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Torsional periodic lattice distortions and
diffraction of twisted 2D materials

Suk Hyun Sung 1, Yin Min Goh 2, Hyobin Yoo 3, Rebecca Engelke 4,
HongchaoXie 2, Kuan Zhang5, Zidong Li 6, AndrewYe7, Parag B. Deotare 6,8,
Ellad B. Tadmor5, Andrew J. Mannix 9, Jiwoong Park 7,10, Liuyan Zhao 2,
Philip Kim 4 & Robert Hovden 1,8

Twisted 2D materials form complex moiré structures that spontaneously
reduce symmetry through picoscale deformation within a mesoscale lattice.
We show twisted 2D materials contain a torsional displacement field com-
prised of three transverse periodic lattice distortions (PLD). The torsional PLD
amplitude provides a single order parameter that concisely describes the
structural complexity of twisted bilayer moirés. Moreover, the structure and
amplitude of a torsional periodic lattice distortion is quantifiable using rudi-
mentary electron diffraction methods sensitive to reciprocal space. In twisted
bilayer graphene, the torsional PLD begins to form at angles below 3.89° and
the amplitude reaches 8 pm around the magic angle of 1. 1°. At extremely low
twist angles (e.g. below 0.25°) the amplitude increases and additional PLD
harmonics arise to expand Bernal stacked domains separated by well defined
solitonic boundaries. The torsional distortion field in twisted bilayer graphene
is analytically described and has an upper bound of 22.6 pm. Similar torsional
distortions are observed in twisted WS2, CrI3, and WSe2/MoSe2.

Periodic lattice distortions (PLD) are at the heart of correlated elec-
tronic behavior such as superconductivity1, metal-insulator
transitions2, and charge density waves (CDW)3. PLDs are typically
intrinsic to a crystal3,4, Fermi-surface driven5, accompanied by a CDW,
and have periodicity spanning a few unit cells (~1–2 nm). However,
recently extrinsic van der Waals (vdW) driven superlattices with tun-
able periodicity (up to a few 100 nm) were discovered in twisted
bilayer graphene (TBG)6. TBG has been spotlighted for extraordinary
correlated electron behaviors for a twist at the so-called “magic” angle
(~1.1°)7. Yoo et al. showed that magic angle TBG is not a simple
superposition of two constituent layers6, but rather a 2D crystal that
periodically restructures at the mesoscale. Subsequent reports
showedmoiré superlattices of other vdWsystemswith similar periodic

restructuring8–11. Furthermore, this restructuring has a dramatic effect
on the band structure, magnetism, and superconducting
properties6,9,12. Therefore, understanding twisted 2Dmaterials requires
a full description of the atomistic structure down to picoscale dis-
placements. However, a systematic depiction of restructured moiré
superlattices is nearly absent and limited to descriptions of local
stacking geometry.

Here, we show the atomic structure of 2D moiré superlattices at
and near the magic angle are concisely and accurately described by a
torsional PLD comprised of three transverse displacement waves. In
this way, the complexity of low-twist moiré crystal restructuring is
reduced to a single PLD order parameter with an amplitude and wave
vector. Each layer in the bilayer system has an equal and opposite
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torsional PLD amplitude. From quantitative diffraction of low twist
angle and magic angle graphene, the atomic displacements of the
larger superlattice can be measured. In twisted bilayer graphene, we
report a torsional PLD amplitude of 7.8 ± 0.6pm and 6.1 ± 0.4 pm for
twist angle (θ) of 1.1° and 1.2°, respectively. We report an upper bound
for the PLD amplitude of twisted bilayer graphene to be 22.6 pmbased
on interlayer interaction energy. In addition, we show that the tor-
sional PLD amplitudes can be accurately predicted across all twist
angles using an analytic model of the vdW stacking and elastic ener-
gies. Lastly, we show that this torsional PLD exists across a variety of
other layered 2D materials.

