behavior of the modified Bessel function, the moment 

becomes

σχ2 exp −2t + 2 v+ , (F39)

which gives the Lyapunov exponent

λL ≥
τR + τR

2 + 4τPτQ
2

1/2
− 1, (F40)
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where the relaxation times τA, τr, and τq are defined as, respectively,

τR = lim
t ∞

1
t∫0

t
dτCϕ′(τ)Cσr(τ), (F41)

τA = lim
t ∞

1
t∫0

t
dτCϕ′(τ), (F42)

τQ = lim
t ∞

1
t∫0

t
dτCϕ(τ)Cσr′(τ) . (F43)

APPENDIX G: DETAILS OF THE DISCONTINUOUS CHAOTIC TRANSITION

In this section, we provide the details for the calculations involved in the discontinuous 

chaotic transition.

1. Spontaneous emergence of fixed-points

For gh < 2.0 and small αr, the zero fixed point is the globally stable state for the dynamics 

and the only solution to the fixed-point equations [Eq. (C26)] for Δh. However, as we 

increase αr for a fixed gh, two additional nonzero solutions to Δh spontaneously appear at a 

critical value αFP* gℎ  as shown in Fig. 4(a). Numerical solutions to the fixed-point equations 

reveal the form of the bifurcation curve αr, FP* gℎ  and the associated value of Δℎ* gℎ . We see 

that αr, FP* gℎ  increases rapidly with decreasing gh, dividing the parameter space into regions 

with either one or three solutions for Δh. The corresponding Δℎ* gℎ  vanishes at two boundary 

values of gh—one at 2.0 and another, gc, below 1.5, where αr* ∞. This naturally leads to 

the question of whether the fixed-point bifurcation exists for all values of gh below 2.0.

To answer this, we perturbatively solve the fixed-point equations in two asymptotic regimes: 

(i) gh → 2− and (ii) gℎ gc+. Details of the perturbative treatment are in Appendix I 2. For 

gh = 2 − ϵ, we see that the perturbative problem undergoes a bifurcation from one solution 

(Δh = 0) to three when αr crosses the bifurcation threshold αr*(2.0) = 8, and this is the left 

limit of the bifurcation curve in Fig. 4(b). The larger nonzero solution for the variance at the 

bifurcation point scales as

Δℎ* ≈ αr2 − 8 ⋅ ξ0 + ξ1ϵ for αr αr, FP* (2) = 8, (G1)

where ξ0 and ξ0 are positive constants (see Appendix I 2).

At the other extreme, to determine the smallest value of gh for which a bifurcation is 

possible, we note from Fig. 4(b) that in this limit αr → ∞, and, thus, we can look for 

solutions to Δh in the limit: Δh ≪ 1 and αr → ∞ and αr Δℎ ≫ 1. In this limit, there is a 
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bifurcation in the perturbative solution when gℎ > gℎ* = 2, and, close to the critical point, the 

fixed-point solution is given by (see Appendix I 2)

Δℎ* 2+ gℎ
2 − 2
2gℎ

4  for gℎ 2+ . (G2)

Thus, in the region gℎ ∈ ( 2, 2), there exist nonzero solutions to the fixed-point equations 

once αr is above a critical value αr* gℎ . These solutions correspond to unstable fixed points 

appearing in the phase space.

2. Delayed dynamical transition shows a decoupling between topological 

and dynamical complexity

The picture from the fixed-point transition above is that. when gh is in the interval ( 2, 2), 

there is a proliferation of unstable fixed points in the phase space provided αr > αr, FP* gℎ . 

However, it turns out that the spontaneous appearance of these unstable fixed points is 

not accompanied by any asymptotic dynamical signatures—as measured by the Lyapunov 

exponents (see Fig. 4) or by the transient times (see Fig. 11). It is only when αr is increased 

further beyond a second critical value αr, DMFT* gℎ  that we see the appearance of chaotic and 

long-lived transients. This is significant in regard to a result by Wainrib and Touboul [45], 

where they show that the transition to chaotic dynamics (dynamical complexity) in random 

RNNs is tightly linked to the proliferation of critical points (topological complexity), and, 

in their case, the exponential rate of growth of critical points (a topological property) is the 

same as the maximal Lyapunov exponent (a dynamical property).

FIG. 11. 
Transient times at the bifurcation transition. Transient times (τT, relative to τh) as a 

function of gh, αr, and system size N. Dashed plot lines correspond to situations where 
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αr < αr, DMFT* gℎ . Dashed vertical lines are critical values of αr or gh. (a) τT vs N for gh = 

1.775 and (b) τT vs gh for N = 500; the dashed line indicates gh such that αr, DMFT* gℎ = 40. 

(c) τT vs αr for gh = 1.775; the dashed vertical line is αr, DMFT* (1.775). (d) τT vs gh for αr 

= 30; the dashed line is gh such that αr, DMFT* gℎ = 30. (e) τT vs N for αr = 30; dashed plot 

lines correspond to situations where 30 > αr, DMFT∗ gℎ . (f) τT vs αr for N = 500; the dashed 

vertical line is αr, DMFT∗ 1.85 . Transient times are averaged over 2000 instances of random 

networks.

Let us characterize the second dynamical transition curve given by αr, DMFT* gℎ  [Fig. 4(c), 

red curve]. For ease of discussion, we turn off the update gate (αz = 0) and introduce a 

functional Fψ for a 2D Gaussian average of a given function ψ(x):

Fψ Cℎ(0), Cℎ(τ) = E ψ z1 ψ z2 , (G3)

 where 
z1
z2

N 0, Cℎ , Cℎ =
Cℎ(0) Cℎ(τ)
Cℎ(τ) Cℎ(0) . (G4)

The DMFT equations for the correlation functions then become

1
4Cℎ(τ) − ∂τ2Cℎ(τ) = 1

4Fϕ Cℎ(0), Cℎ(τ) Fσr Cr(0), Cr(τ) ,

Cr(τ) − τr2∂τ
2Cr(τ) = Fϕ Cϕ(0), Cϕ(τ) . (G5)

We further make an approximation that τr ≪ 1, which, in turn, implies Cr(τ) ≈ Cϕ(τ). This 

approximation turns out to hold even for moderately large τr. With these approximations, we 

can integrate the equations for Ch(τ) to arrive at an equation for the variance Cℎ
0 ≡ Cℎ(0). We 

do this by multiplying by ∂τCh(τ) and integrating from τ to ∞, and we get

1
2Ċℎ(τ)2 = 1

4
Cℎ

2

2 − 1
4∫0

Cℎ
0
dCℎFϕ Cℎ, Cℎ

0 Fσr Cϕ, Cϕ
0 . (G6)

Using the boundary condition that Ċh(0) = 0, we get the equation for the variance:

1
8Cℎ(0)2 − 1

4∫0

Cℎ
0
dCℎFϕ Cℎ, Cℎ

0 Fσr Cϕ, Cϕ
0 = 0. (G7)

Solving this equation gives the DMFT prediction for the variance for any gh and αr. Beyond 

the critical value of αr, two nonzero solutions for Cℎ
0 spontaneously emerge. In order to use 

Eq. (G7) to find a prediction for the DMFT bifurcation curve αr, DMFT* gℎ , we need to use 

the additional fact that at the bifurcation point the two solutions coincide, and there is only 
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one nonzero solution. To proceed, we can view the lhs of Eq. (G7), as a function of αr, gh, 

and Cℎ
0 :ℱ gℎ, αr, Cℎ

0 . Then, the equation for the bifurcation curve is obtained by solving the 

following two equations for Cℎ
0, *  and αr*:

ℱ gℎ, αr*, Cℎ
0, * = 0, (G8)

∂ℱ gℎ, αr, Cℎ
0

∂Cℎ
0 αr*, Cℎ

0, * = 0. (G9)

To get the condition for the dynamical bifurcation transition, we need to differentiate the lhs 

of Eq. (G7) ℱ gℎ, αr, Cℎ
0  with respect to Cℎ

0 and set it to 0. This involves terms like

∂Fψ Cℎ
0, Cℎ

0

∂Cℎ
0 ;

∂Fψ Cℎ
0, 0

∂Cℎ
0 . (G10)

We give a brief outline of calculating the first term. It is easier to work in the Fourier 

domain:

Fψ Cℎ
0, Cℎ

= E ∫ dk
2π∫ dk′

2π ψ(k)e−kz1ψ k′ e−k′z2

= ∫ dk
2π∫ dk′

2π ψ(k)ψ k′ exp − Cℎ
0

2 k2 + k′2 − Cℎ(τ)kk′ .

