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ABSTRACT
Accumulating evidence indicates that gut transit time is 
a key factor in shaping the gut microbiota composition 
and activity, which are linked to human health. Both 
population-wide and small-scale studies have identified 
transit time as a top covariate contributing to the 
large interindividual variation in the faecal microbiota 
composition. Despite this, transit time is still rarely being 
considered in the field of the human gut microbiome. 
Here, we review the latest research describing how 
and why whole gut and segmental transit times vary 
substantially between and within individuals, and 
how variations in gut transit time impact the gut 
microbiota composition, diversity and metabolism. 
Furthermore, we discuss the mechanisms by which the 
gut microbiota may causally affect gut motility. We 
argue that by taking into account the interindividual 
and intraindividual differences in gut transit time, we 
can advance our understanding of diet–microbiota 
interactions and disease-related microbiome signatures, 
since these may often be confounded by transient or 
persistent alterations in transit time. Altogether, a better 
understanding of the complex, bidirectional interactions 
between the gut microbiota and transit time is required 
to better understand gut microbiome variations in health 
and disease.

INTRODUCTION
The human gastrointestinal tract (GIT) is densely 
populated by microbes, which play an important role 
in a broad range of physiological processes from the 
digestion of complex polysaccharides to the regu-
lation of neural signalling.1 The composition and 
metabolism of the adult gut microbial communities 
are affected by a combination of factors including 
diet,2 3 demographics,4 5 use of medication,6 health 
status7 and environmental components shaping 
the gut environment.8 Among these environmental 
components, gut transit time, that is, the time it 
takes foods to travel through the GIT, appears to 
be a major driver of gut microbiome variation.9–12 
Gut transit time varies markedly between and 
within individuals13–15 and has been associated with 
gut microbial diversity, composition, and metab-
olism.9–12 16–18 The anatomical segments of the 
GIT (ie, stomach, small intestine and colon) have 
segment-specific transit time, affecting the compo-
sition of the residing gut microbes.12 Although this 
knowledge is well established, differences in transit 
time and pH within and between individuals have 
largely been neglected when investigating person-
specific gut microbiota signatures. Here, we review 

and discuss the role of gut transit time as a key 
determinant of the gut microbial composition and 
metabolism as well as of many diet–microbiota 
interactions relevant to human health (figure 1). We 
discuss the implications of altered gut transit time in 
health and disease, and provide an overview of the 
currently available methods for assessment of gut 
transit time in humans.

TRANSIT TIME THROUGHOUT THE GIT
Interindividual and intraindividual variation in 
transit time
In healthy populations, whole gut transit time 
(WGTT) varies substantially between individ-
uals13 15 with a median WGTT of approximately 
28 hours.11 19 Segment-specific transit times are 
commonly referred to as gastric emptying time 
(GET), small intestinal transit time (SITT) and 
colonic transit time (CTT). GET is the time it 
takes for food to empty from the stomach and 
enter the small intestine in a form of semiliquid 
chyme.20 SITT is the duration time of the passage 
of the chyme from the duodenum (i.e. the prox-
imal small intestine) until the ileocaecal region, and 
similarly, CTT corresponds to the duration time 
of the chyme’s passage from the caecum until the 
egestion in a form of stool.21 For GET of solids, 
a transit time coefficient of variation of 24.5% 
has been reported between individuals.22 Several 
human studies have identified large interindividual 
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variation in SITT with a median of approximately 5 hours (range 
of 2–7.5 hours).21 23–25 Compared with the small intestine, transit 
through the colon is much slower with a median of 21 hours.19 
Consequently, large interindividual variations are often seen in 
CTT with the minimum and the maximum reported transit times 
of 0.1–46 hours for the proximal colon, 0.3–80 hours for the 
distal colon and 1–134 hours for the rectosigmoid colon19 26–29 
(figure 2).

Gut transit time also varies within individuals over time.13 14 16 
For example, repeated measurements of CTT using radio-opaque 
markers within eight healthy subjects over a period of several 
months showed that each subject exhibited a wide range of 
CTT with a mean coefficient of variation of 25%.30 Further-
more, a recent study showed that the percentage of the faecal 
water content, a proxy of transit time, varied from day to day in 
both healthy subjects and patients suffering from irritable bowel 
syndrome (IBS).31 Similarly, intrasubject differences in SITT 
and CTT have been observed with tandem measurements in 
10 healthy adults using the SmartPill capsule13 that can directly 
assess WGTT and segmental transit times.32

The currently available methods for WGTT and segment-
specific transit time assessment include direct methods such as 
the SmartPill capsule and indirect methods such as stool consis-
tency, stool frequency and faecal water content (table 1). It is 
important to note that the methods provide a range of outcomes, 
some of which provide similar results while others may not be 
comparable. For example, while scintigraphy relies on calcu-
lating the geometric centre based on recorded radioactivity in 
the different GIT regions at certain time points,33 the SmartPill 
capsule uses landmarks in the gastrointestinal pH to calculate the 
segmental transit times.34

Host and environmental factors influencing transit time
Several factors affect the intraindividual and interindividual vari-
ations in gut transit time including sex, ageing, stress, body mass 
index, colonic anatomy, gut hormones and diet.35 Moreover, the 
gut microbiota and its metabolites also affect gut transit time, 
which is discussed in further detail below.