Results
Periodic restructuring in twisted bilayer graphene
Moiré patterns emerge for two rotated lattices. In TBG, two single
layersof graphene are stackedwith a small interlayer twist (Fig. 1c). The
moiré of this twisted bilayer graphene (TBG) is an alternating pattern
of three high symmetry stackings (AA, AB, and BA), separated by
channels of solitonic, intermediate dislocation (often described as an
energetic saddle-point)13,14. In the energetically favorable AB stacking
(also called Bernal stacking), half the atoms in one layer are atop atoms
in the layer below (Fig. 1d); BA stacking is themirror of AB stacking. AA
stacking (Fig. 1e), where all atoms in both layers are aligned, requires
much higher energy (~19meV/atom15). Despite the complex super-
structure of moiré stacking, the diffraction pattern of TBG is a simple
superposition of two rotated single-layer Bragg peaks16—validated by
quantum mechanical scattering simulation in Fig. 2b and previously
measured experimentally at higher twist angles17.

In low twist angle bilayer materials, a striking restructuring of the
moiré lattice emerges. Dark-field (DF-) TEM6,13 and later 4D-STEM18,19

revealed that this superlattice corresponds to a triangular array of AB/
BA domains. However, domain boundaries soften near or above the
magic angle (θ ≈ 1°) and a simple array of perfect AB/BA domains fails
to correctly capture the full atomistic structure of the twisted
system20,21.

Here, we show that a PLD model provides a precise and concise
description of lattice restructuring in TBG. PLDs are sinusoidal dis-
placements of atomic positions (r0 = r0 +A sinðq � r0Þ; r0, r0 are
deformed and original atomic positions, q is the wave vector, and A is
the displacement vector). Both longitudinal (A∥q) and transverse
(A⊥q) distortion waves naturally emerge in various charge-ordered

crystals, including 2D materials (e.g., longitudinal: TaS2
3,22, NbSe2

23; or
transverse: BSCMO4, UPt2Si2

24).
A torsional PLD succinctly and accurately describes the relaxed

structure of TBG (Fig. 1b). The torsional displacement field is made
from three non-orthogonal, transverse PLDs (Fig. 1a):

Δn =An

X3
i= 1

Âi sinðnqi � r0 +ϕiÞ; Âi ? qi ð1Þ

Here, r0 are undistorted atom positions, qi is the PLDwave vector,
and Âi is the unit vector describing the transversity of the PLD. The
distorted lattice positions are given by: r = r0 +Δn. Three q’s are 120°
apart with a magnitude set by the twist angle (∣q∣ ≈ bθ, b is the reci-
procal lattice constant) to accommodate the symmetry of the moiré
pattern (See Supplementary Note 1). The phase, ϕi, shifts or alters the
relaxation patterns (Supplementary Fig. S8). For TBG, the origin is
placed at theAAcenter (ϕi =0). Importantly, this torsionalwave occurs
in both layers, however, the direction of the field in each layer is
reversed such that distortions are opposite. Transverse distortions,
Âi ? qi, are expected when the lattice constants of both layers are
equivalent (otherwise longitudinal components, Âi k qi, may be pre-
sent). A single torsional PLD (Δ1) is typically sufficient to describe the
system, however, more generally, PLDs with higher-order harmonics
(n > 1) are permissible and the total displacements become the sum of
multiple harmonics (as discussed later).

Figure 1a illustrates the displacement field (Δ1) from a torsional
PLD in one layer of twisted bilayer graphene. The arrows show the
direction and magnitude with which atoms displace from their
expected lattice sites. The torsional field is a nanoscale trigonal lattice
of rotational distortions spaced 1/∣q∣ apart. The distortion field exhibits
behaviors desired for relaxation of TBG—twisting AA regions in one
direction and anti-twisting AB/BA regions in the other. The vdW
interaction between layers strives to locally twist (anti-twist) AA (AB/
BA) regions tominimize (maximize) interlayer registration and reduce
the total interaction energy. The relaxed structure (Fig. 1b)—obtained
by applying displacements to original atomic sites (Fig. 1c)—acts to
maximize the low-energy regions with AB/BA stacking and decreases
the high-energy regions with AA stacking.