(G11)

This immediately gives us

∂Fψ Cℎ
0, Cℎ

0

∂Cℎ
0 = ∫ Dxψ cℎ

0x ψ″ cℎ
0x +∫ Dxψ′ cℎ

0x
2
,

∂Fψ Cℎ
0, 0

∂Cℎ
0 = ∫ Dxψ cℎ

0x ∫ Dxψ″ cℎ
0x . (G12)

Using this fact, we can calculate the derivative of ℱ gℎ, αr, Cℎ
0  as a straightforward (but 

long) sum of Gaussian integrals. We then numerically solve Eqs. (G8) and (G9) to get the 

bifurcation curve shown in Fig. 4(c). Figure 4(d) shows the corresponding variance at the 

bifurcation point Cℎ
0, *  (red curves). We note two salient points: (i) The DMFT bifurcation 

curve is always above the fixed-point bifurcation curve [black, in Fig. 4(a)], and (ii) the 

lower critical value of gh which permits a dynamical transition [dashed green curve in Figs. 

4(a) and 4(b)] is smaller than the corresponding fixed-point critical value of 2.
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We now calculate the lower critical value of gh and provide an analytical description of 

the asymptotic behavior near the lower and higher critical values of gh. From the red curve 

in Fig. 4(c), we know that, as gh tends toward the lower critical value, αr, DMFT* ∞ and 

Cℎ
0 0, we can approximate σr as a step function in this limit, and Fσr is approximated as

Fσr Cϕ
0 , Cϕ ≈ 1

4 + 1
2πtan−1 x

1 − x2 , (G13)

where x ≔ Cℎ(τ)
Cℎ(0) ≈ Cϕ(τ)

Cϕ(0) .  (G14)

The DMFT equation then reads

4ẍ = x − gℎ
2x 1

4 + 1
2πtan−1 x

1 − x2 + O Cℎ(0)2 .

Integrating this equation, we get

2ẋ2 = x2
2 1 −

gℎ
2

4 +
gℎ
2

8π 1 − 2x2 sin−1(x) − x 1 − x2 ,

which has O(Ch(0)2) corrections. From the boundary condition Ċh(0) = 0, we know that as x 
→ 1 then ẋ → 0. We thus find that these boundary conditions are consistent only to leading 

order in Ch(0) when gh is equal to its critical value:

gℎ* = 8
3, (G15)

which indicates that Ch(0) must vanish as gℎ 8/3+.

In the other limit when gh → 2−, we see that αr* remains finite and Cℎ
0, * 0. We assume 

that, for gh = 2 − ϵ, Cℎ
0 has a power-series expansion

Cℎ
0 = c0 + c1ϵ + c2ϵ2 + ⋯ . (G16)

We also expand Fϕ and Fσr to O[Ch(0)2]:

Fϕ ≈ gℎ
2Cℎ(τ) − 2gℎ

4Cℎ
0 ⋅ Cℎ(τ) + 5gℎ

6 Cℎ
0 2 ⋅ Cℎ(τ) (G17)

and look for values of αr which permit a nonzero value for c0 in the leading-order solutions 

to the DMFT. We find that the critical value of αr from the perturbative solution is given by
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αr, DMFT* (2) = 12 . (G18)

The DMFT prediction for the dynamical bifurcation agrees well with the full network 

simulations. In Fig. 4(e), we see that the maximum Lyapunov exponent experiences a 

discontinuous transition from a negative value (network activity decays to fixed point) to a 

positive value (activity is chaotic) at the critical value of αr predicted by the DMFT (dashed 

vertical lines).

3. Influence of update gate on the discontinuous transition

Here, we comment briefly on the possible influence of the z gate on the discontinuous 

dynamical phase transition given by the curve αr, DMFT* . Assuming Eq. (C22) is valid 

(discussed in more detail toward the end of Appendix C), we may rewrite the DMFT 

equation for the two-point correlation functions as

1
2Ċℎ(τ)2 = ∫

0

Cℎ(τ)
Fσz Cϕ

0 , Cϕ Q Cℎ, Cℎ
0 , (G19)

where

Q Cℎ, Cℎ
0 = Cℎ − Fϕ Cℎ, Cℎ

0 Fσr Cϕ, Cϕ
0 . (G20)

Noting that a time-dependent solution corresponds to a nonzero solution for Ch(0) and 

satisfies the boundary condition Ċh(0) = 0 then requires

ℱαz ≡ ∫
0

Cℎ
0
dCℎFσz Cϕ, Cϕ

0 Q Cℎ, Cℎ
0 = 0, (G21)

where we define a new “potential” function which is related to that defined above by

ℱαz αz = 0 = ℱ = 1
4∫0

Cℎ
0
dCℎQ Cℎ, Cℎ

0 . (G22)

We leave the arguments (gh, αr, Cℎ
0) implicit, for ease of presentation. We proceed to bound 

the new potential by establishing bounds on Fσz. To be explicit, we have

Fσz = σz(τ)σz(0) = σz(τ)σz(0) c + σz
2, (G23)

which we express as the sum of a connected component (indicated by a subscript c) and 

a disconnected component. We can consider two limiting behaviors. When the correlation 

time tends to zero, the connected component vanishes and (at zero bias βz = 0)
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Fσz ≈ σz
2 = 1

4 . (G24)

Increasing the correlation time can serve only to increase the two-point function, since σ ≥ 0. 

In the extreme limit of very long correlation time, we have that

Fσz ≈ σz2(0) ≤ 1
2 . (G25)

The inequality is saturated at αz = ∞, when σz becomes a step function of its argument. 

Therefore, the two-point correlation function of the update gate is bounded above and below:

1
4 ≤ Fσz ≤ 1

2, (G26)

and this bound is uniform in the sense that it holds for all values of the argument 

0 ≤ Cℎ ≤ Cℎ
0 < ∞. Consequently, we are able to bound the potential

1
4ℱ ≤ ℱαz ≤ 1

2ℱ . (G27)

It follows immediately that the derivative is similarly bounded. Consequently, the zeros of 

ℱαz and ∂ℱαz/ ∂Cℎ
0 coincide with the zeros of ℱ and ∂ℱ/ ∂Cℎ

0, respectively. As a result, the 

discontinuous transition, determined by Eqs. (G8) and (G9), remain unchanged for values of 

αz for which Eq. (C22) is valid. Thus, for moderately large αz [approximately 10, where Eq. 

(C22) is valid], the critical line for the discontinuous transition remains unchanged.

APPENDIX H: THE ROLE OF BIASES

We thus far describe the salient dynamical aspects for the gated RNN in the absence of 

biases. Here, we describe the role of the biases βh (bias of the activation ϕ) and βr (bias 

of the output gate σr). We first note that, when βh = 0, zero is always a fixed point of the 

dynamics, and the zero fixed point is stable provided

−1 + ϕ′(0)σr(0) < 0, (H1)

where ϕ(x) = tanh(ghx + βh). This gives the familiar gh < 2 condition when βr = 0 [81]. 