Dietary impact
Dietary patterns, dietary factors such dietary fibres, as well as 
individual dietary ingredients, can directly affect the gut phys-
iology via stimulation of gastrointestinal motility either inde-
pendently of the gut microbiota or via gut microbiota dependent 
pathways, which will be discussed below. Wu et al showed that 
intestinal transit time was faster on a high-carbohydrate/low-fat 
diet when compared with a low-carbohydrate/high-fat diet in 
10 healthy subjects.3 A randomised control trial with 120 obese 
participants reported significantly more cases of constipation 
(68% vs 35%) and diarrhoea (23% vs 7%) in a ketogenic diet 
group compared with a low-fat diet group.36 However, whether 
the adverse gastrointestinal outcomes in these studies were caused 
by the high fat, high protein or low carbohydrate content could 
not be concluded. Nonetheless, a high intake of fat was associ-
ated with constipation and prolonged CTT,35 37 and infusion of 
fat into the small intestine of healthy subjects has been shown to 
slow gastric emptying.38 In contrast, a 4-week intervention on a 
high-fat diet with 12 healthy men resulted in accelerated gastric 
emptying and orocaecal transit time when compared with a low-
fat diet.39 Therefore, the dietary patterns may exert different 
effects on the GIT depending on their composition and content.

One particularly important component of the dietary patterns 
is the dietary fibres. Dietary fibres affect the functionality of the 
GIT including the gut transit.40 Different types of dietary fibres 
have very different physicochemical characteristics with regards 
to solubility, fermentability and gel-formation (viscosity). The 
different characteristics influence their effects on gut transit 
time, as reviewed in detail elsewhere.41 42 Today, most studies 
investigating the effects of dietary fibres on the gut transit time 
have been limited to wheat bran and psyllium. While wheat 
bran consistently decreases the WGTT,43 the effects of psyllium, 
which is minimally fermented by the gut microbiota, on WGTT 
are inconsistent.44 It has been shown that the laxative effects 
of coarse wheat bran are greater than that of fine wheat bran 
suggesting that the particle size plays a role for the mechanical 
stimulation of the intestinal epithelium.45 In line with this, an 
intervention study with powder arabinoxylan-oligosaccharides 
(wheat bran-based prebiotics) in 48 subjects resulted in softer 
stools but did not change the CTT.46 Unlike wheat bran, psyl-
lium contains a soluble type of fibre and has gel-forming proper-
ties that increase the water retention in the colon thus increasing 
the faecal water content and bulk.47 Cellulose, which is also 
non-fermentable but not gel-forming, has been shown to lower 
faecal pH, increase the stool outputs and to decrease CTT.48 
Fermentable fibres such as inulin seem to alleviate constipa-
tion and improve physical discomfort.49 Other human studies 
have shown that increased intake of cereals and fermentable 
wheat fibre increased stool output.50 51 Altogether, dietary fibres 
can accelerate transit time and increase stool outputs through 
water retention, bulking and via fermentation-mediated effects. 
However, the effects on transit time depend on the particle 
size, solubility, fermentability and viscosity of the given fibre. 
Furthermore, water supplementation has been found to enhance 
the effect of high-fibre diet on increasing stool frequency in 
constipated patients,52 suggesting that fluid intake is another 

Figure 1  Illustration of the complex interplay between diet, gut 
microbiota and gut transit time. Diet can directly affect gastrointestinal 
motility, especially dietary fibre and osmotically active foods can 
increase the faecal bulk and thereby accelerate gut transit time. Diet 
can also affect gut transit time by dictating the substrate availability to 
the gut microbiota. As a result, the gut microbiota produces metabolites 
such as short-chain fatty acids (SCFA), secondary bile acids, tryptamine, 
histamine, H2 or CH4. These microbial-derived metabolites can stimulate 
gastrointestinal motility and thereby impact gut transit time. In addition, 
gut transit time affects the gut microbial composition and metabolism 
and consequently the gut environment (eg, pH). The relation between 
the gut microbiota and the gut transit time is therefore bidirectional. In 
addition, host factors including gut hormones, gender, age, health status 
and physical activity also affect the gut transit time. GIT, gastrointestinal 
tract.
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important factor to consider with respect to transit time. Indeed, 
a handful of studies have reported an association between lower 
fluid intake and constipation.53 However, no human interven-
tion studies have to our knowledge investigated the relationship 
between water intake, bowel habits and the gut microbiome.

Finally, also individual food ingredients may affect transit time. 
For instance, carboxymethylcellulose, a widely used emulsifier, 
has been shown to act as a laxative54 and was recently linked to 
reduced gut microbiota diversity in humans.55 Another example 
is sorbitol, a sugar alcohol highly abundant in prunes, which can 
retain water molecules by osmosis, similar to some types of fibre 
that increase water content in the gut lumen and may lead to 
softer stools.56 57 In addition, consumption of turmeric, a spice 
increasing the bile secretion, has been associated with a signifi-
cantly longer transit time in gnotobiotic mice.58

Other factors affecting transit time
Another important factor affecting the gut transit time is sex. 
Gut transit time is shorter in men than in women—even when 
adjusting for total energy intake, diet, body weight and height.59 
The sex difference was shown to be the most pronounced in 
the distal colon with women having longer transit through 
the transverse and descending colon,19 possibly as a result of 
slower gut motility in women.60 Moreover, from epidemiolog-
ical studies, it has been shown that women are also more prone 

to developing constipation.61 While there is a strong evidence 
for gender differences in gut transit time, it remains to be deter-
mined whether it is the sex per se or differences in behaviours 
and habits that drive the differences in transit time. The length 
of the intestine is also an important factor to consider as it 
can vary greatly among individuals. Based on a postmortem 
measurement, men have been found to have a longer intestine 
than women, which may contribute to longer transit time in 
women.60 62 The same study reported that the average length of 
the whole intestine is 7.96±1.3 m with a range of 3.78–13.16 m 
and found that the intestine’s length positively correlates with 
body weight but not body height.62 Moreover, ageing is asso-
ciated with longer gut transit time63 64 and it has been shown 
that especially transit through the right (ascending) part of 
the colon is correlated to age,19 perhaps as a consequence of 
a more refined diet and/or reduced physical activity with older 
age. Indeed, physical activity may improve bowel habits via 
increased gut motility.65 Furthermore, social aspects and acute 
stress are likely to play a role in gut transit time variations, 
although the contribution of these factors is difficult to assess. 
In animals, induced stress results in slower transit in the upper 
gut, while the opposite was observed in the large bowel, where 
stress increased motility and stool output.65 Also, other exoge-
nous factors such as medication often exert side effects on the 
gut transit.66 Finally, host genetics has recently been shown to 

