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Abstract

The real-time analysis of infectious disease surveillance data is essential in obtaining situa-

tional awareness about the current dynamics of a major public health event such as the

COVID-19 pandemic. This analysis of e.g., time-series of reported cases or fatalities is com-

plicated by reporting delays that lead to under-reporting of the complete number of events

for the most recent time points. This can lead to misconceptions by the interpreter, for

instance the media or the public, as was the case with the time-series of reported fatalities

during the COVID-19 pandemic in Sweden. Nowcasting methods provide real-time esti-

mates of the complete number of events using the incomplete time-series of currently

reported events and information about the reporting delays from the past. In this paper we

propose a novel Bayesian nowcasting approach applied to COVID-19-related fatalities in

Sweden. We incorporate additional information in the form of time-series of number of

reported cases and ICU admissions as leading signals. We demonstrate with a retrospec-

tive evaluation that the inclusion of ICU admissions as a leading signal improved the now-

casting performance of case fatalities for COVID-19 in Sweden compared to existing

methods.

Author summary

Nowcasting methods are an essential tool to provide situational awareness in a pandemic.

The methods aim to provide real-time estimates of the complete number of events using

the incomplete time-series of currently reported events and the information about the

reporting delays from the past. In this paper, we propose a Bayesian approach applied to

COVID-19 fatalities in Sweden. We incorporate regression components into the Bayesian

hierarchical model to accommodate additional information provided by leading indica-

tors such as time-series of the number of reported cases and ICU admissions. We use a

retrospective evaluation covering the second (alpha) and third (delta) wave of COVID-19

in Sweden to assess the performance of the proposed method. We demonstrate that the

inclusion of ICU admissions as a regression component improved the nowcasting perfor-

mance (measured by the CRPS score) of case fatalities for COVID-19 in Sweden by 3.9%

compared to when this information was not incorporated into the model.
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Introduction

The real-time analysis of infectious disease surveillance data is one of the essential components

in shaping the response during infectious disease outbreaks such as major food-borne out-

breaks or the COVID-19 pandemic. Public health agencies and governments typically monitor

disease dynamics using time-series of reported cases or fatalities to assess the effectiveness of

preventive measures and plan further actions [1, 2]. Such real-time analysis is complicated by

reporting delays that give rise to occurred-but-not-yet-reported events which may lead to

underestimation of the actual number of events. Fig 1 illustrates the problem with data of

Swedish COVID-19-related fatalities as of 2022–02-01. While the reported number of fatalities

per day suggested a declining trend, data available two months later [3] revealed that the num-

ber at the time was actually increasing.

Nowcasting methods [4–6] tackle this problem by providing real-time estimates of the com-

plete number of events using the incomplete time-series of currently observed events and

information about the reporting delay from the past. The methods have connections to insur-

ance claims-reserving [7] and its epidemiological applications trace back to HIV modelling

[8–10]. Nowcasting methods have been used in COVID-19 analysis for daily infections [11–

13] and fatalities [14–16]. The foundation of our method is a Bayesian approach to nowcasting

and was initially developed by Höhle and an der Heiden [5] and later extended by Günther

et al. [17] and McGough et al. [6].

Most nowcasting methods are focused on estimating the reporting delay distribution. How-

ever, an epidemic contains a temporal dependence and adheres to certain “laws”, for instance

slow changes in contact behavior. Furthermore, with air-born diseases such as COVID-19, the

existing number of infectees will influence the number of future infections. Taking this tempo-

ral dependence of the underlying disease transmission into account has been shown to

Fig 1. Daily COVID-19 fatalities in Sweden. Reported (black bars) and unreported (grey bars) number of daily

fatalities as of 2022–02-01. The reported number of events show a declining trend when in actuality (known in

hindsight) it was increasing.

https://doi.org/10.1371/journal.pcbi.1010767.g001
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improve the nowcasting performance [6, 17]. Another approach to nowcasting is to use other

data sources that are sufficiently correlated with the time series of interests, for example dem-

onstrated in the Machine Learning approach by Peng et al. [18]. Bastos et al. [19] propose a

generalized linear model (GLM) based approach [20] to correct for reporting delays which can

account for covariates and spatial random effects, a method that Miller et al. [21] applies to

nowcasting Chikungunya fever using Google searches as a covariate.

Our approach for nowcasting Swedish COVID-19 fatalities is based on a flexible Bayesian

hierarchical model that can account for temporal changes in the reporting delay distribution

and handle various reporting structures. As an extension to existing methods [5, 17] this

method incorporates a regression component of additional correlated data streams. The dis-

ease stages (infected, hospital, ICU, death) have a time order and the number of new entries in

one of the earlier compartments can help estimate what will happen in the later stages. We

evaluate the time-series of the number of Intensive Care Unit (ICU) admissions and reported

cases as additional correlated data streams. We assume that these data streams will be informa-

tive of the fatalities and use these as leading indicators in our Nowcasting model.

In this paper we present the methodological details of our approach and compare the results

to existing nowcasting methods to illustrate the implication of incorporating additional data

streams associated with the number of fatalities. We demonstrate with a retrospective evalua-

tion of our method that nowcasting with leading indicators can improve the predictive perfor-

mance compared to existing methods.