Thus, in this case, there is an interplay between gh and βr in determining the leading 

edge of the Jacobian around the zero fixed point and, thus, its stability. In the limit βr → 
−∞, the leading edge retreats to −τr−1. When βh > 0, zero cannot be a fixed point of the 

dynamics. Therefore, βh facilitates the appearance of nonzero fixed points, and both βr and 

βh determine the stability of these nonzero fixed points.
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FIG. 12. 
The role of biases. (a) FP solutions as a function of increasing βh; different shades of 

green correspond to different values of βr. Dashed lines correspond to FP solutions that are 

unstable (time-varying states). (b) The leading edge of the spectrum corresponding to the FP 

solutions calculated in (a); the FP solution is unstable when the leading edge is positive. (c) 

Similar to (a) but for βr; different shades of blue correspond to different values of βh. (d) 

Similar to (b) but for βr. (e) FP solutions near critical gc where the zero FP becomes unstable 

(circles) compared with the perturbative solution predicted by Eq. (H2) (solid lines). (f) FP 

solution as a function of βr and βh. The orange line indicates the stability line—i.e., regions 

on top of the orange line correspond to unstable or time-varying states.

To gain some insight into the role of βh in generating fixed points, we treat the mean-field 

FP equations [Eq. (C26)] perturbatively around the operating point gc where the zero fixed 

point becomes unstable [Eq. (H1)]. For small βh and ϵ = gh − gc, we can express the solution 

Δh as a power series in ϵ, and we see that to leading order the fixed-point variance behaves 

as (details in Appendix I 1)

Δℎ ≈
βℎ + ϵ

gc2 2 − gc2a1
gc2a1 < 2,

gc2a1 − 2 f1 + ϵ ⋅ f2 gc2a1 > 2,
(H2)

 where a1 = αr2

16 ϕ0
(1) βr/2 2 + ϕ0 βr/2 ϕ0

(2) βr/2 , (H3)

where ϕ0 ≡ tanh and f2(αr, βr) and f2(αr, βr) are constant functions with respect to ϵ. 

Therefore, we see that the bias βh gives rise to nonzero fixed points near the critical point 

which scale linearly with the bias. In Fig. 12(e), we show this linear scaling of the solution 

for the case when βh = ϵ, and we see that the prediction (lines) matches the true solution 

(circles) over a reasonably wide range.

More generally, away from the critical gc, an increasing βh gives rise to fixed-point solutions 

with increasing variance, and this can arise continuously from zero, or it can arise by 
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stabilizing an unstable, time-varying state depending on the value of βr. In Fig. 12(a), we 

see how the Δh behaves for increasing βh for different βr, and we can see the stabilizing 

effect of βh on unstable solutions by looking at its effect on the leading spectral edge [Fig. 

12(b)]. In Fig. 12(c), we see that an increasing βr also gives rise to increasing Δh. However, 

in this case, it has a destabilizing effect by shifting the leading spectral edge to the right. 

In particular, when βh = 0, increasing βr destabilizes the zero fixed point and give rise to 

a time-varying solution. We note that, when βh = 0, varying βr cannot yield stable nonzero 

FPs. The combined effect of βh and βr can been seen in Fig. 12(f), where the nonzero 

solutions to the left of the orange line indicate unstable (time-varying) solutions. We choose 

the parameters to illustrate an interesting aspect of the biases: In some cases, increasing βh 

can have a nonmonotonic effect on the stability, wherein the solution becomes unstable with 

increasing βh and is then eventually stabilized for sufficiently large βh.

FIG. 13. 
How the biases alter the transition between stability and chaos. (a) Critical lines indicating 

boundaries for stability (solid lines) or marginal stability (dashed lines) for different values 

of βh. (b) Similar to (a) but for different values of βr. (c),(d) How the boundaries of stability 

(solid lines) or marginal stability (dashed lines) change as we vary αr (c) or βr (d).
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1. Effect of biases on the phase boundaries

In Figs. 13(a) and 13(b), we look at how the critical line for the chaotic transition, in the αr − 

gh plane, changes as we vary βh (a) or βr (b). Positive values of βr (“open” output gate) tend 

to make the transition line less dependent on αr [Fig. 13(b)], and negative values of βr have 

a stabilizing effect by requiring larger values of gh and αr to transition to chaos. As we see 

above, higher values of βh have a stabilizing effect, requiring higher gh and αr to make the 

(nonzero) stable fixed point unstable. In both cases, the critical lines for marginal stability 

[Figs. 13(a) and 13(b), dashed lines] are also influenced in a similar way. In Figs. 13(c) and 

13(d), we see how the stability-to-chaos transition is affected by αr (c) and βr (d). Consistent 

with the discussion above, larger αr and βr have a destabilizing effect, requiring a larger βh 

to make the system stable.

APPENDIX I: DETAILS OF THE PERTURBATIVE SOLUTIONS TO THE MEAN-

FIELD EQUATIONS

1. Perturbative solutions for the fixed-point variance Δh with biases

In this section, we derive the perturbative solutions for the fixed-point variance Δh with 

finite biases, near the critical point where the zero fixed point becomes unstable. Recall that 

fixed-point variances are obtained by solving

Δz ≡ z2 = ∫ Dxϕ Δℎx 2 = Δr, (I1)

Δℎ ≡ ℎ2 = ∫ DxDyϕ Δℎx 2σr Δry
2 . (I2)

The expansion we seek is perturbative in Δh. So, expanding the gating and activating 

functions about their biases under the assumption Δr ≈ gℎ
2Δℎ, we have a series expansion to 

O Δℎ
2 :

σr Δrx 2
x

= a0 + a1gℎ
2Δℎ + a2gℎ

4Δℎ
2,

a0 = 1
4 1 + ϕ0 βr/2 2, (I3)

a1 = αr2

16 ϕ0
(1) βr/2 2 + ϕ0 βr/2 ϕ0

(2) βr/2 + ϕ0
(2) βr/2 , (I4)
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a2 = αr4

256 12ϕ0
(2) βr/2 2 + 4ϕ0 βr/2 ϕ0

(4) βr/2 + 16ϕ0
(1) βr/2 ϕ0

(3) βr/2

+ ϕ0
(4) βr/2 ,

(I5)

where we use the following identities involving the derivatives of tanh:

ϕ0(x) = tanh(x), (I6)

ϕ0
(1)(x) = 1 − ϕ0(x)2, (I7)

ϕ0
(2)(x) = − 2ϕ0(x) 1 − ϕ0(x)2 , (I8)

ϕ0
(3)(x) = 2 1 − ϕ0(x)2 3ϕ0(x)2 − 1 , (I9)

ϕ0
(4)(x) = − 8ϕ0(x) 1 − ϕ0(x)2 3ϕ0(x)2 − 2 . (I10)

This gives us to O Δℎ
2

Δℎ ≈ c0 + c1Δℎ + c2Δℎ
2 σr Δrx

2
x
, (I11)

c0 = ϕ0 βℎ
2, (I12)

c1 = gℎ
2 ϕ0

(1) βℎ
2 + ϕ0

(2) βℎ ϕ0 βℎ , (I13)

c2 = gℎ
4 1

4ϕ0 βℎ ϕ0
(4) βℎ + ϕ0

(1) βℎ ϕ0
(3) βℎ + 3

4ϕ0
(2) βℎ

2 , (I14)

and, therefore,

Δℎ ≈ c0 + c1Δℎ + c2Δℎ
2 a0 + a1gℎ

2Δℎ + a2gℎ
4Δℎ

2 . (I15)

To proceed further, we study the solutions to this equation for small deviations for a critical 

value of gh. Which critical value should we use? Recall that the zero fixed point becomes 

unstable when

−1 + ϕ′(0)σr(0) = 0. (I16)

Therefore, we expand around this operating point and our small parameter ϵ = gh − gc, 

where gc = σr(0)−1. We make an ansatz that we can express Δh as a power series in ϵ:
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Δℎ = ϵη d0 + d1ϵ + d2ϵ2 , (I17)

where η is the exponent for the prefactor scaling and needs to be determined self-

consistently. To get the scaling relations for Δh, we need to expand the coefficients in 

the Taylor series for Δh in terms of ϵ. We note that c0 = tanh(βh)2, and, therefore, these 

approximations make sense only for small βh. How small should βh be relative to ϵ? We 

make the following ansatz:

βℎ = β0ϵδ, (I18)

and, thus, if δ > 1/2, then c0 β0
2ϵ2δ increases slower than ϵ.