Figure 2  Segmental transit time and pH throughout the gastrointestinal tract and its association with gut environment and gut microbial 
metabolism. The transit time varies throughout the gastrointestinal tract with substantial interindividual differences in gastric emptying time (GET), 
small intestinal transit time (SITT) and colonic transit time (CTT), which account for most of the whole gut transit time. The segmental transit time 
ranges show the minimum and maximum transit times reported for each segment. Long gut transit time has been associated with higher faecal pH, 
reduced faecal water content, higher microbial cell density and diversity, and a shift in microbial metabolism from saccharolysis towards proteolysis 
as reflected by reduced levels of short-chain fatty acids (SCFA) and increased levels of branched-chain fatty acids (BCFA). It is likely that once 
easy accessible carbohydrate sources become scarce in the colon, the gut microbes switch to ferment dietary and mucin-derived proteins. While 
saccharolysis by the gut microbiota gives rise to SCFA that are beneficial for the host and a source of energy for the colonocytes, proteolysis can 
lead to the accumulation of compounds such as BCFA, phenols, indoles, ammonium (NH3) and hydrogen sulphide (H2S) that are generally considered 
detrimental for health. Moreover, hydrogen (H2) with carbon dioxide (CO2) or formate can be converted into methane (CH4) by methanogenic 
archaea, which are also linked to slower transit time. In addition, the production and circulation of secondary bile acids and hydrolysis of host-derived 
glucuronides excreted via bile can also be affected by alterations in gut transit time. Whether microbiota-derived trimethylamine (TMA), produced 
from mainly choline and carnitine, is linked to transit time remains unknown. Created with Biorender.com.
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be involved in gut motility as 14 independent loci were found 
to associate with stool frequency.67

In conclusion, WGTT and segmental transit times depend on a 
combination of factors, including host genetics, anatomy, physi-
ology, health status and lifestyle as well as external factors such 
as intake of foods, water and drugs.

GUT TRANSIT TIME: A KEY DETERMINANT OF THE GUT 
MICROBIOTA
Emphasising the importance of transit time, CTT has been 
linked to gut microbiota diversity and composition in both 
population-wide analyses and small-scale studies.10 11 17 18 46 68 

Moreover, stool consistency assessed by the Bristol Stool Scale 
(BSS),69 which is a surrogate marker for CTT, has been iden-
tified as a top covariate of the faecal microbial composition of 
a healthy population.9 Considering that CTT varies markedly 
between individuals and from day to day within individuals,13–16 
microbiota-focused investigations should take gut transit time 
into account. Although faecal microbial species richness has been 
associated with a diverse diet70 and suggested as an indicator 
of the host health status,71 72 it has also been associated with 
long CTT,10 indicating that faecal microbial richness is strongly 
confounded by CTT.73

Table 1  Methods available for gut transit measurements and examples of their application in human gut microbiome research

Method Region Subjects Gut microbiome and/or transit time-related findings References

Direct transit time 
measures

Radio-opaque 
markers

CTT
WGTT

48 healthy subjects Distal CTT was associated with increased microbial α-diversity, 
rectosigmoid CTT was negatively associated with faecal SCFA and 
distal CTT was negatively associated with plasma acetate

18

98 subjects CTT positively associated with microbial community structure, 
microbial richness and microbial protein catabolism

10

48 healthy subjects with slow 
WGTT*

RCT with arabinoxylan-oligosaccharide increased faecal 
Bifidobacterium and softened stool consistency without changing the 
WGTT

46

14 healthy subjects† WGTT positively correlated with urinary sulphate, faecal methanogens 
and negatively with total faecal SCFA, sulphate and bile salts

134

Scintigraphy WGTT
GET
SITT
CTT

50 healthy and constipated 
patients

Colonic mucosal microbiota was not associated with CTT and was 
significantly different between the two groups, faecal microbiota was 
associated with CTT and breath methane

88

36 healthy and 20 patients 
with liver cirrhosis

SITT was negatively correlated with B:F ratio and microbial dysbiosis 
index

215

SmartPill WGTT
GET
SITT
CTT

11 obese and 11 normal 
weight subjects

Shorter SITT was associated with Bact2-enterotype, longer CTT was 
associated with Rum-enterotype

12

33 healthy and 114 IBS-C 
patients

Colonic intraluminal pH levels were significantly lower in IBS patients 
compared with HC, and total faecal SCFA levels correlated negatively 
with CTT

216

19 healthy and
9 constipated subjects

Rectosigmoid pH negatively correlated with Bifidobacterium spp and 
positively with Coprococcus spp

108

Gas-sensing 
capsules

WGTT
GET
SITT
CTT

4 healthy volunteers SITT was slower with a diet high in fermentable fibre (~34 g/day) 
compared with a diet low in fermentable fibre (~22 g/day)

217

Blue dye WGTT 1102 subjects Gut microbiome composition predicted WGTT, longer WGTT was linked 
with Akkermansia muciniphila, Bacteroides and Alistipes spp.