Torsional PLDs are immediately apparent in an electron diffrac-
tion pattern. This atomic restructuring manifests as superlattice peaks
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Fig. 1 | Periodic restructuring of twisted bilayer graphene (TBG). aDisplacement
field of torsional PLD. Local rotational fields for the AA region and AB/BA regions
are opposite. By including higher harmonics, PLD can exhibit any arbitrary pattern.
The moiré supercell crystal structures of c pristine TBG and b restructured TBG
with torsional PLD model. Red and blue overlay highlights energetically

unfavorable AA stacked region, and stable AB/BA stacked region, respectively. PLD
decreases the total energy of the system by expanding AB/BA domain and
decreasing the AA domain. Crystal structure of d AB stacked and e AA stacked
bilayer graphene are shown as a reference.
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that decorate Bragg peak pairs and appear more pronounced around
higher-order Bragg peaks. The superlattice peaks represent a sym-
metry reduction beyond that from the global twist angle. The torsional
PLD superlattice peaks in TBGat 1.1° are shown (Fig. 2a). The azimuthal
intensity distribution of superlattice peaks in SAED of 1.1° TBG implies
transversity of the distortion wave (Â ? q).

Diffraction of Moiré materials
PLDs diffract into reciprocal space as superlattice peaks that surround
eachBraggpeak. These superlattice peaks are positionedαq away from
Bragg peaks (Fig. 2i–k). The superlattice peaks have intensities pro-
portional to ∣ Jα(k ⋅A)∣2 where Jα is a Bessel function of the first kind, k is
the position of the superlattice peak in reciprocal space, and α is an
integer3,22,25. For typical values of k and A, the Bessel function mono-
tonically increases with ∣k∣ and decreases inversely with the integer α.
The appearance of strong superlattice peaks at high-order Bragg spots
(i.e., at larger ∣k∣) is a signature of periodic lattice distortions (PLD)
(Supplementary Fig. S1). An analytic expression for the diffraction
of twisted 2Dmaterials with a torsional PLD is provided in theMethods.

The dot product (k ⋅A) reveals the transversity of PLDs in twisted
bilayermaterials. In reciprocal space, the transverse PLDsmanifest as a
distribution of superlatticepeaks that are stronger along the azimuthal

direction (Supplementary Fig. S1c). In contrast, a longitudinal PLD
would produce superlattice peaks that become stronger radially along
Bragg vectors (Supplementary Fig. S1b). The torsional PLD in TBG
results from the superposition of three transverse PLDs.
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Bragg peaks, marked by gray circles. b The simulated diffraction pattern of unre-
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data (c–e). i–k Schematic illustration shows PLD wave vectors (qi’s) in relation to
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The torsional PLD quantitatively describes experimental obser-
vations of twisted bilayer diffraction—superlattice peaks near higher-
order Bragg peaks have higher intensities, and superlattice peak
intensities increase monotonically as PLD amplitude increases. The
torsional PLD in TBG is validated by quantum mechanical multislice
simulation. Simulated SAED patterns (Fig. 2f–h) show excellent
agreement with experimental data (Fig. 2c–e). More specifically, the
relative superlattice to Bragg peak intensity and distribution of simu-
lated superlattice peaks are consistent.

The torsional PLD in TBG is primarily described by a single
amplitude coefficient (A1). We report a torsional PLD amplitude (A1) of
7.8 ± 0.6 pm for θ = 1. 1° and 6.1 ± 0.4 pm for 1.2° near the magic angle
in TBG. The PLD amplitude was quantified by matching experimental
and simulated diffraction intensities (See Supplementary Fig. S2).
Torsional PLD amplitudes for additional twist angles are plotted in
Fig. 3a—showing a decrease in amplitude as the twist angle is increased
and ultimately disappearing above 3.89°.

Critical twist angles and the low-twist regime
Below a 3.89° twist angle, atomic distortions in TBG exceed a pic-
ometer (A1 > 1 pm). The periodic relaxation of TBG results from
competition between interlayer van der Waals stacking energy
benefit (VvdW) and elastic cost of distortion (VEl)

26. Elastic energy
cost to accommodate a torsional PLD with amplitude A1, assuming
Hookean elasticity, is 2

ffiffiffi
3

p
π2GA2

1 for each layer, where G is the shear
modulus of graphene (9.01 eV/Å2 20) (Fig. 3b, blue, derived in Sup-
plementary Note 3). Notably, the elastic energy per supercell is
independent of the twist angle, and hence of moiré supercell size.
For van der Waals interaction, VvdW, we employ Kolmogorov and
Crespi’s model27 and compute the interlayer energy as a function
of PLD amplitude (See Methods). VvdW has two salient features:
first, energy per moiré supercell is proportional to the area of the
cell (∝θ−2) and second, VvdW minimum is at A1 = Amax = 20.35 pm
(Fig. 3b, top red). Therefore, at large θ where VEl dominates total
energy, the total energy is at minimum at small A1. In contrast, as θ
decreases, A1 approaches 20 pm.

