Table 2.
Algorithm | Hyper-parameter | Values |
---|---|---|
KNN | n_neighbors | 1, 3, 5, 7, 9 |
Linear SVC | C | 0.1, 1, 10 |
SVC (RBF kernel) | C gamma |
0.1, 1, 10 0.01, 0.1, 1, 10 |
Gaussian Naive Bayes | * no hyper-parameter | |
Bernoulli Naive Bayes | * no hyper-parameter | |
Logistic Regression | C penalty |
0.1, 1, 10 l1, l2 |
Random Forest | max_depth min_sample_split |
3, 5, 7 3, 5 |
XGBoost | max_depth min_child_weight gamma |
3, 5, 7 1, 3, 5 0.01, 0.1, 1, 10 |