11

Sweet corn WGTT 31 healthy subjects WGTT positively correlated with faecal BCFA and Coprococcus 107

Indirect transit time 
measures

Stool frequency WGTT 69 subjects B:F ratio and Bacteroides:unclassified_Ruminococcacea positively 
associated with stool frequency

218

60 healthy subjects B:F ratio was higher in a group with stool frequency of ≤2 times/week 
compared with one time/day or one time/2 day and ≥2–3 times/day

219

Stool consistency 
(BSS)

CTT 53 healthy subjects Stool consistency was positively correlated with species richness, 
Akkermansia and Methanobrevibacter abundances, and negatively 
associated with the B:F ratio,

17

1126 subjects BSS was associated with the B:F ratio, high BSS score positively 
correlated with F. prausnitzii

220

Faecal water (stool 
moisture)

CTT 31 healthy subjects Faecal water positively correlated with WGTT 107

40 subjects Stool moisture accounted for 4.3% of interindividual microbiota 
variation (absolute abundances)

79

12 IBS patients and 12 
controls

Association between stool consistency and microbial community 
structure/microbial richness

31

Stool crosslinking CTT 170 samples Faecal acetate and methionine were predictive of stool consistency 221

Breath test Oro-caecal 14 healthy subjects Oro-caecal transit time was positively correlated with WGTT 134

*Transit time also measured by BSS, faecal water content and breath test.
†Transit time also measured by the breath test.
BCFA, branched-chain fatty acids; B:F, Bacteroidetes:Firmicutes; BSS, Bristol Stool Scale; CTT, colonic transit time; GET, gastric emptying time; IBS, irritable bowel syndrome; RCT, 
randomised controlled trial; SCFA, short-chain fatty acids; SITT, small bowel transit time; WGTT, whole gut transit time.
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Several bacterial groups including Akkermansia, Alistipes, 
Methanobrevibacter and Ruminococcaceae have consistently 
been associated with firm stools and a long CTT.9 11 12 17 
Moreover, the classification of individuals according to their 
prevailing microbial community structure (ie, Bacteroides-1, 
Bacteroides-2, Prevotella or Ruminococcaceae enterotypes) is 
thought to be driven at least partially by gut transit time.12 74 
The Prevotella enterotype, known to prevail on fibre-rich diets,3 
has been associated with loose stools while the opposite has been 
observed for the Ruminococcaceae enterotype,17 75 which has 
been characterised by increased proteolytic capacity.76 In agree-
ment herewith, a long CTT was associated with an increased 
prevalence of the Ruminococcaceae enterotype in healthy 
subjects12 and decreased levels of Prevotella in constipated 
patients74 and Parkinson’s patients77 that also often suffer from 
constipation.78 Similarly, the abundance of another saccharo-
lytic bacterium, Eubacterium rectale, was reduced in individuals 
with a long CTT.11 Furthermore, one study has investigated the 
associations between the SITT and pH, and the faecal microbial 
community composition.12 This study found that shorter small 
intestinal transit is associated with the Bacteroides-2 entero-
type,12 which is characterised by a high proportion of Bacte-
roides and low microbial cell densities in stools.79 Additionally, 
the abundances of Bacteroides and Flavonifractor were nega-
tively correlated with small intestinal pH, supporting the idea 
that inter-individual variation in environmental conditions in 
the small intestine is linked to gut microbial composition and 
activity.12 Several human studies have established that longer 
CTT is associated with an increase in distal colonic pH,80–82 
suggesting that gut transit time and pH are interrelated. Also in 
vitro experiments simulating short and long gut transit time by 
high or low dilution rates, respectively, have shown that dilution 
rate and pH have a substantial impact on the growth of several 
bacterial groups. For instance, A. municiphila was present at all 
pH ranges (6.0–8.0) in low dilution rates, whereas it only grew 
at high pH (pH>7.0) at a high dilution rate, while M. smithii 
was only detected at a low dilution rate.83 An emerging body of 
scientific evidence thus shows that both gut transit time and pH 
drive the composition of the microbial communities along the 
GIT (figure  2). However, studies investigating the gut micro-
biome in relation to gastrointestinal pH or segmental transit 
time are scarce, and interventional studies to provide further 
evidence remain to be conducted.

Today, most research on the human gut microbiota relies on 
stool samples. While stool samples are generally considered to 
be representative of the luminal colonic microbiota,84 85 the 
faecal microbiota represent an ‘end-product’ of the whole gut 
microbial community. Thus, the relative microbial community 
composition in the faeces is more similar to that of the distal 
colon compared with the proximal colon and small intestine.86 87 
However, the question remains whether absolute numbers of 
saccharolytic bacterial groups are similar in the proximal colon 
and in faeces (mirroring the distal colon), and only change in 
terms of relative abundance due to an increase in abundance of 
slow-growing and proteolytic bacteria in the distal colon. Studies 
including sampling throughout the human GIT are needed to 
deduce how transit time associate with the quantitative human 
gut microbiome composition in the proximal and distal colon, 
respectively. This may be important as the state of the gut micro-
bial community maturation (ie, life-time of the bolus in the 
colon) could explain a considerable fraction of intraindividual 
and interindividual microbiota variation in healthy individuals.73 
Finally, the mucosal microbial communities, which occupy the 
outer mucus layer of the intestinal epithelium, are distinct 

from the luminal microbial communities and their composition 
appears to be less affected by the gut transit time.88

GUT TRANSIT TIME AND GUT MICROBIAL METABOLISM
Transit time not only affects the gut microbiota composition 
but also affects the gut microbial metabolism since differences 
in transit time have consequences for substrate availability 
throughout the GIT (figure 2).