We report an upper and lower bound of the PLD amplitude, A1,
to be 0 and 22.6 pm, respectively. Local rotation due to the torsional
PLD (Ω1 =

1
2∇×Δ1) near AB region is 3qA1

4 . For graphene (a = 2.46 Å), A1

of 22.6 pm will restore all local twist in each layer (∣Ω1∣= θ
2). Negative

A1 amplitude is energetically unfavorable as it increases the local
twist angle, which decreases the AB domain size. See Supplementary
Note 2 for a detailed discussion.

The interlayer interaction energy VvdW of TBG is excellently
approximated by a quadratic function within the geometrically-
allowed region of A1 (0 ≤ θ ≤ 22.6 pm). A non-linear least squares fit
gives a semi-empirical model of V vdW = 2v0

θ2
ðA1 � AmaxÞ2 where

v0 = 0.0732 eV Å−2 and Amax = 20.35 pm. Notably, Amax corresponds to
energetically allowed maximum A1. The total energy of TBG with a
torsional PLD is V tot = 4

ffiffiffi
3

p
π2GA2

1 +
2v0
θ2

ðA1 � AmaxÞ2. Minimizing Vtot

with respect to A1 gives a Lorentzian function:

A1ðθÞ=Amax 1 +
2π2

ffiffiffi
3

p
G

v0
θ2

 !�1

ð2Þ

Eq. (2) (Fig. 3a, black) matches excellently with A1 extracted from
experimental data and simulations (Fig. 3a red). The amplitude of the
PLD exceeds 1 pm below 3.89° twist—which we define as the low-twist
angle regime in TBG. Note, only at the lowest angles below ~0.5° do we
see a slight underestimation from the Lorentzian model; suggesting
higher-order distortions become noticeable.

Sharp PLD boundaries at extreme low-twist angles
We report a lower twist angle (θ≲0.5°), TBG relaxes with more com-
plexity, thus roughly defining the extreme low-twist regime. Compar-
ing diffraction patterns at higher θ (e.g., 1.1°, Fig. 2a) and lower θ (e.g.,
0.4°, Fig. 5a), lower twist angle SAED patterns show not only stronger
superlattice peaks, but also different distribution of superlattice peaks
with higher-order superlattice peaks. This is attributed to the shar-
pening of soliton boundaries between AB and BA domains. Yoo et al.’s
work suggested that dislocation boundaries become more well-
defined at low twist angles using DF-TEM. Even at zero-twist, soliton
boundaries have been reported13,17. In the extreme low-θ regime, shear
soliton boundaries reach a minimum width previously reported to be
6.2 ± 0.6 nm13. However, even when soliton boundaries have minimal
width, as θ decreases, these boundaries become a smaller fractional
area of themoiré supercell. Thus, at extremely low-twist the PLD needs

Fig. 4 | PLDs as a Fourier series in 2DMoiré materials. a–c Evolution of periodic
wave (Δ) as higher harmonic waves b N = 3, c N = 7) are included; Δ is normalized
displacement magnitude over one period along one direction. Fourier coefficients
(An) are tailored as exponential decay, which produces to a smooth “sawtooth”-like
waveform. Including harmonic waves allows high-frequency (i.e., sharp) features in
resultant waves. d–f Torsional PLD structure with higher harmonic PLD included.