Materials and methods

Data

The surveillance data used for the analysis in this paper are daily counts of fatalities, ICU

admissions and reported cases of people with a laboratory-confirmed SARS-CoV-2 infection

in Sweden. The period ranges from 2020–10-20 to 2021–05-21 and contains 117 reporting

days (Tuesday to Friday excluding public holidays). During this period, there were 951 646

reported cases, 4 734 ICU admissions and 8 656 fatalities. The evaluation period covers Swe-

den’s second (alpha) and third wave (delta) of COVID-19-related fatalities. In addition, this

period also covers the introduction of vaccination which meant a change in the association

between reported cases or ICU admissions and the fatalities. The times series of the number of

reported cases, ICU admissions and deaths can be seen in Fig 2. The figure shows that the rise

and fall of the three time series follow a similar time trend. During the first wave the rise and

fall of the three time series follow a similar time trend with a time shift as the earlier disease

compartments are ahead in time. In the second wave the relative association between the fatali-

ties and the other disease stages becomes less substantial, the main reason being the introduc-

tion of the nationwide COVID-19 vaccination program that started 2020–12-27.

The data used in our analysis is publicly available from the website of the Public Health

Agency of Sweden [3], where new reports have been published daily from Tuesday to Friday

(excluding public holidays). The aggregated daily counts are updated retrospectively at each

reporting date. As the case fatalities are associated with a reporting delay, the published time

series of reported COVID-19 fatalities will always show a declining trend (see Fig 1 for an illus-

trative example). The reporting delay can not be observed in a single published report but can

be obtained by comparing the aggregated numbers of fatalities of each date from previously

published reports.
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Nowcasting

The notation and methodological details of our approach follows closely the notation intro-

duced in Günther et al. [17]. Let nt,d, be the number of fatalities occurring on day t = 0, . . ., T
and reported with a delay of d = 0, 1, 2, . . . days, such that the reporting occurs on day t + d.

The goal of Nowcasting is to infer the total number of fatalities Nt of day t based on the infor-

mation available on the current day T� t. The sum Nt can be written as

Nt ¼
X1

d¼0

nt;d ¼
XT� t

d¼0

nt;d þ
X1

d¼T� tþ1

nt;d; ð1Þ

where the first sum is observed and the second sum is yet unknown. This can be illustrated by

the so called reporting triangle (Fig 3). Where the upper left triangle are the number of

reported fatalities and the lower right triangle is the number of occurred- but-not-yet-reported

events with a maximum delay of D days. The upper triangle carries the information about the

reporting delay from the past and the lower triangle is what is estimated with the Nowcasting

model.

We let λt denote the expected value of Nt, and pt,d denote the conditional probability of a

fatality occurring on day t being reported with a delay of d days. Then, the number of events

occurring on day t with a delay of d days is assumed to be negative binomial distributed

nt;djlt; pt;d � NBðlt � pt;d; �Þ;

with mean λt � pt,d and overdispersion parameter ϕ. Hence, the Nowcasting task can be seen as

having two parts; (1) determine the expected value of the total number of fatalities and (2)

determine the reporting delay distribution to subsequently predict the nt,d’s and finally com-

pute the Nt’s.

Fig 2. Reported cases, ICU admissions and fatalities with COVID-19 in Sweden. The period covers the second

(alpha) and third (delta) wave and the start of vaccination in Dec 2020. Each time series is shown with a 3-week

centered rolling average and scaled by its maximum value in the peak around Dec 2020.

https://doi.org/10.1371/journal.pcbi.1010767.g002
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Flexible Bayesian nowcasting

As described in the previous section the nowcasting problem can be seen as a problem of the

joint estimation of two models: (1) a model for the expected number of deaths over time, and

(2) a model for the reporting delay distribution. Therefore, we let our model constitute of two

distinct elements; (1) the underlying epidemic curve determining the expected number of

fatalities λt and (2) the reporting delay distribution determining pt,d. We will in the following

describe the structure of each.

Component 1: The expected number of fatalities. Let lt ¼ E½Nt� denote the expected

total number of fatalities occurring on day t. We specify a baseline model for λt as

logðltÞjlt� 1 � Nðlogðlt� 1Þ; s
2Þ; ð1Þ

where t = 0, . . ., T and d = 0, . . ., D. Time t = 0 is assumed to be the start of the observation

period, such as the start of the pandemic or a new wave. This approach to model λt as a ran-

dom walk on the log scale is proposed by McGough et al. [6] and Günther et al. [17]. Here we

will refer to it as model R.

An alternative to model R in Eq (1) is to assume that we can predict the total number of

fatalities with additional data streams associated with the event of interest. The additional data

streams are assumed to be ahead in time compared to the time series of interest, for example

due to the tracked event of the data stream being at an earlier stage in a typical COVID-19 dis-

ease progression or because of a smaller reporting delay. Therefore we may use the additional

Fig 3. Reporting triangle for day T. Green boxes (solid line) where t� T − D are the reported number of fatalities on

day T (today) with a maximum delay of D days. The yellow boxes (dashed line), corresponding to t> T − D, are the

occurred-but- not-yet-reported number of events of day t + D.

https://doi.org/10.1371/journal.pcbi.1010767.g003
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data stream as a leading indicator in the Nowcasting model. One approach is to consider the

number of fatalities as some time-varying fraction of the numbers in the additional data

streams. Let Mt = (m1,t, . . ., mk,t) denote a vector of k leading indicators at time t. We specify a

regression type model for λt as follows

logðltÞjMt � Nðb0 þ b
0Mt; s

2Þ; ð2Þ

where the β0 is an intercept and β denotes the vector of additive effects of the k data streams on

the log of the mean of λ. With this model specification we assume a strong association between

the case fatalities and the k data streams measured some days earlier. We will refer to this

model as L(M).