A trade-off between saccharolytic and proteolytic 
fermentation
Non-digestible polysaccharides reach the caecum and the prox-
imal colon where they undergo fermentation by the residen-
tial microbes resulting in the generation of gases (H2 and CO2) 
and metabolites such as short-chain fatty acids (SCFA), mostly 
acetate, propionate and butyrate, which are generally considered 
beneficial for health.89 However, when easy accessible carbo-
hydrates become scarce the microbial activity shifts towards 
fermentation of dietary or mucosal proteins instead.90 This 
results in the formation of potentially deleterious compounds 
such as phenols, indoles, ammonia or hydrogen sulphide (H2S).90 
The depletion of carbohydrates ultimately leads to a decrease 
in SCFA consequently increasing the luminal pH that creates 
a selective pressure on the microbial community thereby redi-
recting the microbial metabolism towards proteolysis.83 Long 
CTT has been associated with reduced faecal SCFA indicating 
either increased absorption, lower availability of fermentable 
polysaccharides in the colon, and/or changed activity.18 81 91 92 
In a recent publication, faecal SCFA concentrations and micro-
bial diversity clustered according to stool consistency assessed 
by the BSS with higher levels of SCFA detected in looser stools, 
reflecting a shorter colonic transit.93

Furthermore, increased CTT has also been associated with 
increased proteolytic fermentation in the colon in both healthy 
subjects10 and patients with Parkinson’s disease.94 In Parkinson’s 
disease, constipation and long CTT are common complica-
tions.78 One study observed elevated serum levels of host–micro-
bial coproducts derived from bacterial proteolysis (p-cresol 
sulphate and phenylacetylglutamine) in a cross-sectional cohort 
with 197 Parkinson’s patients.94 Furthermore, the authors also 
showed that bacterial taxa (Oscillospira and Ruminococcus) 
positively associated with these proteolytic metabolites were 
also positively associated with firm stools.94 Likewise, elevated 
levels of p-cresol sulphate have been observed in autistic chil-
dren95 and in patients with end-stage renal disease,96 patient 
groups who also often suffer from prolonged CTT.97 98 These 
findings suggest that proteolytic metabolites including the host–
microbial co-metabolite p-cresol sulphate might be markers of 
constipation and slow transit rather than indicators of disease. 
In support hereof, urinary levels of p-cresol sulphate, as well as 
phenylacetylglutamine, were also associated with longer CTT in 
healthy individuals, clearly indicating a shift towards microbial 
proteolysis with the prolonged colonic transit.10 Additionally, 
recent evidence shows that even on a homogenous diet, urinary 
levels of these metabolites remain highly variable between 
individuals,99 further emphasising that other factors than diet 
modulate the concentrations of these metabolites. Altogether, 
this suggests that intestinal transit time plays a role in the highly 
individual diet–microbiota responses.

Prolonged transit time has also been linked to increased 
urinary sulphate excretion,100 elevated levels of urinary phenol 
and increased excretion of faecal ammonia,101 another microbial 
by-product of protein degradation. Ammonia has been shown to 
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increase mucosal damage and promote colonic cancer in rats at 
relatively low concentrations.102 103 Similarly, ammonia, as well 
as phenol, have been shown to disrupt tight junctions of cultured 
colon cells (Caco-2).104 However, there is a lack of evidence 
from human studies to link ammonia to colon cancer. Impaired 
mucosal integrity and breakdown of the mucosal barrier are also 
caused by H2S via inhibition of butyrate oxidation by the colo-
nocytes.105 Importantly, we have previously observed a negative 
correlation between mucus-degradation-associated metabolites 
in urine and CTT, suggesting that prolonged colonic transit 
may also lead to enhanced degradation of the mucus layer by 
the microbiota10 in line with observations from fibre-depleted 
diets.106

Elevated concentrations of branched-chain fatty acids (BCFA) 
are positively associated with CTT in healthy adults.107 BCFA 
such as isobutyrate, isovalerate, or 2-methylbutyrate are prod-
ucts of bacterial fermentation of branched-chain amino acids 
and has been positively correlated with the relative abundance of 
Coprococcus and Blautia.107 Interestingly, a study that employed 
the SmartPill to measure gastrointestinal pH, showed that 
Coprococcus spp. was positively associated with recto-sigmoid 
pH, where pH is slightly alkaline (>7) while the inverse was 
observed for Bifidobacterium spp,108 a saccharolytic species109 
thriving at neutral pH.110 This supports the hypothesis that 
prolonged transit time may lead to a less acidic environment 
in the colon as a result of SCFA depletion and accumulation of 
alkaline compounds from the proteolytic processes. In line with 
this, in vitro studies indicate that higher concentrations of BCFA 
were produced at high pH and low dilution rate simulating slow 
luminal washout and thereby slow CTT.83 This increase of intra-
luminal pH towards the distal colon was not observed in rural 
Africans111 who have shorter CTT112 113 and a habitual diet rich 
in dietary fibres, which likely provides a surplus of SCFA.114 In 
addition, it is important to mention that microbial metabolites 
of dietary fats remain an underexplored area, where only a few 
products of microbial origin are known including some sphin-
golipids, endocannabinoids or trimethylamine (TMA). TMA is 
produced by gut microbes from methylamine-containing nutri-
ents (eg, choline, lecithin, L-carnitine) and further processed in 
the liver to trimethylamine N-oxide (TMAO).115 While TMAO 
levels have been correlated with the risk of cardiovascular 
events,116 no study has investigated links between TMAO and 
gut transit time.

Taken together, colonic fermentation is in essence a trade-off 
between saccharolytic and proteolytic metabolism, which 
depends on a complex interplay between the composition of the 
gut microbiome, the substrate availability and colonic pH—all of 
which are affected by transit time. A slow colonic transit limits 
the carbohydrate availability in the colon, favouring bacteria 
that can use other sources of energy such as dietary or host-
derived proteins. Moreover, the nature of the microbial prod-
ucts also changes the physicochemical properties of the colonic 
environment for example, by changing pH and thus altering the 
microbial composition and metabolism.