The color denotes the amount of local rotation (ΩN) due to the PLD displacement
field (arrows). g–i Quantum mechanical electron diffraction simulations of TBG
with single harmonic torsional PLD capture the distortions in high twist angles (i.e.,
near magic angle and higher) well. j–o Adding higher harmonics slightly modifies
the diffraction patterns and shows qualitatively bettermatcheswith low twist angle
systems.
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to be generalized to include an additional number (N) of Fourier har-
monics to accommodate sharper boundaries:

ΔN =
XN
n= 1

Δn ð3Þ

The Fourier coefficient An dictates the texture of a torsional PLD.
Figure 4d–f shows the evolution of a torsional PLD as higher-order
Fourier harmonics are included. The arrows represent the displace-
ment field of the torsional PLD and the colored overlay represents the
local rotational field (ΩN, see Supplementary Note 3) in one of the
layers; the opposing layer has an equal and opposite local rotational
field (−ΩN). Figure 4d shows a torsional PLD with a single coefficient.
The PLD rotational field reveals most of the relaxation is facilitated
through twisting circular AA regions (orange). In contrast, with higher
harmonics included (Fig. 4e, f) triangular AB/BA regions are anti-
twisted (blue) to maximize Bernal stacking within the system in addi-
tion to twisting AA regions. Fourier coefficient design produces ΩN

field pattern that matches previously reported experimental results of
local twist fields18. Although each harmonic PLD wave contributes
elastic energy independently (see Supplementary Note 3.2), this is not
true for the interlayer van der Waals energy. In Fig. 4e, f, An decays
exponentially (An =A1e

−κ(n−1)); analogous to a smooth ‘sawtooth’-like
wave in a one-dimensionalwave (Fig. 4a–c). Notably, for a smooth—i.e.,
infinitely differentiable—wave, exponential decay is the upper bound
for Fourier coefficients (Paley–Wiener theorem).

The PLD amplitudes for higher harmonics (An) are calculated by
minimizing the total interlayer and intralayer energies (See Methods).
Each higher-order term becomes non-negligible incrementally at
smaller angles. A2, A3, and A4 will exceed 1 pm at θ≲0.9°, 0.45°, and
0.3°, respectively (See Supplementary Fig. S3). We describe the
extreme low-twist regime to be when A3 becomes significant (>1 pm),
however, this demarcation is imprecise. An decays exponentially with
coefficient κ(θ) linearlyproportional to the twist angle (An =A1e−κ(θ)⋅(n−1)).
Thus, decreasing θ retards decay of An and higher harmonics becomes
more significant (See Supplementary Fig. S4). The fundamental PLD
amplitude, A1(θ), remains well described by the empirical Lorentzian,
Eq. (2), even when higher-order harmonics are present. If harmonics
are ignored, the computed value ofA1 will deviate bymore than 1 pmat
twist angles below θ < 0.25° but never exceed ~10%. Noticeably, the
inclusion of higher harmonics creates a torsional PLD texture that
allows enhancement of A1 in the extreme low twist angle regime.

Multislice simulation of SAED (Fig. 4g–o) shows that the dis-
tribution of superlattice peaks changes with the presence of higher
harmonics. nth harmonic PLDwaves add intensity to superlattice peaks
nαq away from each Bragg peak (α is the integer in Jα). Figure 4g–o
shows simulated TBG diffraction patterns with higher harmonics have
stronger superlattice peaks further away from the Bragg peaks. The
change is subtle because higher-order harmonics are exponentially
weaker.

As θ nears zero, many higher harmonics (N) are needed and the
Fourier basis is more cumbersome. Instead, a hard-domain model,
where the superlattice is treated as a quilt of AA, AB, and BA domains
with dislocation boundaries, may also become suitable. In the limit of
zero angle twist, boundaries become the stacking fault boundaries
reported by Brown et al. for untwisted bilayer graphene17.

Fig. 5 | Universal torsional PLD relaxation of twisted 2D materials. Periodic
relaxation is observed universally in multiple twisted 2D systems. SAED of a low-θ
TBG, b twisted four-layer (4L) WS2 homostructure, c twisted bilayer (2L + 2L) CrI3,
d twisted WSe2/MoSe2 heterostructure shows bright Bragg peaks with small
superlattice peaks. Insets i–iii are multislice simulated diffraction patterns with a
torsional PLD model. The torsional PLD model reproduces qualitatively accurate
SAED patterns across multiple systems.
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Torsional PLDs across many twisted 2D materials
Torsional PLDs in twisted 2D materials are a universal phenomenon
and not limited to TBG8–10,28. Figure 5 shows SAED patterns that exhibit
periodic relaxations of four distinct twisted 2D systems: (a) low twist
angle TBG, (b) four-layer of WS2 (4L-WS2), (c) twisted double bilayer
CrI3 (2L + 2L CrI3), and (d) twisted WSe2/MoSe2 heterostructure.