We now express the coefficients for small βh:

c0 ≈ β0
2ϵ2δ, (I19)

c1 ≈ gℎ
2 1 − 2βℎ

2 , (I20)

c2 ≈ gℎ
4 −2 + 17βℎ

2 . (I21)

After solving Eqs. (I15)–(I19) self-consistently in terms of the expansion parameter ϵ, we 

get the following perturbative solution for δ ≤ 1:

Δℎ ≈
2β0ϵδ

gc2 2 − gc2a1
gc2a1 < 2,

gc2a1 − 2 f1 + ϵ ⋅ f2 gc2a1 > 2,
(I22)

where a1 = αr2

16 ϕ0
(1) βr/2 2 + ϕ0 βr/2 ϕ0

(2) βr/2 .  (I23)

f2(αr, βr) and f2(αr, βr) are constant functions (with respect to ϵ). Therefore, we see a linear 

scaling with the bias βh.

2. Perturbative solutions for the fixed-point variance Δh in the bifurcation 

region with no biases

The perturbative treatment of the fixed-point solutions in this case closely follows that 

described above. For gh = 2 − ϵ, we can express Δh as a power series in ϵ (Δh = c0 + c1ϵ + 

c2ϵ2) and look for a condition that allows for a nonzero c0 corresponding to the bifurcation 

point. Since we expect, Δh to be small in this regime, we can expand Δr as
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Δr ≈ gℎ
2Δℎ − 2gℎ

4Δℎ
2 + 17

3 gℎ
6Δℎ

3 + O Δℎ
4 , (I24)

and, similarly, we can also approximate

σr Δrx
2

x
≈ 1

4 1 + αr2

4 Δr − αr4

8 Δr
2 . (I25)

Now, equating coefficient of powers of ϵ, we get that either c0 = 0 or

c0 = 3 αr2 − 8
2 −136 + 24αr2 + 3αr4

, (I26)

which is a valid solution when αr ≥ 8. This is the bifurcation curve limit near gh = 2−.

In the other limit, αr* ∞ and Δℎ* 0. We can work in the regime where αr Δℎ ≫ 1 to see 

what values of gh admit a bifurcation in the perturbative solutions. The equation [to O Δℎ
2 ] is 

given by

Δℎ ≈ 1
2 gℎ

2Δℎ − 2gℎ
4Δℎ

2 . (I27)

Thus, we get a positive solution for Δh, when gℎ > 2, and, to the leading order, the solution 

scales as

Δℎ* 2+ gℎ
2 − 2
2gℎ

4  for gℎ 2+ . (I28)

3. Ch(τ) near critical point

Here, we study the asymptotic behavior of Ch(τ) near the critical point gh = 2.0 for small αz. 

For simplicity, we set the biases to be zero. In this limit, we can assume that Ch(τ) and Cϕ(τ) 

are small. Let us begin by approximating Cσz(τ).

We get, up to O Cz
3 ,

Cσz(τ) = g0 + g1Cz(τ) + g3Cz(τ)3, (I29)

 where g0 = 1
4,  (I30)

g1 = αz2

16 − αz4

32Cz(0) + 5αz6

256Cz(0)2, (I31)
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g3 = αz6

384 − αz8

192Cz(0) . (I32)

This can be obtained, for instance, by expanding σz[z(t)] and taking the Gaussian averages 

over the argument z(t) in the steady state. The relation between Cϕ(τ) and Cz(τ), in general, 

does not have a simple form; however, when gh ~ 2, we expect the relaxation time τR ≫ 1, 

and therefore, we can approximate Cz(τ) ≈ Cϕ(τ). We can then approximate Cϕ as

Cϕ(τ) = g0 + g1Cℎ(τ) + g3Cℎ(τ)3, (I33)

where g0 = 0  for βℎ = 0 ,  (I34)

g1 = gℎ
2 − 2gℎ

4Cℎ(0) + 5gℎ
6Cℎ(0)2, (I35)

g3 = 2
3gℎ

6 − 16
3 gℎ

8Cℎ(0) . (I36)

Note that this also gives us an approximation for Cϕ(0). Putting all this together, the equation 

governing Ch(τ),

− ∂τ
2 + Cσz(τ) Cℎ(τ) = 1

4Cσz(τ)Cϕ(τ), (I37)

becomes [up to O Cℎ
3 ]

∂τ
2Cℎ(τ) ≃ a1Cℎ(τ) + a2Cℎ(τ)2 + a3Cℎ(τ)3, (I38)

 where a1 = 1
16(4 − Γ),  (I39)

a2 = αz2

64(4 − Γ)Γ, (I40)

a3 = −
gℎ

6

24, (I41)

Γ = gℎ
2 − 2gℎ

4Cℎ(0) + 5gℎ
6Cℎ(0)2 . (I42)

Integrating with respect to τ gives
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∂τCℎ(τ) 2 = 2 a1
2 Cℎ(τ)2 + a2

3 Cℎ(τ)3 + a3
4 Cℎ(τ)4 +  const  . (I43)

The boundary conditions are

∂τCℎ(0) = 0, lim
τ ∞

∂τCℎ(τ) = 0. (I44)

The second condition implies the constant is 0. And the first condition implies

a1
2 + a2

3 Cℎ(0) + a3
4 Cℎ(0)2 = 0. (I45)

From this, we can solve for Ch(0) (neglecting terms higher than quadratic) to get a solution 

that is perturbative in the deviation ϵ from the critical point (gh = 2 + ϵ). To the leading 

order, the variance grows as

Cℎ(0) ≈ 1
8ϵ + O ϵ2 , (I46)

and the αz enters the timescale-governing term a1 only at O(ϵ2). At first, it might seem 

counterintuitive that αz, which effectively controls the dynamical time constant in the 

equations of motion, should not influence the relaxation rate to leading order. However, 

this result is for the dynamical behavior close to the critical point, where the relaxation time 

is a scaling function of ϵ. Moving away from this critical point, the relaxation time becomes 

finite, and the z gate, and, thus, αz, should have a more visible effect.

APPENDIX J: TOPOLOGICAL COMPLEXITY VIA KAC-RICE FORMULA

The arguments here are similar to those presented in Ref. [82], which use a self-averaging 

assumption to express the topological complexity (defined below) in terms of a spectral 

integral. Let us begin.

The goal is to estimate the total number of fixed points for a dynamical system ẋ = G(x). 

The Kac-Rice analysis proceeds by constructing the integral over the state space x whose 

integrand has delta-functional support only on the fixed points:

N = ∫ dxE[δ(G(x)) det D ], (J1)

where  = ∂G/∂x is the instantaneous Jacobian. The expectation value here is over the 

random coupling matrices. The average number of fixed points is related to the so-called 

topological complexity  via the definition

N = exp(NC) .

We seek a saddle-point approximation of this quantity below.
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For the gated RNN, the state space x = (h, z, r), and the fixed points satisfy

σz zi −ℎi + ηiℎ = 0, (J2)

−zi + ηi
z = 0, (J3)

−ri + ηir = 0, (J4)

where for notational shorthand we introduce ηiℎ = ∑jJij
ℎϕ ℎj σr rj  and ηi

r/z = ∑jJij
r/zϕ ℎj , 

anticipating the mean-field approximation to come. Notice that only the first equation for h 
provides a nontrivial constraint. Once h is found, the second and third equations can be used 

to determine z and r, respectively. Notice, furthermore, that, since σ(zi) > 0, the solutions hi 

to the first equation do not depend on zi. Indeed, the dependence on σ(z) can be factorized 

out of the Kac-Rice integral. This requires noting first that, for the fixed point Jacobian, Eq. 