Furthermore, we propose another approach combining the random walk component of the

model in Eq (1) and the additional data streams of Eq (2). We let the leading indicators be the

change in the additional data streams such as case reports or hospitalizations. In other words

we assume that if there is an increase in the leading indicator, we also expect an increase in the

number of fatalities. An increase in an earlier disease compartment as case reports is not

expected to give an instant increase in the number of deaths but rather with some time delay,

so as for the model in Eq (2), the leading indicators need to be specified with a suitable time

delay. We specify this alternative model for λt as

logðltÞjlt� 1;Mt � Nðlogðlt� 1Þ þ b
0Mt; s

2Þ; ð3Þ

where β is again the vector of regression coefficients for the k leading indicators Mt. This

approach combines an established method [17] with additional information that is informative

of the events of interest. We note that when the β-coefficients of this model are zero, this

model becomes identical to the model specified in Eq (1). This model will be referred to as RL

(M). In related pre-pandemic work, Bastos et al. [19] propose a hierarchical Gaussian Markov

Random Field and GLM approach in order to handle nowcasting in setting with covariates. A

theoretical treatment of the differences between our model and their approach is provided in

S1 Appendix Sec 7.

Component 2: The reporting delay distribution. The model for the reporting delay dis-

tribution at day t is specifying the probability of a reporting delay of d days for a fatality occur-

ring on day t. We denote this conditional probability

pt;d ¼ Pðdelay ¼ djfatality day ¼ tÞ:

Similarly to Günther et al. [17], we model the delay distribution as a discrete time hazard

model ht,d = P(delay = d|delay� d, Wt,d) as

logitðht;dÞ ¼ ðgd þW 0
t;dZÞ � Zt;d; ð4Þ

where d = 0, . . ., D − 1, ht,D = 1, γd is a constant, Wt,d being a vector of time- and delay-specific

covariates and η the covariate effects. The distinction from Günther et al. [17] is the t × d
matrix Z which is an indicator for non-reporting days. The matrix has elements Zt,d that takes

values 1 when day t + d is a reporting day and 0 otherwise. It can be shown how the reporting

probabilities are derived from Eq (4) [17]. We are using linear effects of the time on the logit-

scale with break-points every two weeks before the current day to allow for changing dynamics

in the reporting delay distribution over time. We also use a categorical weekday effect to

account for the weekly structure of the reporting.
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Inference and implementation

Inference for the hierarchical Bayesian nowcasting model is done by Markov Chain Monte

Carlo using R-Stan [22] extending the work of Günther et al. [17]. The prior distributions used

are found in S1 Appendix Sec 1. In order to ensure reproducibility and transparency, the

R-Code [23] and data used for the analysis is available from https://github.com/

fannybergstrom/nowcasting_covid19.

Evaluation metrics

As in Günther et al. [17], we use the following four metrics to quantify the model performance;

(1) continuous rank probability score (CRPS), (2) log scoring rule (logS), (3) root mean

squared error (RMSE), and (4) the prediction interval (PI) coverage. The CRPS and logS are

proper scoring rules that assess the quality of the probabilistic forecast using the posterior pre-

dictive distribution of the probabilistic forecast [24]. Proper scoring rules assign numerical

scores to pairs of forecasts and observations and can be used to assess accuracy and sharpness

of the forecast simultaneously.

Following the notation of Czado et al. [20], we let X be a integer-valued non-negative sto-

chastic variable with a realisation x. The nowcasts produce a probabilistic forecast quantified

by the infinite vector P such that PðX � iÞ ¼ Pi, for i = 0, 1, 2, . . .. We define a vector p with

elements PðX ¼ iÞ ¼ pi for i = 0, 1, 2, . . .. We let x̂ðPÞ denote a point estimate for X based on P.

We also let qðPÞz denote the z quantile of P, with 0� z� 1.

The CRPS is defined

CRPSðP; xÞ ¼
X1

i¼0

ðPi � 1ðx � iÞÞ2;

where 1ð�Þ is the indicator function. The CRPS is a generalisation of the mean absolute error

(MAE) for a distribution, i.e. if P is a point estimate then the CRPS reduces to the MAE of the

point estimate. The CRPS is negatively oriented, meaning that smaller scores indicate better

predictive performance.

The logS is the negative logarithm of the predictive probability mass function evaluated at

the realisation x. The logS is defined

logSðP; xÞ ¼
� log px if px > 0

0 if px ¼ 0:

(

Also for this score a smaller value indicates a better performance.

The RMSE assess the deterministic predictive accuracy of the point estimate x̂ðPÞ. It is calcu-

lated as

RMSEðP; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x̂ðPÞÞ2
q

:

In our application we let x̂ðPÞ be the median of X based on P.

The fourth evaluation metric, the PI coverage, is used to quantify the model uncertainty.