Cross-feeding and gas metabolism
While most of the microbes residing in the colon belong to 
Bacteroidetes or Firmicutes phyla117 including species from the 
classes Bacteroidia and Clostridia that possess a large variety 
of carbohydrate-active enzymes,118 less abundant species in 
the colon include those using secondary products of carbohy-
drate fermentation (eg, hydrogen, lactate, succinate, formate or 
ethanol). These include hydrogen-consumers such acetogenic 

bacteria, which comprise a phylogenetically diverse group of 
bacteria including Blautia hydrogenotrophica (previously known 
as R. hydrogenotrophicus119), methanogenic archaea with the 
predominance of Methanobrevibacter smithii, and sulphate-
reducing bacteria (SRB), mostly represented by Desulfovibrio 
genus.120–122 Although many species can produce lactate, it does 
not accumulate in the colon under healthy conditions due to 
the presence of lactate utilisers that use lactate for growth and 
produce SCFA.123 Lactate can be converted into propionate by 
Coprococcus catus, while Anaerostipes and Anaerobutyricum spp 
can convert lactate into butyrate.124 Both lactate and succinate 
can be converted into propionate by Veillonella spp. Some of the 
other succinate utilisers include Dialister and species, although 
some Bacteroides, for example, B. vulgatus can also produce succi-
nate.125 Lactate accumulates in stools of subjects with chronic 
diarrhoea, especially during severe ulcerative colitis suggesting 
a perturbation of the balance between lactate-producers and 
utilisers in those patients.126 127The production of H2 by the gut 
microbes seems to be coupled with low pH.83 Given that CTT is 
linked to pH, CTT likely affects the H2 production and competi-
tion between hydrogen-using species including acetogens, meth-
anogens and SRB.128 While acetogens can use H2 (and CO2) or 
formate to generate acetate at low pH,129 methanogens can use 
H2 (and CO2) or formate to produce methane (CH4) and SRB 
can use H2 or lactate to produce H2S (in a presence of sulphate) 
at neutral or slightly alkaline pH.122 H2S and CH4 have both 
been found in higher concentrations at low dilution rates (simu-
lating long gut transit time) in vitro suggesting that SRB and 
methanogens are affected by the rate of the luminal washout. 
In support hereof, high breath levels of CH4 as well as the faecal 
abundance of M. smithii, a slow-growing methanogen unable to 
degrade sugars,130 have repeatedly been associated with consti-
pation and slow CTT.9 11 12 17 130 Yet, a recent study reported 
that breath CH4 was associated with both the faecal and mucosal 
microbiota even after adjusting for transit time, emphasising that 
other factors beside transit time affect the presence of methano-
gens. Indeed, the abundance of hydrogen-using species is depen-
dent on the growth and competition of hydrogen-producers, and 
intraluminal factors such as substrate availability and pH.83 128

Bile acids and enterohepatic circulation
During meals, bile is released from the gallbladder into the 
duodenum. Although 95% of the bile acids are reabsorbed in 
the terminal ileum, the rest escapes to the colon and becomes 
available to the colonic microbial community131 that forms a 
large variety of secondary bile acids that upon re-absorption can 
re-enter the bile acid pool via the enterohepatic circulation.132 
Yet, the bile acid composition may be affected by CTT. Increased 
levels of deoxycholic acid in bile133 and serum82 were observed 
with longer colonic transit and less bile was egested via stool,134 
suggesting that prolonged CTT provides a longer time for the 
conversion into secondary bile acids and/or reabsorption of 
the secondary bile acids. Notably, the intestinal transit time is 
longer in patients with cholesterol gallbladder stones,135 136 who 
have been shown to have higher deoxycholic acid in their bile 
and higher intraluminal pH in the proximal and distal colon, 
compared with healthy controls.82 In addition, the 7α-dehydrox-
ylases, responsible for microbial conversion of primary bile acids 
into deoxycholic acid and lithocholic acid, are pH-sensitive and 
only active at pH above 6.5.137 138 Since the intraluminal pH is 
related to CTT, interindividual differences in pH and transit time 
could be important for personal diet–microbiome–host interac-
tions also concerning the microbial conversion of bile acids.
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Prolonged colonic transit has also been associated with an 
increased concentration of circulating oestrogens,139 140 which 
has been associated with an increased breast cancer risk in 
postmenopausal women.141 Interestingly, a large cohort study 
reported that higher stool frequency, typically reflecting shorter 
transit time, was associated with decreased risk of breast 
cancer.142 Steroids as well as drugs, food additives and some 
other dietary compounds, for example, heterocyclic amines from 
protein-rich diets,143 undergo glucuronidation or sulphation in 
the liver prior to excretion to the bile. However, the glucuronide 
conjugates can be hydrolysed by bacterial β-glucuronidases in 
the gut, which in return increases their reabsorption and reten-
tion time in the body.144 Long colonic transit may therefore 
increase the hydrolysis of these glucuronide-conjugates in the 
colon thus increasing their bioavailability.145 Bacterial β-glucuro-
nidases seem to be inhibited by low pH137 138 and acidification of 
the colon (eg, by high intake of dietary fibre) may prevent accu-
mulation of glucuronide de-conjugates. Similarly, the sulphate-
conjugates excreted via bile provide substrate for the SRB that 
are inversely associated with transit time.92 Although the rela-
tionship between transit time and the enterohepatic circulation 
is still not well understood, changes in transit time may alter the 
bile acid pool and affect enterohepatic circulation, which could 
have implications for both the resident gut microbes and human 
metabolism.