The relaxation behavior is present in layered transitional metal
dichalcogenides (MX2) and trihalides (MH3). Figure 5b shows the dif-
fraction pattern of the four-layer homostructure of WS2 with equal
twist angles between layers. Surprisingly, a strong torsional PLD is
observed, despite having a large twist angle (θ ≈ 4°)10. For a multi-
layered system, relaxation may not be equivalent between layers. For
4L-WS2, for example, the PLD amplitudes are strongest for the inner-
most layers. Here equal and opposite PLDs of the inner two layers
matches simulated diffraction patterns (Fig. 5b).

Figure 5c shows four layers of twisted CrI3, a magnetic 2D mate-
rial, but with a twist only between the middle two layers9. Xie et al.
reported that this system shows magnetic behavior that cannot be
explained by either two-layer or four-layer CrI3 system and periodic
relaxation must be accounted for to fully explain the materials prop-
erties. For the 2L + 2L CrI3 system, the magnetic properties suggest
that the outer layers are distorted together with the inner layers (i.e.,
each bilayer acts like a monolayer). This is also consistent with dif-
fraction simulations (Fig. 5c).

Periodic reconstruction of twisted materials is not limited to
homostructures. WSe2/MoSe2 heterostructures exhibit twist angle-
dependent excitonic behavior29. In Fig. 5d, we reveal that the hetero-
structure with θ ≈ 5° periodically relaxes, despite having different lat-
tice constants. A torsional PLD model is also applicable to such
heterostructures. Simulated diffraction patterns (Fig. 5d i–iii) show
good agreement with the experimental diffraction pattern. It should
be noted that the relaxation behavior of non-graphitic systems will be
different when the stacking energy landscape is distinct21. Any stacking
energy landscape can be accommodated by assigning the appropriate
phase to each of the three PLD waves in a torsional PLD (See Supple-
mentary Fig. S8 for more detail). Furthermore, due to lattice constant
mismatch, reconstruction of heterobilayer involves compression and
expansion of constituent layers30,31. Compression/expansion of het-
erobilayer can be easily incorporated by including longitudinal com-
ponents to Âi’s as demonstrated in Supplementary Fig. S10.

Discussion
Twisted 2D materials are complex moiré patterns where crystals
deform according to a competition between intralayer elastic strain
and interlayer van der Waals interactions. A reduction of symmetry
arises not only from the global twist between layers but also from the
subsequent lattice restructuring. Thus, the twist angle alone provides
an incomplete description of the system.We show a torsional periodic
lattice distortion is a precise order parameter to describe the atomic
structure of twistedmaterials. Torsional periodic latticedistortions are
comprised of three transverse PLDs that maximize the lower energy
stacked domains andminimize and form solitonic shear boundaries in
between. The amplitude andwave vector of torsional PLDs are defined
by the twist angle and, in TBG, can be analytically and empirically
predicted with picometer precision. In this sense, moiré materials are
PLD engineering at low twist angles.

Despite the real-space complexity of low-twist moiré materials,
the entire structure is sparsely described by a single value: the ampli-
tude of the distortion wave. This choice of basis re-frames our
understanding of low-twist angle materials. In the case of twisted
bilayer graphene, the torsional PLD amplitude can be analytically cal-
culated from the twist angle alone. Although the amplitude of the PLD
can change gradually, the overall symmetry reduction occurs instan-
taneously—therefore, a continuous phase transition is not expected.
Although this work thoroughly describes TBG, it is extendable to a

variety of 2D materials and twist angles—each with a bespoke set of
PLDs to match the interlayer energy landscapes.