This metric indicates if the realisation x is contained within the 100 � (1 − α)% equal-tailed PI

given by P. The PI coverage can mathematically be expressed as

covaðP; xÞ ¼ 1ðqðPÞa=2 � x � qðPÞ1� a=2Þ;

meaning that it is equal to 1 if x is contained in the PI and 0 if else. We note that the PI
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coverage is not a proper scoring rule since it does not entail information about the quality of

the forecast beyond if the realisation is contained within the chosen PI. If the model uncer-

tainty is well calibrated, we expect the average PI coverage over a set of time points to be equal

to 1 − α.

In our application the nowcasts for one time instance T produce probabilistic forecasts for

NT, . . ., NT−D, where T is the most recent date for which new data is available and D is the

assumed maximum number of days reporting delay. We evaluate the estimates N̂ t , t = T, . . .,

T − D for each of the n time points T in the evaluation period. We let st,d denote the score of

the evaluation of N̂ t� d estimated with the information available as of day t, where t is the

reporting day and d = 0, . . ., dmax is the number of days since day t. We let dmax, dmax� D, be

the maximum number of days since day t we choose to include in the evaluation. Over a set of

time points {0, . . ., n}, we let the mean score d days since day t be defined as

Sd ¼
1

n

Xn

t¼0

st;d: ð5Þ

We expect Sd to be a decreasing function of d as there will generally by less uncertainty about

Nt as d increases which will make the nowcasting task easier. Next we define St as the average

score for the nowcasts estimated with the information available as of day t. We let

St ¼
1

dmax

Xdmax

d¼0

st;d: ð6Þ

Finally we define the the mean overall score S as the average performance over all time points

and the dmax days since day T. We define S as

S ¼
1

n� dmax

Xn

t¼0

Xdmax

d¼0

st;d: ð7Þ

In our retrospective evaluation of the nowcasting performance we are most interested in

the latest predictions as these are the most informative of the current trend of the pandemic.

We therefore choose dmax = 6 such that we evaluate the forecasts of the latest week from the

reporting day T; N̂T; . . . ; N̂T� 6 for the n reporting dates T in the evaluation period.

Results

Application to fatalities

We apply the nowcasting methods to reported COVID-19 fatalities in Sweden and let the

number of reported cases and COVID-19 associated ICU admissions act as two leading indica-

tors. The reporting of ICU admissions is also associated with a reporting delay but consider-

ably shorter than the fatalities. We use model R as a benchmark model and compare it to the

two alternative models using leading indicators. For the leading indicator time series we use a

seven day centered rolling average to avoid the weekday effect of the reporting. For model L

we let the leading indicator be the number of COVID-19-related ICU admissions and for

model RL the leading indicator is the change in ICU admissions of two consecutive weeks. We

denote the leading indicator models as L(ICU) and RL(ICU). The pre-specified lag between

the fatalities and leading indicators is determined by fitting a linear time series model given

the two model specifications of models L and RL and choosing the lag providing the best fit.

The period chosen for the time series model is 2020–04-01–2020–10-19 to use the information

available only prior to the evaluation period. We use 18 days lag for the reported cases and 14
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days lag for the ICU admissions. In practice, ICU admissions are also reported with a small

delay but here only 3.4% of the ICU admissions are reported with a delay above the chosen lag

of 14 days, adjustments for this second reporting delay appear negligible for our application

(but see also Sec Discussion). For practical and robustness reasons, we use a maximum report-

ing delay of D = 35 days for the fatalities. For the fatalities reported with a delay longer than

the maximum, we set their delay to the upper limit of 35 days. Of the case fatalities 1.3% were

reported with a delay longer than 35 days during the evaluation period.

The reporting triangle for our application will have diagonal lines of cells of no reporting

because of the non-reporting days (Saturday–Monday and public holidays). An illustration of

the reporting triangle using reported COVID-19 fatalities in Sweden is found in S1 Appendix

Sec 2. This prior knowledge about the non-reporting days is included in the reporting delay

model in the following way; we explicitly set the reporting probability pt,d to zero for all combi-

nations of reference t and delay d days where day t + d is a non-reporting day. This follows

directly from the Z-matrix and the discrete time hazard model of ht,d defined in Eq (4). These

non-reporting days are then also excluded from the calculations of the likelihood.

Retrospective nowcasting evaluation

A retrospective evaluation was used to assess the performance of the Nowcasting models. We

use the four evaluation metrics (CRPS, logS, RMSE and PI coverage) as described in Sec Evalu-

ation metrics. The model-based predictions are compared to the (now assumed to be known)

final number of COVID-19-related reported fatalities in Sweden. The samples from the poste-

rior predictive distribution for the estimates of the total number of reported COVID-19 fatali-

ties for day t N̂ t, t = T, . . ., T − 35 are extracted for each of the 117 reporting dates T of the

evaluation period. The RMSE is calculated with a point estimate being the median of the poste-

rior predictive distribution of N̂ t, while the scoring rules CRPS and logS takes the full posterior

distribution into account. For the three numerical scores CRPS, logS and RMSE, a low score

indicate a better predictive performance and for the model uncertainty to be well calibrated

the PI coverage should be equal to 1 − α.