(A6) implies that the Jacobian can be written (setting τr = τz = 1 for simplicity)

D = A( − 1 + JR) (J5)

and that the determinant can be factorized:

det D = det A × det −1 + JR (J6)

= ∏
i

σ zi det −1 + JR . (J7)

The product of σ(zi) produced by the determinant is canceled by the product of delta 

functions, using the fact that σ(zi) > 0 and the transformation law

∏
i

δ σ zi −ℎi + ηiℎ = 1
∏iσ zi

∏
i

δ −ℎi + ηiℎ . (J8)

So we see that what evidently matters for the topological complexity is the fixed-point 
Jacobian:

Dfp = − 1 + JR, (J9)

whose eigenvalues we denote by λi for i = 1, …, N and with the spectral density

μ(z) = 1
N ∑

i
δ(2) z − λi . (J10)

The preceding analysis is all basically to show that we could easily have set αz = 0 and 

gotten the same answer; i.e., the z gate does not influence the topological properties of the 

dynamics. For αz = ∞, the situation changes drastically, and the analysis likely needs to be 
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significantly reworked. Indeed, in this limit, we most likely do not have discrete fixed points 

anymore, so the very notion of counting fixed points no longer makes sense.

Having introduced the spectral density, we can rewrite the Kac-Rice integral as

N = ∫ ∏
x ∈ ℎ, r

dxE δ(N) x − ηx eN∫ d2zμ(z)log z . (J11)

Note that, since the spectral density of fp is independent of z, the integral over z is trivial to 

perform and leaves only h and r in the integrand.

So far, everything is exact. We begin now to make some approximations. The first 

crucial approximation is that the spectral density is self-averaging. The RMT analysis 

in the previous sections shows us furthermore that the spectral density depends only on 

macroscopic correlation functions of the state variables. Let us denote the spectral integral 

factor

I(x, J) = exp N∫ d2zμ(z) log |z| , (J12)

by which we mean that it depends on the particular realization of the random coupling 

and the state vector x. The self-averaging assumption implies that

I(x, J) ≈ E[I(x, J)] ≡ I(x); (J13)

i.e., this factor does not depend on the particular realization of ℐ but just on the state 

vector. Equivalently, we are assuming that the spectral density μh, r(z) depends only on the 

configurations h and r and not the particular realization Jh,r. This allows us to pull this factor 

outside of the expectation value:

N ≈ ∫ ∏
x ∈ ℎ, r

I(x)E δ(N) x − ηx . (J14)

Now we give some nonrigorous arguments for how one might evaluate the remaining 

expectation value. In order to carry out the average over Jh and Jr, we utilize the Fourier 

representation of the delta function to write

E ∫ dxeix x − ηx
(J15)

= ∫ dxdxE exp∑
i, j

iℎi ℎi − Jij
ℎϕ ℎj σr rj (J16)

+iri ri − Jijr ϕ ℎj ,
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which upon disorder averaging yields

∫ dxdx exp ∑
i

iℎiℎi + ir iri − 1
2ℎi

2Cϕσr − 1
2r i

2Cϕ , (J18)

where we define

Cϕσr = 1
N ∑

i
ϕ ℎi

2σr ri
2, Cϕ = 1

N ∑
i

ϕ ℎi
2 . (J19)

This is where we make our second crucial assumption: that the empirical averages appearing 

in Eq. (J19) converge to their average value

Cϕσr Cϕσr = Eh, r
1
N ∑

i
ϕ ℎi

2σr ri
2 , (J20)

Cϕ Cϕ ≡ Eh
1
N ∑

i
ϕ ℎi

2 . (J21)

This means we are assuming the strong law of large numbers. With this essential step, the 

integral in Eq. (J18) evaluates to

1
2πΔℎ

1
2πΔr

exp − ∥ h ∥2 /2Δℎ − ∥ r ∥2 /2Δr (J22)

= ∏
i = 1

N
Pℎ ℎi Pr ri , (J23)

where Δℎ = Cϕσr and Δr = Cϕ—which are just the time-independent (fixed-point) MFT 

equations (C26).

Returning to the expression for the complexity, this series of approximations gives us

N ≈ ∫ ∏
i = 1

N
dℎidriPℎ ℎi Pr ri I(r, h) . (J24)

Let us now describe our derivation more intuitively. We start with the formal expression 

for the Kac-Rice formula, which uses the delta functional integrand to find fixed points and 

counts them with the weighting factor related to the Jacobian. Our first assumption allows 

us to simplify the calculation involving the Jacobian, since we argue that this term is self-

averaging. The second assumption allows us to deal with the remaining expectation value 

of the delta functions. The expectation value adds a number of delta functions (however 

many there may be for that Jh/r) for each configuration of the connectivity. For continuously 
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distributed connectivity, this implies that the expectation value smears out the delta functions 

and results in a smooth distribution. What should this distribution be? Well, we know 

from the mean-field analysis that the state vectors are distributed as Gaussians at a fixed 

point. Furthermore, the mean-field theory becomes exact for large N. Therefore, we should 

expect that, in this limit, the delta functions are smeared out into the Gaussian distributions 

determined by the MFT. This is what our derivation shows.

The final step is to recall that the spectral density depends on the state vectors only via 

empirical averages. For instance, in the absence of an r gate, the spectral density depends on 

the empirical average Ĉϕ′. Again invoking the strong law of large numbers, we may argue 

that the self-averaging goes a step further and that

N ≈ ∫ ∏
i

dPℎ ℎi dPr ri exp N∫ d2zμh, r(z) log z (J25)

≈ exp N∫ d2zμ(z) log z , (J26)

where

μ(z) = Eh, r μh, r(z) = ∫ dhdrP(h)P(r)μh, r(z) . (J27)

This is precisely the spectral density we study in a preceding Appendix and the one for 

which we obtain an explicit expression for the spectral curve. These approximations give us 

the topological complexity

C = ∫ d2zμ(z) log z . (J28)

Now we take a closer look at the spectral density. The eigenvalues of fp form a circular 

droplet of finite radius ρ and centered on −1. Therefore, the eigenvalues have the form λ = 

−1 + reiθ, and the spectral density is a function only of r. The value of the radius is found 

from Eq. (5) by removing the z gate (i.e., setting αz = 0). After some algebraic steps, we find 

for the radius

ρ2 = 1
2 C1 + C1

2 + 4C2 , (J29)

C1 = Cϕ′Cσr, C2 = Cϕ′Cσr′Cϕ . (J30)

Using these facts, we can write the topological complexity as

C = ∫ rdrdθμ(r)I r < ρ log reiθ − 1 (J31)
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= 2π∫
1

ρ
rdrlogrμ(r) ≥ 0, for ρ > 1,

0 for ρ < 1,
(J32)

where I r < ρ  is the indicator function which is one for r < ρ and vanishes for r > ρ. Thus, 

we see that the topological complexity is zero for ρ < 1. This is precisely the fixed-point 
stability condition derived in the main text [Eq. (6)]. Conversely, the topological complexity 

is nonzero for ρ > 1, which corresponds to unstable fixed points. Thus, we see, under 

our set of reasonable approximations, unstable MFT fixed points correspond to a finite 

topological complexity and, consequently, to a number of “microscopic” fixed points that 

grows exponentially with N.

