Skip to main content
. Author manuscript; available in PMC: 2022 Dec 19.
Published in final edited form as: Proc ACM Interact Mob Wearable Ubiquitous Technol. 2020 Mar 18;4(1):23. doi: 10.1145/3381001

Table 2.

Machine learning algorithms and hyper-parameters.

Algorithm Hyper-parameter Values
KNN n_neighbors 1, 3, 5, 7, 9
Linear SVC C 0.1, 1, 10
SVC (RBF kernel) C
gamma
0.1, 1, 10
0.01, 0.1, 1, 10
Gaussian Naive Bayes * no hyper-parameter
Bernoulli Naive Bayes * no hyper-parameter
Logistic Regression C
penalty
0.1, 1, 10
l1, l2
Random Forest max_depth
min_sample_split
3, 5, 7
3, 5
XGBoost max_depth
min_child_weight
gamma
3, 5, 7
1, 3, 5
0.01, 0.1, 1, 10