Nowcasts and the estimated reporting delay for a specific reporting date T = 2020–12-30

are shown in Fig 4. In the left column, the black bars are the number of fatalities reported until

day T and the red dashed line is the true number, only known in retrospect. The solid lines are

the median of the posterior predictive distribution of N̂ t and the shaded areas indicate the

equal-tailed point-wise 95% Bayesian prediction interval, estimated with information available

at the reporting date T. The right column shows the daily empirical and estimated number of

days of reporting. The solid lines are the estimated and empirical median days of reporting

delay and the shaded area is between the 5% and 95% quantile of the reporting delay. The

lower bound indicate the number of days until 5% of the total number of fatalities will be

reported and the upper bound is within how many days 95% will be reported. The empirical

median and the respective quantiles are calculated with data available in hindsight and the esti-

mated quantities are obtained with the information available at the reporting date.

We observe an underestimation of the reporting delay for the L(ICU) model for the last

days in the observation window (2020–12-25–2020–12-30) resulting in an underestimation of

the daily number of fatalities (Fig 4B). We can also note that the PI is more narrow for L(ICU)

than for the other two models and that the true number is not always contained in the PI.

Model R and RL(ICU) (Fig 4A and 4C) provide similar results with less underestimation of

the reporting delay resulting in a point estimate of the median of the predictive distribution

lying closer to the true number compared to model L(ICU). A difference between the perfor-

mance between R and RL(ICU) is that RL(ICU) provides less wide PI than R. For R and RL
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(ICU), the true number of daily fatalities is contained in the PI for all days T-t, t = 0, . . ., 35.

The right column of the figure shows that the 5% quantile of the estimated number of days of

reporting delay for all three models are similar to the empirical 5% quantile. Also the median

of the estimated number of days reporting delay follows the corresponding empirical quantity

Fig 4. Nowcasts for a specific reporting date. Left column shows the nowcasts of 2020–12-30 where the solid lines are

the median of the posterior predictive distribution of N̂ and the shaded area depict the 95% PI. The black bars are what

is yet reported and the red line is the true number, only known retrospectively. Right column shows quantiles of the

estimated and empirical reporting delay distribution. The solid lines are the median reporting delay in days (for each

date) and the lower and upper bounds are the 5% and 95% quantiles. The empirical quantiles are obtained with data

available in hindsight.

https://doi.org/10.1371/journal.pcbi.1010767.g004
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reasonably well while the 95% estimated quantiles are farther from the empirical. This indi-

cates that all three models capture the short-term trends such as the weekly reporting patterns

well. On the other hand, they do not fully capture the changing dynamics of the long reporting

delays given by the high spikes in the early period of the observation window and the rapid

decrease in reporting delay in the final week. An alternative visualization of the empirical and

estimated reporting delay distribution for the three models provided by the cumulative report-

ing probability is found in S1 Appendix Sec 3.1. Detailed results of the predictive performance

of the nowcasting for this specific reporting date including scores, PI coverage and running

times for the models are found in S1 Appendix Sec 3.2 where we also include results of using

the combination of reported cases and ICU admissions as leading signals.

Seen in Fig 4, the PI is increasing in width as the final date T of the observation window is

approaching. As the number of days t since day T decreases, the uncertainty for the nowcast of

day T-t increases as the fraction of the total number of reported fatalities will be decreasing.

The average score as a function of number of days T-t as defined in Eq (5) is shown in Fig 5.

For all models and scores, the score is generally a decreasing function of the number of days

since day T. In other words, the farther from “now”, the closer are the nowscast estimates of

the daily number of fatalities to the true number. The most profound difference in perfor-

mance for the three models is found close to day T and as the number of days since day

increases the model performance becomes more similar. Model RL(ICU) has a lower CRPS

and RMSE score (Fig 5A and 5C) and model R has the lowest logS (Fig 5B). Model L(ICU) has

the overall highest values of the scores which indicates that it has the worst performance of the

three models.

The mean overall score and the coverage frequency of the 75%, 90%, and 95% prediction

interval of the three models for the nowcasts performed in the evaluation period is found in

Table 1. For each reporting day T, we use the average score of the last seven days; T, . . ., T − 6

as defined in Eq (7). Based on the CRPS and RMSE, model RL(ICU) has the best predictive

performance, with a decrease of 3.9% and 1.0% respectively compared to model R. Model R

has the lowest logS score but only with a slight advantage compared to RL(ICU) (0.38%

improvement). Model L(ICU) has the worst performance for all three scores. The coverage of

the prediction intervals for models R and RL(ICU) is of satisfactory levels. In contrast, the L

Fig 5. Mean scores by the number of days T-t since the day of reporting T. The scores are averaged over all

reporting dates T in the evaluation period from 2020–10-20–2021–05-21.

https://doi.org/10.1371/journal.pcbi.1010767.g005
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(ICU) model has low coverage, indicating that the estimates of model L(ICU) is less trustwor-

thy compared to the other models.

Fig 6 shows the retrospective true number of daily fatalities and the median of the predictive

distribution of N̂T and a 95% PI of the three models evaluated on each reporting day T in the

evaluation period. In Fig 4, this corresponds to the nowcast estimates of the final date

T = 2020–12-30. We observe a similar performance over time for models R and RL(ICU) (Fig

6A and 6C) and the more significant deviations from the true number appear mainly on the

same reporting dates for the two models. In early Jan 2021, RL(ICU) underestimates the num-

ber of daily fatalities, likely due to the rapid decrease in ICU admissions due to the introduc-

tion of vaccines at the end of Dec 2020, while the case fatalities were also on a downwards

trend but not as steep. Model RL(ICU) stabilizes after approximately two weeks (same as the

length of the linear change points) in mid Jan 2021 as the model adapts to the new association

between ICU admissions and case fatalities. Model L(ICU) (Fig 6B) does not have the high

peaks in the posterior predictive distribution of N̂ as the other two models. However, the devi-

ation of the posterior median compared to the true number is visibly larger. Starting from Dec