GUT MICROBIAL METABOLISM IMPACTING GUT TRANSIT 
TIME
Evidently, the gut transit time is a major driver of heterogeneity 
of the intestinal microbial community and either directly or indi-
rectly impacts host–microbial cometabolism.124 Adding to the 
complexity, there is evidence that the interaction between the 
microbiota and the intestinal transit time is bidirectional, as the 
presence of microbes and their excreted compounds may affect 
gut motility (figure  3).146 147 Germ-free mice exhibit impaired 
peristalsis in the GIT, which is restored by colonisation of the 
gut.148 It has also been shown that intestinal peristalsis and 
colonic serotonin levels were decreased in mice that received 

faecal microbiota from patients with constipation.149 Moreover, 
administration of some probiotics has been shown to improve 
constipation symptoms, suggesting that presence of certain 
species might change gut transit.150 151 One of the possible 
mechanisms by which microbes impact gut transit is through 
the host cells’ recognition of bacterial molecular components 
by the toll-like receptors, which mediate interactions between 
the microbiota and the enteric neuromuscular apparatus. For 
example, lipopolysaccharides from the outer membrane of 
gram-negative bacteria impair intestinal contractility by acti-
vating oxidative stress in the mucosa.152 Other mechanisms 
may involve the microbial-derived metabolites such as SCFA, 
neurotransmitter homologs and gases, which can act on the 
enteric neuromuscular apparatus.153 SCFA can bind to G-pro-
tein coupled receptors for free fatty acids (GPR41, GPR43, 
OLFR78, GPR109A)154 and consequently stimulate the release 
of serotonin (5-hydroxytryptamine, 5-HT) from endocrine cells 
present in the colonic epithelium, a process which promotes 
the peristalsis via the enteric nervous system.155 However, the 
presence of SCFA in the gut lumen also stimulates the release 
of gut hormones, for example, PYY156 that may slow down 
gastrointestinal transit.157 Butyrate and acetate may also affect 
the GIT motility through smooth muscle and myenteric neuron 
activation.158 159 Moreover, absorption of SCFA in the colon is 
linked to fluid and electrolyte uptake,160 which, if disrupted, can 
lead to altered CTT.124 Recent evidence shows that secondary 
bile acids regulate CTT in mice with lithocholic acid inducing 
faster transit.161 One of the mechanisms by which bile acids 
affect the gut transit time is via the activation of the G protein-
coupled bile acid receptor 1 (TGR5) leading to increased colonic 
motility.162 Furthermore, bile acids, both the host-derived and 
the microbiome-modified, can act as signalling molecules on 
the Farnesoid X receptor (FXR) and TGR5 receptor, which 
are expressed not only on epithelial cells throughout the GIT, 
but also outside of the GIT.163 164 Through these receptors, bile 
acids also act as regulators of lipid, glucose and energy metabo-
lism.165–167 Furthermore, tryptophan catabolites (eg, tryptamine, 
indoleacetic acid, indolelactic acid or indolealdehyde)168–171 may 
affect intestinal motility via activation of the aryl hydrocarbon 
receptor.172 Tryptamine can activate the serotonin receptor-4 
(5-HT4R)173 thereby accelerating the gut transit. Histamine, 
produced by M. morganii and L. reuteri from histidine, has also 
been observed to increase colonic motility in monocolonised 
mice.174 Finally, the gases H2 and CH4 are known to exert effects 
on the intestinal muscle contractile activity thereby affecting the 
gut transit time in animal models.175 While the infusion of H2 
into the colon of guinea pigs shortened CTT, the inverse has 
been shown for CH4.

176 Altogether, the gut microbiota can 
modulate gastrointestinal motility via production of small mole-
cules interacting with the host-receptors on enteroendocrine 
cells and other cell types such as enteric neurons.172

THE ROLE OF GUT TRANSIT TIME IN HEALTH AND DISEASE
Sustained prolonged or shortened transit time could have 
consequences for host health due to the effects of gut micro-
bial composition and metabolism.177–179 Here, we discuss several 
areas in which transit time may play a vital role.

Gastrointestinal diseases
Gastrointestinal diseases such as constipation or IBS are 
highly prevalent worldwide. According to a recent large-
scale study, more than 40% of persons worldwide suffer from 
at least one functional gastrointestinal disorder,180 which 

Figure 3  Schematic overview of microbial-derived signalling 
metabolites in the intestinal epithelium and their effect on gut motility. 
Microbial-derived metabolites interact with various metabolite receptors 
expressed on enterocytes or enteroendocrine cells (EEC) and stimulate 
serotonin secretion from the EEC cells. The released serotonin activates 
the enteric neurons that promote gut motility. Other metabolites (eg, 
histamine) can modulate gut motility via other mechanisms. 5-HT4R, 
serotonin receptor-4; AhR, aryl hydrocarbon receptor; FXR, Farnesoid X 
receptor; IAA, indoleacetic acid; IAld, indolealdehyde; ILA, indolelactic 
acid; SCFA, short-chain fatty acids.Created with Biorender.com.
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are disorders related to any combination of motility distur-
bance, visceral hypersensitivity, altered mucosal, and immune 
function, altered gut microbiota and altered central nervous 
system processing.181 Here, we focus on gastrointestinal 
diseases that exhibit altered transit time.