The final missing ingredient, necessary to show that region 2 in the phase diagram has an 

exponentially growing number of fixed points, is to show that the MFT fixed points which 

appear after the bifurcation are indeed unstable. At the moment, we lack any analytical 

handle on this. However, we confirm numerically that, along the bifurcation curve, the fixed 

points are unstable and that increasing the variance Δh serves only to increase ρ. However, 

is it possible for the lower branch, on which Δh decreases with αr? Evidently not, since Δh 

scales with αr in such a way that Cσr′ ends up growing like αr2, thus once again increasing ρ. 

Therefore, we conclude that the MFT fixed points appearing after the bifurcation are always 

unstable, with ρ > 1. This concludes our informal proof of the transition in topological 

complexity between regions 1 and 2 in the phase diagram in Fig. 7.

References

[1]. Graves A, Mohamed A-R, and Hinton G, in Proceedings of the 2013 IEEE International 
Conference on Acoustics, Speech and Signal Processing (IEEE, New York, 2013), pp. 6645–
6649.

[2]. Pascanu R, Gulcehre C, Cho K, and Bengio Y, How to Construct Deep Recurrent Neural 
Networks, arXiv:1312.6026.

[3]. Pathak J, Hunt B, Girvan M, Lu Z, and Ott E, Model-Free Prediction of Large Spatiotemporally 
Chaotic Systems from Data: A Reservoir Computing Approach, Phys. Rev. Lett 120, 024102 
(2018). [PubMed: 29376715] 

[4]. Vlachas PR, Pathak J, Hunt BR, Sapsis TP, Girvan M, Ott E, and Koumoutsakos P, 
Backpropagation Algorithms and Reservoir Computing in Recurrent Neural Networks for the 
Forecasting of Complex Spatiotemporal Dynamics, Neural Netw. 126, 191 (2020). [PubMed: 
32248008] 

[5]. Guastoni L, Srinivasan PA, Azizpour H, Schlatter P, and Vinuesa R, On the Use of Recurrent 
Neural Networks for Predictions of Turbulent Flows, arXiv:2002.01222.

[6]. Jozefowicz R, Zaremba W, and Sutskever I, An Empirical Exploration of Recurrent Network 
Architectures, Proc. Mach. Learn. Res 37, 2342 (2015).

[7]. Vogels TP, Rajan K, and Abbott LF, Neural Network Dynamics, Annu. Rev. Neurosci 28, 357 
(2005). [PubMed: 16022600] 

[8]. Ahmadian Y and Miller KD, What Is the Dynamical Regime of Cerebral Cortex?, 
arXiv:1908.10101.

[9]. Kadmon J and Sompolinsky H, Transition to Chaos in Random Neuronal Networks, Phys. Rev. X 
5, 041030 (2015).

Krishnamurthy et al. Page 63

Phys Rev X. Author manuscript; available in PMC 2023 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[10]. Sussillo D and Abbott LF, Generating Coherent Patterns of Activity from Chaotic Neural 
Networks, Neuron 63, 544 (2009). [PubMed: 19709635] 

[11]. Laje R and Buonomano DV, Robust Timing and Motor Patterns by Taming Chaos in Recurrent 
Neural Networks, Nat. Neurosci 16, 925 (2013). [PubMed: 23708144] 

[12]. Hochreiter S and Schmidhuber J, Long Short-Term Memory, Neural Comput. 9, 1735 (1997). 
[PubMed: 9377276] 

[13]. Mitchell SJ and Silver RA, Shunting Inhibition Modulates Neuronal Gain during Synaptic 
Excitation, Neuron 38, 433 (2003). [PubMed: 12741990] 

[14]. Gütig R and Sompolinsky H, Time-Warp–Invariant Neuronal Processing, PLoS Biol. 7, e1000141 
(2009). [PubMed: 19582146] 

[15]. Sompolinsky H, Crisanti A, and Sommers H-J, Chaos in Random Neural Networks, Phys. Rev. 
Lett 61, 259 (1988). [PubMed: 10039285] 

[16]. Martí D, Brunel N, and Ostojic S, Correlations between Synapses in Pairs of Neurons Slow 
Down Dynamics in Randomly Connected Neural Networks, Phys. Rev. E 97, 062314 (2018). 
[PubMed: 30011528] 

[17]. Schuessler F, Dubreuil A, Mastrogiuseppe F, Ostojic S, and Barak O, Dynamics of Random 
Recurrent Networks with Correlated Low-Rank Structure, Phys. Rev. Research 2, 013111 (2020).

[18]. Mastrogiuseppe F and Ostojic S, Linking Connectivity, Dynamics, and Computations in Low-
Rank Recurrent Neural Networks, Neuron 99, 609 (2018). [PubMed: 30057201] 

[19]. Stern M, Sompolinsky H, and Abbott LF, Dynamics of Random Neural Networks with Bistable 
Units, Phys. Rev. E 90, 062710 (2014).

[20]. Aljadeff J, Stern M, and Sharpee T, Transition to Chaos in Random Networks with Cell-Type-
Specific Connectivity, Phys. Rev. Lett 114, 088101 (2015). [PubMed: 25768781] 

[21]. Schuecker J, Goedeke S, and Helias M, Optimal Sequence Memory in Driven Random Networks, 
Phys. Rev. X 8, 041029 (2018).

[22]. Brette R, Exact Simulation of Integrate-and-Fire Models with Synaptic Conductances, Neural 
Comput. 18, 2004 (2006). [PubMed: 16771661] 

[23]. Amari S-I, Characteristics of Random Nets of Analog Neuron-Like Elements, IEEE Trans. Syst. 
Man Cybernet SMC-2, 643 (1972).

[24]. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, and Bengio 
Y, Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine 
Translation, arXiv:1406.1078.

[25]. Chalker JT and Mehlig B, Eigenvector Statistics in Non-Hermitian Random Matrix Ensembles, 
Phys. Rev. Lett 81, 3367 (1998).

[26]. Feinberg J and Zee A, Non-Hermitian Random Matrix Theory: Method of Hermitian Reduction, 
Nucl. Phys B504, 579 (1997).

[27]. Martin PC, Siggia E, and Rose H, Statistical Dynamics of Classical Systems, Phys. Rev. A 8, 423 
(1973).

[28]. De Dominicis C, Dynamics as a Substitute for Replicas in Systems with Quenched Random 
Impurities, Phys. Rev. B 18, 4913 (1978).

[29]. Hertz JA, Roudi Y, and Sollich P, Path Integral Methods for the Dynamics of Stochastic and 
Disordered Systems, J. Phys. A 50, 033001 (2017).

[30]. Janssen H-K, On a Lagrangean for Classical Field Dynamics and Renormalization Group 
Calculations of Dynamical Critical Properties, Z. Phys. B 23, 377 (1976).

[31]. Crisanti A and Sompolinsky H, Path Integral Approach to Random Neural Networks, Phys. Rev. 
E 98, 062120 (2018).

[32]. Helias M and Dahmen D, Statistical Field Theory for Neural Networks (Springer, New York, 
2020).

[33]. Mora T and Bialek W, Are Biological Systems Poised at Criticality?, J. Stat. Phys 144, 268 
(2011).

[34]. Seung HS, Continuous Attractors and Oculomotor Control, Neural Netw. 11, 1253 (1998). 
[PubMed: 12662748] 

Krishnamurthy et al. Page 64

Phys Rev X. Author manuscript; available in PMC 2023 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[35]. Seung HS, How the Brain Keeps the Eyes Still, Proc. Natl. Acad. Sci. U.S.A 93, 13339 (1996). 
[PubMed: 8917592] 

[36]. Seung HS, Lee DD, Reis BY, and Tank DW, Stability of the Memory of Eye Position in a 
Recurrent Network of Conductance-Based Model Neurons, Neuron 26, 259 (2000). [PubMed: 
10798409] 

[37]. Machens CK, Romo R, and Brody CD, Flexible Control of Mutual Inhibition: A Neural Model of 
Two-Interval Discrimination, Science 307, 1121 (2005). [PubMed: 15718474] 

[38]. Chaudhuri R and Fiete I, Computational Principles of Memory, Nat. Neurosci 19, 394 (2016). 
[PubMed: 26906506] 

[39]. Bialek W, Biophysics: Searching for Principles (Princeton University Press, Princeton, NJ, 2012).