2020, we observe an underestimation of the number of fatalities, and from Feb 2021, an overes-

timation for the following two months. From Apr 2021 until the end of the evaluation period,

the three models have a visibly similar performance with a posterior mean close to the true

number of daily fatalities and a narrow PI containing the true number. The performance of

the alternative models with leading indicators compared to model R can be explained by the

estimated association between the fatalities and the leading indicators. The changing dynamics

of the association over time are captured by the estimated β-coefficients of the respective mod-

els. Details of the estimated β-coefficients for models R(ICU) and RL(ICU) over the evaluation

period are reported in S1 Appendix Sec 4.

Looking at the predictive performance of the three nowcasting models over time, we use

the seven-day average scores of the three models evaluated at the 117 reporting dates in the

evaluation period as defined in Eq (6). The CRPS and logS scores are shown in Fig 7. For the

three models, the scores are generally higher when the number of case fatalities is high. Over-

all, the performance of model R and RL(ICU) is similar, as could also be observed in Fig 6.

From the beginning of the evaluation period until the end of 2020, model L(ICU) has an over-

all lower score and a more stable performance with less high spikes in the score compared to

model R and RL(ICU). During Jan 2021, the performance is similar for the three models, but

Table 1. Results of the retrospective evaluation of different nowcasting models on COVID-19 related fatalities in

Sweden.

Score R L(ICU) RL(ICU)

CRPS 6.53 7.04 6.28

logS 3.62 3.85 3.63

RMSE 9.18 9.95 9.09

Cov. 75% PI 76.92% 66.18% 74.97%

Cov. 90% PI 91.82% 80.95% 89.87%

Cov. 95% PI 95.85% 88.52% 94.99%

CRPS is the continuous ranked probability score, logS is the log score, and RMSE denotes the root mean squared

error of the posterior median. Additionally, we provide coverage frequencies of 75%, 90% and 95% credibility

intervals in the estimation of the daily number of case fatalities. The scores are averaged over nowcasts for day T, . . .,

T − 6, with T being all reporting dates in the evaluation period.

https://doi.org/10.1371/journal.pcbi.1010767.t001
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from Feb to Apr 2021 model L(ICU) performs significantly worse than the other models. The

remaining scoring rule, the RMSE, entails similar results (S1 Fig). After Apr 2021, the number

of daily fatalities has stabilized to a low number and the score for three models becomes similar

until the end of the evaluation period.

In conclusion, we find that model R and model RL(ICU) perform well over the evaluation

period and has a satisfactory level of PI coverage. Furthermore, model RL(ICU) provided the

best performance of the three models, indicating that there is a gain (3.9% decrease in CRPS

compared to model R) of including leading indicators. Using reported cases or the combina-

tion of reported cases and ICU admissions as leading indicators does not improve perfor-

mance. The results of using these leading indicators are found in S1 Appendix Sec 5.

Fig 6. Estimated and true number of fatalities with COVID-19 in Sweden. The estimated number of fatalities are

the nowcasts of day T being each reporting date in the evaluation period from 2020–10-20 to 2021–05-21. The solid

lines are the median of the posterior predictive distribution of the number of daily fatalities N̂ T and the shaded area

depict the point-wise 95% PI. The red line is the retrospective true number.

https://doi.org/10.1371/journal.pcbi.1010767.g006

PLOS COMPUTATIONAL BIOLOGY Bayesian nowcasting with leading indicators

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010767 December 7, 2022 13 / 17

https://doi.org/10.1371/journal.pcbi.1010767.g006
https://doi.org/10.1371/journal.pcbi.1010767


Discussion

In this paper we present an improved method for real-time estimates of infectious disease sur-

veillance data suffering from a reporting delay. The proposed method can be applied to any

disease for which the data can be put in the form of the reporting triangle given in Fig 3. We

apply the method to COVID-19-related fatalities in Sweden. Even though fatalities are a lag-

ging indicator to obtain situational awareness about the pandemic and is not without difficul-

ties, it is often used as a more robust indicator to assess the burden of disease because it might

be less influenced by the current testing strategy. Monitoring the time series of reported deaths

has therefore been of importance in the still on-going COVID-19 pandemic.

We demonstrate that using leading indicators, such as the COVID-19-associated ICU

admissions, can help improve the nowcasting performance of case fatalities compared to other

methods. Beyond using reported cases and ICU admissions as leading indicators for the case

fatalities, other possible leading indicators are vaccination, hospitalizations, and virus particles

in wastewater [25], or using age-stratified reported cases. However, nowcasting with leading

indicators should be made with caution and be reevaluated as the dynamics between the lead-

ing indicator and the event of interest change, which may not be a trivial task during an ongo-

ing pandemic. Furthermore, by re-estimating the association coefficients of the leading

indicator at each reporting date, our method captures the changing association between ICU

admissions and case fatalities over time. However, we use a pre-specified time lag unknown at

the start of the pandemic and might also change throughout the pandemic. A possible exten-

sion of our work would thus be to estimate this time lag as a part of the model fitting. Further-

more, it might also be sensible to adjust for reporting delay associated with the leading

indicators. Because we use the ICU indicator as reported 14 days ago (with 96.6% of ICU cases

being reported by then), the added value of such a “double nowcasting” is limited in our

Fig 7. Scoring rules. Average CRPS and logS of the last 7 days; T − 6, . . ., T − 0 for each reporting day T, in the

evaluation period.

https://doi.org/10.1371/journal.pcbi.1010767.g007
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application, but in settings with larger reporting delay in the leading indicators this might be

different.