Slow transit through the small bowel may result in the over-
growth of bacteria in the small intestine, a condition known 
as small intestinal bacterial overgrowth (SIBO). Patients with 
SIBO typically have high bacterial densities in the small intes-
tine (>105 colony forming unit (CFU)/mL) due to impaired 
peristalsis and insufficient washout of the bacterial mass into 
the colon.182 Moreover, slow transit through the small intes-
tine provides a longer time for absorption of chyme resulting 
in reduced flow of the chyme into the colon, which in turn also 
slows down the transit rate through the colon.183 SIBO is prev-
alent among patients with IBS,184 a condition characterised by 
abdominal pain or discomfort and associated with changes in 
bowel habits affecting more than a tenth of the general popu-
lation.185 Patients with constipation-predominant IBS (IBS-C) 
exhibit prolonged CTT when compared with healthy controls 
in all regions of the colon.186 A recent study showed that IBS-C 
and diarrhoea-predominant IBS (IBS-D) patients have distinct 
faecal microbiome compositions and metabolomes. The micro-
biome of the patients was found to be classified according to 
predominant bowel habits, but not the severity of IBS symp-
toms.187 The microbiome differences observed between the 
two phenotypes of IBS are thus likely to be explained by differ-
ences in transit times,188 as similar compositional differences 
have been observed when comparing healthy individuals with 
long and short gut transit, respectively.11

Diarrhoea and/or constipation are also often experienced 
by patients with inflammatory bowel disease (IBD) including 
Crohn’s disease and ulcerative colitis, both characterised by 
inflammation in the gut.189 It has been observed that faecal 
levels of secondary bile acids in IBD patients were decreased 
during the flare episodes but not in the remission state.190 
This may be explained by changes in CTT between the two 
states since flares are often accompanied by diarrhoea, which 
could limit the gut microbiota’s conversion of bile acids into 
secondary bile acids. Nonetheless, both faecal water content 
and inflammatory markers were needed to predict the micro-
bial enterotypes in IBD patients.191

Both constipation192 and IBD189 are risk factors for the 
development of colon cancer, which is the third most 
common cause of cancer worldwide.193 Colon cancer is, 
among other lifestyle factors, associated with Western-type 
diets and prolonged gut transit time, both of which can lead 
to an altered bile acid pool.82 194 Secondary bile acids at high 
physiological concentrations, especially deoxycholic acid and 
lithocholic acid are toxic to colonic cells as they induce apop-
tosis and cause DNA damage.195–198 Notably, tumours often 
occur in the distal part of the colon,199 where fermentation 
of complex carbohydrates is less active and the microbiota is 
switching to proteolysis.123 200 Long CTT192 201 as well as lack 
of fermentable dietary fibres202 may lead to enhanced prote-
olysis in the colon, which potentially could play a role in the 
pathophysiology of colon cancer.203 Conclusive results for 
the latter are scarce, but the interplay between CTT, diet and 
gut microbiome could be key in the prevention and manage-
ment of gastrointestinal diseases.

Diseases beyond the gut
Constipation and altered bowel habits have also been asso-
ciated with neurological and metabolic diseases, and the use 

of several medications.61 In Parkinson’s disease, constipation 
affects up to 80% of the patients and often precedes the onset 
of motor symptoms by years.204 A recent meta-analysis on gut 
microbiota in Parkinson’s patients has shown higher species 
richness, an increase in relative abundances of the genera 
Akkermansia and Methanobrevibacter as well as the family 
Christensenellaceae, depletion of butyrate producers, and low 
faecal SCFA when compared with healthy controls.205 These 
changes are very similar to the associations seen between 
transit time and gut microbiota composition and metabo-
lism in healthy individuals.9 11 12 17 Therefore, the observed 
microbiome differences between Parkinson’s patients and 
healthy controls are likely to be confounded by differences 
in transit time. Similar to Parkinson’s disease, constipation 
is a common complication among patients with Alzheimer’s 
disease78 and multiple sclerosis206 . Investigations of microbial 
compositional changes in these patients207 208 could therefore 
be confounded by an altered gut transit time as well.

Delayed gastric emptying, as well as episodes of consti-
pation and diarrhoea, have been reported for patients with 
both type 1 and type 2 diabetes mellitus.209–211 Although 
the changes in the gut motility of these patients may be a 
consequence of their treatment (e.g. metformin).66 In obesity, 
accelerated gastric emptying and changes in the transit in the 
small intestine, as well as both constipation and diarrhoea, 
have been reported.212 213 Altered gut motility affects the time 
for nutrient absorption and may contribute to changes in 
hormonal responses and glucose homeostasis.107 213 A recent 
cohort study has shown associations between stool frequency 
and vascular and non-vascular diseases in a Chinese popu-
lation.214 The authors found that ‘less than three stools per 
week’ were associated with a higher risk of ischaemic heart 
disease and chronic kidney disease, further suggesting a link 
between bowel habits and health.214 These findings together 
suggest that gut transit time can confound investigations of 
microbiota composition when comparing patient groups. 
Whether altered transit time and bowel habits play a role 
in the early onset and development of diseases remains 
unknown.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES
Taken together, there is convincing evidence that gut transit 
time varies not only between healthy individuals but also within 
subjects from day-to-day and that many diseases are associated 
with altered gut transit time. Changes in gut transit time have 
been associated with changes in faecal pH, faecal microbial load 
and composition but most importantly with diet–microbe inter-
actions and microbial metabolism including shifts from saccha-
rolytic to proteolytic fermentation. Since microbial-derived 
metabolites are important regulators of host physiology, gut 
transit time is likely to play a key role in host health. Although 
gut transit time remains largely overlooked in many gut micro-
biome studies, an increasing number of human studies have 
included WGTT or segmental transit time (SITT or CTT) and 
evaluated its impact on microbial composition and other target 
outcomes confirming the importance of this factor. By including 
gut transit time measurements in gut microbiome-related studies, 
we can advance our understanding of the links between the gut 
microbiome, diet and disease. Such insights may be key for the 
prevention, diagnosis and treatment of several diseases in the gut 
and beyond throughout the lifespan .
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