[40]. Goldman MS, Memory without Feedback in a Neural Network, Neuron 61, 621 (2009). 
[PubMed: 19249281] 

[41]. Maheswaranathan N, Williams A, Golub MD, Ganguli S, and Sussillo D, Reverse Engineering 
Recurrent Networks for Sentiment Classification Reveals Line Attractor dynAmics., in Advances 
in Neural Information Processing Systems, edited by Wallach H, Larochelle H, Beygelzimer A, 
d’Alché-Buc F, Fox E, and Garnett R (Curran Associates, Inc., New York, 2019), Vol 32, p. 
15696. [PubMed: 32782423] 

[42]. Farrell M, Recanatesi S, Moore T, Lajoie G, and Shea-Brown E, Recurrent Neural Networks 
Learn Robust Representations by Dynamically Balancing Compression and Expansion, bioRxiv 
10.1101/564476.

[43]. Molgedey L, Schuchhardt J, and Schuster HG, Suppressing Chaos in Neural Networks by Noise, 
Phys. Rev. Lett 69, 3717 (1992). [PubMed: 10046895] 

[44]. Rajan K, Abbott LF, and Sompolinsky H, Stimulus-Dependent Suppression of Chaos in 
Recurrent Neural Networks, Phys. Rev. E 82, 011903 (2010).

[45]. Wainrib G and Touboul J, Topological and Dynamical Complexity of Random Neural Networks, 
Phys. Rev. Lett 110, 118101 (2013). [PubMed: 25166580] 

[46]. Sutskever I, Martens J, Dahl G, and Hinton G, On the Importance of Initialization and 
Momentum in Deep Learning, Proc. Mach. Learn. Res 28, 1139 (2013).

[47]. Legenstein R and Maass W, Edge of Chaos and Prediction of Computational Performance for 
Neural Circuit Models, Neural Netw. 20, 323 (2007). [PubMed: 17517489] 

[48]. Jaeger H and Haas H, Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in 
Wireless Communication, Science 304, 78 (2004). [PubMed: 15064413] 

[49]. Toyoizumi T and Abbott LF, Beyond the Edge of Chaos: Amplification and Temporal Integration 
by Recurrent Networks in the Chaotic Regime, Phys. Rev. E 84, 051908 (2011).

[50]. Since the Jacobian spectral density depends on correlation functions (see Appendix A), in the 
dynamical steady state the spectral density becomes time-translation invariant. In other words, 
the spectral density also reaches a steady-state distribution. As a result, a snapshot of the spectral 
density at any given time has the same form. Instability then implies that the eigenvectors must 
evolve over time in order to keep the dynamics bounded. The timescale involved in the evolution 
of the eigenvectors should correspond roughly with the correlation time implied by the DMFT. 
Within this window, the spectral analysis of the Jacobian in the steady state gives a meaningful 
description of the range of timescales involved. Furthermore, we see empirically that the local 
structure appears very informative of the true dynamics, in particular, with understanding the 
emergence of continuous attractors and marginal stability, as we discuss in Sec. IV. 

[51]. Can T, Krishnamurthy K, and Schwab DJ, Gating Creates Slow Modes and Controls Phase-Space 
Complexity in GRUs and LSTMS, Proc. Mach. Learn. Res 107, 476 (2020).

[52]. The continuous-time gated RNN we study in this paper is most closely related to the GRU 
architecture studied in Ref. [51]. 

[53]. Eguíluz VM, Ospeck M, Choe Y, Hudspeth AJ, and Magnasco MO, Essential Nonlinearities in 
Hearing, Phys. Rev. Lett 84, 5232 (2000). [PubMed: 10990910] 

[54]. Eckmann J-P and Ruelle D, in The Theory of Chaotic Attractors (Springer, New York, 1985), pp. 
273–312.

[55]. For reference, we also supply a bound on the maximal Lyapunov exponent in Appendix F, 
showing that the relaxation time of the dynamics enters into an upper bound on λmax. 

Krishnamurthy et al. Page 65

Phys Rev X. Author manuscript; available in PMC 2023 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[56]. Derrida B and Pomeau Y, Random Networks of Automata: A Simple Annealed Approximation, 
Europhys. Lett 1, 45 (1986).

[57]. Cessac B, Increase in Complexity in Random Neural Networks, J. Phys. I (France) 5, 409 (1995).

[58]. One might worry that the h and σ(z) correlators are not separable, in general. However, this issue 
arises only for large αz. For moderate αz, the separability assumption is valid. 

[59]. Fyodorov YV, Complexity of Random Energy Landscapes, Glass Transition, and Absolute Value 
of the Spectral Determinant of Random Matrices, Phys. Rev. Lett 92, 240601 (2004). [PubMed: 
15245072] 

[60]. Fyodorov YV and Le Doussal P, Topology Trivialization and Large Deviations for the Minimum 
in the Simplest Random Optimization, J. Stat. Phys 154, 466 (2014).

[61]. Pereira J and Wang X-J, A tradeoff between Accuracy and Flexibility in a Working Memory 
Circuit Endowed with Slow Feedback Mechanisms, Cereb. Cortex 25, 3586 (2015). [PubMed: 
25253801] 

[62]. Greff K, Srivastava RK, Koutník J, Steunebrink BR, and Schmidhuber J, LSTM: A Search Space 
Odyssey, IEEE Trans. Neural Netw. Learn. Syst 28, 2222 (2017). [PubMed: 27411231] 

[63]. In fact, the fixed-point phase diagrams for the current model and the GRU are in one-to-one 
correspondence. What this static phase diagram importantly lacks is region 3 in Fig. 7. 

[64]. Tallec C and Ollivier Y, Can Recurrent Neural Networks Warp Time?, arXiv:1804.11188.

[65]. Muscinelli SP, Gerstner W, and Schwalger T, How Single Neuron Properties Shape Chaotic 
Dynamics and Signal Transmission in Random Neural Networks, PLoS Comput. Biol 15, 
e1007122 (2019). [PubMed: 31181063] 

[66]. Beiran M and Ostojic S, Contrasting the Effects of Adaptation and Synaptic Filtering on the 
Timescales of Dynamics in Recurrent Networks, PLoS Comput. Biol 15, e1006893 (2019). 
[PubMed: 30897092] 

[67]. Pereira U and Brunel N, Attractor Dynamics in Networks with Learning Rules Inferred from In 
Vivo Data, Neuron 99, 227 (2018). [PubMed: 29909997] 

[68]. Bertschinger N and Natschläger T, Real-Time Computation at the Edge of Chaos in Recurrent 
Neural Networks, Neural Comput. 16, 1413 (2004). [PubMed: 15165396] 

[69]. Legenstein R and Maass W, in New Directions in Statistical Signal Processing: From Systems 
to Brain, edited by Haykin Simon, Principe Jose C., Sejnowski Terrence J., and McWhirter John 
(The MIT Press, 2006), p. 127.

[70]. Boedecker J, Obst O, Lizier JT, Mayer NM, and Asada M, Information Processing in Echo State 
Networks at the Edge of Chaos, Theory Biosci. 131, 205 (2012). [PubMed: 22147532] 

[71]. Geman S and Hwang C-R, A Chaos Hypothesis for Some Large Systems of Random Equations, 
Z. Wahrscheinlichkeitstheorie Verwandte Gebiete 60, 291 (1982).

[72]. Strictly speaking, the state variables evolve according to dynamics governed by (and, thus, 
dependent on) the J’s. However, the local chaos hypothesis states that large random networks 
approach a steady state where the state variables are independent of J’s and are distributed 
according to their steady-state distribution. 