We use a first order random walk in model R and RL(ICU), but as a sensitivity analysis we

also investigated specifying an AR(2) model for λt in order to obtain more smooth nowcast

estimates. Preliminary results (S1 Appendix Sec 6) showed no improved predictive perfor-

mance compared to the simple random walk. Yet we do not exclude the possibility that this

type of model specification could improve the model performance in other settings, e.g. in the

case of extending the nowcasting task into short-term forecasting by predicting beyond “now”.

Nowcasting with covariates is not novel, but here we propose a Bayesian hierarchical model

with the advantage that it allows the direct specification of separate models for (1) the expected

total case counts with reference time t and (2) the time-varying delay distribution in an intui-

tive and well-interpretable way. The user can thus incorporate knowledge of the reporting pro-

cess (weekday effects or known non-reporting days) directly in the model for reporting delay

distribution. In S1 Appendix Sec 7 we derive a theoretical comparison of the nowcasting

method using covariates by Bastos et al. [19]. Future work could also consist of an empirical

comparison of the predictive performance of this and other nowcasting models.

Our Nowcasting method with leading indicators is flexible in terms of its application and

thus can be a helpful tool for future pandemic stress situations. We support this by providing

open-source software for the real-time analysis of surveillance data. Weekly updated nowcast

estimates of COVID-19 fatalities and ICU admissions in Sweden using our proposed method,

model RL, are found at

https://staff.math.su.se/fanny.bergstrom/covid19-nowcasting

These graphs help provide the desired situational awareness and are to be interpreted as

new variants emerge.

Supporting information

S1 Fig. RMSE. Average RMSE of the last 7 days; T, . . ., T − 6 for each reporting day T in the

evaluation period.

(TIF)

S1 Appendix. Supplementary material and results. The priors used in the Bayesian hierar-

chical models is found in Sec 1. In Sec 2 we show an illustration of the reporting triangle for

Swedish COVID-19 deaths. Sec 3 contains detailed information about the nowcasts evaluated

at day 2020-12-30 including a figure of the cumulative reporting probability and a table of the

evaluation metrics, PI coverage and running times. Detailed results of the estimated regression

coefficients of model L(ICU) and RL(ICU) over the evaluation period are found in Sec 4. Sec 5

covers results of including reported cases and the combination of reported cases and ICU

admissions as leading indicators. In Sec 6 we show preliminary results of extending the simple

random walk into a AR(2) model. Finally, a theoretical comparison of our method and the

nowcasting method with covariates by Bastos et al. [19] is found in Sec 7.
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Project administration: Fanny Bergström.

Software: Fanny Bergström, Felix Günther, Michael Höhle.
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Visualization: Fanny Bergström, Felix Günther.

Writing – original draft: Fanny Bergström.

Writing – review & editing: Fanny Bergström, Felix Günther, Michael Höhle, Tom Britton.
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5. Höhle M, an der Heiden M. Bayesian nowcasting during the STEC 0104:H4 outbreak in Germany,

2011. Biometrics. 2014; 70:993–1002. PMID: 24930473

6. McGough SF, Johansson MA, Lipsitch M, Menzies NA. Nowcasting by Bayesian Smoothing: A flexible,

generalizable model for real-time epidemic tracking. PLOS Comp Bio. 2020; 16(4):e1007735. https://

doi.org/10.1371/journal.pcbi.1007735 PMID: 32251464

7. Kaminsky KS. Prediction of IBNR claim counts by modelling the distribution of report lags. Insurance:

Mathematics and Economics. 1987; 6:151–159.

8. Kalbfleisch J, Lawless JF. Inference based on retrospective ascertainment: an analysis of the data on

transfusion-related AIDS. JASA. 1989; 84(406):360–372. https://doi.org/10.1080/01621459.1989.

10478780

9. Zeger SL, See LC, Diggle PJ. Statistical methods for monitoring the AIDS epidemic. Stat Med. 1989; 8

(1):3–21. https://doi.org/10.1002/sim.4780080104 PMID: 2919245

10. Lawless JF. Adjustments for reporting delays and the prediction of occurred but not reported events.

Can J Stat. 1994; 22(1):15–31. https://doi.org/10.2307/3315826.n1

11. Greene S, McGough S, Culp G, Graf L, Lipsitch M, Menzies N, et al. Nowcasting for real-time COVID-

19 tracking in New York City: Evaluation study using reportable disease data from the early stages of

the pandemic. JMIR Public Health and Surveillance. 2021; 7. https://doi.org/10.2196/25538 PMID:

33406053

12. Li T, White LF. Bayesian back-calculation and nowcasting for line list data during the COVID-19 pan-

demic. PLOS Comp Bio. 2021; 17(7):1–22. https://doi.org/10.1371/journal.pcbi.1009210 PMID:

34252078

13. Seaman SR, Samartsidis P, Kall M, De Angelisk D. Nowcasting COVID-19 deaths in England by age

and region. J R Stat Soc Series C. 2022; p. 1–16. https://doi.org/10.1111/rssc.12576 PMID: 35942006