[73]. Sompolinsky H and Zippelius A, Relaxational Dynamics of the Edwards-Anderson Model and 
the Mean-Field Theory of Spin-Glasses, Phys. Rev. B 25, 6860 (1982).

[74]. Sompolinsky H and Zippelius A, Dynamic Theory of the Spin-Glass Phase, Phys. Rev. Lett 47, 
359 (1981).

[75]. Chow CC and Buice MA, Path Integral Methods for Stochastic Differential Equations, J. Math. 
Neurosci 5, 8 (2015). [PubMed: 25852983] 

[76]. Roy F, Biroli G, Bunin G, and Cammarota C, Numerical Implementation of Dynamical Mean 
Field Theory for Disordered Systems: Application to the Lotka–Volterra Model of Ecosystems, J. 
Phys. A 52, 484001 (2019).

[77]. Geist K, Parlitz U, and Lauterborn W, Comparison of Different Methods for Computing 
Lyapunov Exponents, Prog. Theor. Phys 83, 875 (1990).

[78]. Engelken R, Wolf F, and Abbott L, Lyapunov Spectra of Chaotic Recurrent Neural Networks, 
arXiv:2006.02427.

[79]. The local chaos hypothesis employed by Cessac [57] amounts to the same assumption. 

Krishnamurthy et al. Page 66

Phys Rev X. Author manuscript; available in PMC 2023 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[80]. Strictly speaking, Oseledets theorem guarantees that λmax = limt→∞ (1/2t) log[(‖χu‖2)/(‖u‖2)] 
for almost every u. In particular, we can take u to be the all-ones vector. The term inside the 

log then becomes 1
N ∑i, kχik

2 + (1/N)∑i ≠ j ∑kχikχjk, and the second term is subleading in N, 

since the susceptibilities are random functions. This justifies Eq. (F1). 

[81]. In previous work, g = 1 sets the critical value. The difference is simply due to the factor σr(0) = 
1/2. The vanilla RNN result is recovered by sending βr → ∞. 

[82]. Ipsen JR and Peterson ADH, Consequences of Dale’s Law on the Stability-Complexity 
Relationship of Random Neural Networks, Phys. Rev. E 101, 052412 (2020). [PubMed: 
32575310] 

Krishnamurthy et al. Page 67

Phys Rev X. Author manuscript; available in PMC 2023 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 1. 
How gates shape the Jacobian spectrum. (a)–(d) Jacobian eigenvalues (red dots) of the gated 

RNN in (time-varying) steady state. The dark outline is the spectral support curve predicted 

by Eq. (5). The bottom row corresponds to larger αz, and the right column corresponds to 

large αr. (e) Cumulative distribution function of Jacobian eigenvalues in a disk of radius r = 

0.05 centered at the origin plotted against αz. Circles are numerical density calculated from 

the true network Jacobian (averaged over ten instances), and the dashed line is a fit from 

Eq. (7). (f) Intercept of the spectral curve on the imaginary axis, plotted against αz for three 

different values of gh (αr = 0). For network simulations, N = 2000, gh = 3, and τr = τz = 1 

unless otherwise stated, and all biases are zero.
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FIG. 2. 
Network in the marginally stable state functions as an integrator. (a) Sample traces from 

a network with switchlike update gates (αz = 30, gh = 3) show slow evolution (time on x 

axis is relative to τh). (b) An input is applied to the same network in (a) from t = 0 till t 
= 10, either aligned with a slow eigenvector uλ (red traces) or unaligned with slow modes 

(black dashed trace). The plot shows the excess projection of the network state on the left 

eigenvector uλ. Different shades of red correspond to different input strengths. If the input is 

along the slow manifold, the trace of the input is retained for a long time after the cessation 

of input. [The traces in (a) are for the network with an input along the manifold.].
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FIG. 3. 
Lyapunov spectra and dimensionality of the gated RNN. (a),(b) The first 50 ordered 

Lyapunov exponents for a gated RNN (N = 2000) as a function of varying (a) αz and 

(b) αr. The Lyapunov spectrum is calculated as described in Appendix D. (c) The Kaplan-

Yorke dimensionality of the dynamics as a function of αr. (d) The maximal Lyapunov 

exponent λmax predicted by the DMFT [solving Eqs. (10) and (11); solid line] and obtained 

numerically using the QR method (circles; N = 2000 and αz = 0). Note that the transition for 

αr = 20 is sharp; also cf. Fig. 5(c). τz = τt = 2.0 here.
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FIG. 4. 
The discontinuous dynamical transition. (a) Spontaneous appearance of nonzero solutions 

(dashed and solid red lines) to the FP equations once αr crosses a critical value αr, FP* gℎ  at 

fixed gh. (b) The critical αr, FP* gℎ  as a function of gh. The vertical dashed line represents 

left critical value gc = 2, below which a bifurcation is not possible. (c) The critical DMFT 

transition curve αr, DMFT* gℎ  (red curve) calculated using Eqs. (G8) and (G9). The FP 

transition curve from (b) is shown in black. The green dashed line corresponds to gc = 8/3, 

below which the dynamical transition is not possible. (d) Numerically calculated maximum 

Lyapunov exponent λmax as a function of αr for two different values of gh. The dashed lines 

correspond to the DMFT prediction for the discontinuous transition from (c). (e) Schematic 

of the bifurcation transition: For gh < 2 and αr < αr, FP* , the zero FP is the only (stable) 

solution (bottom left box); for 2 < gℎ < 2 and αr, FP* < αr < αr, DMFT* , the zero FP is still 

stable, but there is a proliferation of unstable FPs without any obvious dynamical signature 

(top left); for 8/3 < gℎ < 2 and αr > αr, DMFT* , chaotic dynamics coexist with the stable FP 

and this transition is discontinuous (top right); finally, for gh > 2.0, the stable FP becomes 

unstable, and only the chaotic attractor remains; this transition is continuous (bottom right).
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FIG. 5. 
Input-driven chaos. (a),(b) Near the discontinuous chaotic transition (in region 2 in Fig. 7), 

static input Ih (with Ir = Iz = 0) can push a stable system (a) to chaotic activity (b). (c),(d) 

In the purely chaotic state [(c), gh = 3.0], input has the familiar effect of stabilizing the 

dynamics (d). The elements of the input vector Ih are random Gaussian variables with zero 

mean and variance σβℎ
2 .
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FIG. 6. 
Gates provide a reset mechanism. Positive static inputs are applied to the z gate when the 

RNN is in the marginally stable state (gh = 3.0, αr = 2.5, and αz = ∞) for 20 time units 

at times indicated by dashed lines. The input induces chaos which rapidly scrambles the 

network state, thus erasing the trace of the previous memory; the bottom panel shows the 

normalized projection of the state h(t) on the directions h(1,2,3) aligned with the state in 

regions 1, 2, and 3.
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FIG. 7. 
Phase diagram for the gated RNN. (a) (no biases) In regions 1 and 2, the zero FP is the 

global attractor of dynamics; however, in region 2, there is a proliferation of unstable FPs 

without any asymptotic dynamical signatures. In region 3, the (stable) zero FP coexists with 

chaotic dynamics. Note that the plotted curve separating regions 2 and 3 is computed for αz 

= 0 and remains valid for sufficiently small values of αz. In region 4, the zero FP is unstable, 

and dynamics are chaotic. For all parameter values in region 5, a previously unstable or 

chaotic state can be made marginally stable when αz = ∞. For any given parameter values 

in region 5, there are infinitely many marginally stable points in the phase space to which 

the dynamics converge. The red dashed line indicates the critical transition between a stable 

fixed point (below the line) and chaos (above the line) in the presence of static random input 

(to the h variable) with standard deviation σh = 0.5. Note that, while chaos is suppressed for 

small αr along the gh axis, for larger αr there are regions of stable FPs that become chaotic 

with finite input. This leads to the phenomenon of input-induced chaos.
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