PLOS COMPUTATIONAL BIOLOGY Bayesian nowcasting with leading indicators

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010767 December 7, 2022 16 / 17

https://doi.org/10.1126/science.abd1668
https://doi.org/10.1126/science.abd1668
http://www.ncbi.nlm.nih.gov/pubmed/33723452
https://www.folkhalsomyndigheten.se/smittskydd-beredskap/utbrott/aktuella-utbrott/covid-19/statistik-och-analyser/
https://www.folkhalsomyndigheten.se/smittskydd-beredskap/utbrott/aktuella-utbrott/covid-19/statistik-och-analyser/
https://doi.org/10.1007/s10654-011-9566-5
http://www.ncbi.nlm.nih.gov/pubmed/21416274
http://www.ncbi.nlm.nih.gov/pubmed/24930473
https://doi.org/10.1371/journal.pcbi.1007735
https://doi.org/10.1371/journal.pcbi.1007735
http://www.ncbi.nlm.nih.gov/pubmed/32251464
https://doi.org/10.1080/01621459.1989.10478780
https://doi.org/10.1080/01621459.1989.10478780
https://doi.org/10.1002/sim.4780080104
http://www.ncbi.nlm.nih.gov/pubmed/2919245
https://doi.org/10.2307/3315826.n1
https://doi.org/10.2196/25538
http://www.ncbi.nlm.nih.gov/pubmed/33406053
https://doi.org/10.1371/journal.pcbi.1009210
http://www.ncbi.nlm.nih.gov/pubmed/34252078
https://doi.org/10.1111/rssc.12576
http://www.ncbi.nlm.nih.gov/pubmed/35942006
https://doi.org/10.1371/journal.pcbi.1010767


14. Schneble M, De Nicola G, Kauermann G, Berger U. Nowcasting fatal COVID-19 infections on a regional

level in Germany. Biom J. 2020; 63(3):471–489. https://doi.org/10.1002/bimj.202000143 PMID:

33215765
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17. Günther F, Bender A, Katz K, Küchenhoff H, Höhle M. Nowcasting the COVID-19 pandemic in Bavaria.

Biom J. 2020; 63(3). https://doi.org/10.1002/bimj.202000112 PMID: 33258177

18. Peng Y, Chen X, Rong Y, Pang C, Chen X, Chen H. Real-time Prediction of the Daily Incidence of

COVID-19 in 215 countries and territories Using Machine Learning: Model Development and Validation.

JMIR. 2021; 23. https://doi.org/10.2196/24285 PMID: 34081607

19. Bastos L, Economou T, Gomes M, Villela D, Coelho F, Cruz O, et al. A modelling approach for correct-

ing reporting delays in disease surveillance data. Statistics in Medicine. 2019; 38:4363–4377. https://

doi.org/10.1002/sim.8303 PMID: 31292995

20. Czado C, Gneiting T, Held L. Predictive model assessment for count data. Biometrics. 2009; 04

(65):1254–1261. https://doi.org/10.1111/j.1541-0420.2009.01191.x PMID: 19432783

21. Miller S, Preis T, Mizzi G, Bastos LS, da Costa Gomes MF, Coelho FC, et al. Faster indicators of chikun-

gunya incidence using Google searches. PLoS Negl Trop Dis. 2022; 06(16):e1007735. https://doi.org/

10.1371/journal.pntd.0010441 PMID: 35679262

22. Stan Development Team. RStan: the R interface to Stan; 2020. Available from: http://mc-stan.org/.

23. R Core Team. R: A Language and Environment for Statistical Computing; 2021. Available from: https://

www.R-project.org/.

24. Gneiting T, Raftery A. Strictly Proper Scoring Rules, Prediction, and Estimation. JASA. 2007; 102:359–

378. https://doi.org/10.1198/016214506000001437

25. Kreier F. The myriad ways sewage surveillance is helping fight COVID around the world. Nature. 2021.

https://doi.org/10.1038/d41586-021-01234-1 PMID: 33972790

PLOS COMPUTATIONAL BIOLOGY Bayesian nowcasting with leading indicators

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010767 December 7, 2022 17 / 17

https://doi.org/10.1002/bimj.202000143
http://www.ncbi.nlm.nih.gov/pubmed/33215765
https://arxiv.org/abs/2006.06840
http://users.ox.ac.uk/nuff0078/Covid/
https://doi.org/10.1002/bimj.202000112
http://www.ncbi.nlm.nih.gov/pubmed/33258177
https://doi.org/10.2196/24285
http://www.ncbi.nlm.nih.gov/pubmed/34081607
https://doi.org/10.1002/sim.8303
https://doi.org/10.1002/sim.8303
http://www.ncbi.nlm.nih.gov/pubmed/31292995
https://doi.org/10.1111/j.1541-0420.2009.01191.x
http://www.ncbi.nlm.nih.gov/pubmed/19432783
https://doi.org/10.1371/journal.pntd.0010441
https://doi.org/10.1371/journal.pntd.0010441
http://www.ncbi.nlm.nih.gov/pubmed/35679262
http://mc-stan.org/
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1038/d41586-021-01234-1
http://www.ncbi.nlm.nih.gov/pubmed/33972790
https://doi.org/10.1371/journal.pcbi.1010767