Methods
Electron diffraction of torsional PLD
In the presence of a single torsional PLDwith threewave vectors (q1,q2,
q3), the reciprocal structure of the top layer (Vtop(k)) is described by:

VtopðkÞ=
X

b
δðk� bÞJ0ðk � A1ÞJ0ðk � A2ÞJ0ðk � A3Þ

± δðk� b±q1ÞJ1ðk � A1ÞJ0ðk � A2ÞJ0ðk � A3Þ
± δðk� b±q2ÞJ0ðk � A1ÞJ1ðk � A2ÞJ0ðk � A3Þ
± δðk� b±q3ÞJ0ðk � A1ÞJ0ðk � A2ÞJ1ðk � A3Þ
+OððkAÞ2Þ

ð4Þ

The bottom layer’s reciprocal structure (Vbot(k)) has the same
form with Vtop(k) but with equal and opposite PLD amplitude
(Atop

i = � Abot
i ). The measured diffraction pattern is the squared

magnitude ∣Vtop(k) +Vbot(k)∣2. The first term represents Bragg peaks.
The second term is first-order superlattice peak. Herek ⋅A is small (less
than one) and the higher-order terms OððkAÞ2Þ are omitted for
simplicity.

Transmission electron microscopy and diffraction
JEOL 2010F operated at 80 keV with Gatan OneView Camera was used
for SAED and DF-TEM imaging of TBG. 4L-WS2 and 2L + 2L CrI3 SAEDs
were taken on Thermo Fisher Talos operated at 200 keV with Gatan
OneView Camera. WSe2/MoSe2 heterostructure SAEDs were taken on
JEOL 3100R05 operated at 300 keV. AB/BA domain contrast on DF-
TEM was obtained by placing an objective aperture on h1010i with
specimen as demonstrated previously by refs. 6, 17.

Bragg and superlattice peak intensities were quantified by non-
linear least squares fitting six-parameter 2D Gaussian peaks and cal-
culating the volume under each fitted Gaussian.

Electron diffraction simulation
Heavy atoms in twisted 2D materials can have a small but non-
negligible influence on the quantification of superlattice peaks, espe-
cially for low-incident electron energies. Quantum mechanical multi-
slice simulations can provide better quantification32. However, the
magnitude and distribution of intensities make the presence of tor-
sional PLD immediately obvious.

Fully quantum mechanical multislice simulations are performed
tomatch experimental SAEDs. Multislice algorithm simulates dynamic
scatterings of swift electrons by slicing specimens into multiple, thin
slices. E. J. Kirkland’s software (autoslic)33 with matching incident
electron conditions with experiments was used to calculate. A 300Å
radius disk-shaped TBG crystal was placed on 1200× 1200Å2 area to
reduce wraparound artifact. The multislice algorithm was set to slice
crystal every 0.5 Å. Electron wavefunctions were sampled at
4096 × 4096 pixels. Simulation parameters for Fig. 5b–d were similar.
Simulations were averaged over 16 frozen phonon configurations to
simulate thermal diffused scattering. See https://doi.org/10.6084/m9.
figshare.20352933.v1 for simulation parameters.

Twisted bilayer graphene energy calculations
vdW interlayer registry energies were calculated using
Kolmogorov–Crespi potential with known lattice parameters for gra-
phitic systems (a = 2.46 Å, c = 3.34 Å) and assumed both graphene
layers are perfectly flat. The energy at each atomic site was calculated
by summing overall interactions with atoms in the opposing layer.
VvdW was calculated by integrating registry energies over a moiré unit
cell. The calculation was done over many twist angles (0.463°–6.009°)
with up to 61,348 atoms per layer.
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Elastic energies (VEl) were analytically derived from elasticity
tensor assuming plane stress deformation and using previously
reported shear modulus value (G = 9.01 eV/Å2 20). See Supplementary
Note 3 for detailed derivations.

Higher harmonic PLD amplitudes (An) were calculated by mini-
mizing the total energy using the simplex algorithm implemented in
MATLAB (fminsearch).

Calculation of computationally relaxed structures (Fig. 3a red
triangles) was done by a multiscale computational method described
in detail in ref. 20.

Sample preparations
Twisted bilayer graphene. Graphene and h-BN are mechanically
exfoliated onto Si/SiO2 (285 nm) substrates. Monolayer graphene
was identified by optical contrast and Raman spectroscopy. After
preparing graphene and h-BN flakes, the thin single crystallite h-BN
layer was first picked up at 70 °C using poly(Bisphenol A carbonate)
coated on a polydimethylsiloxane stamp. Then, the h-BN layer was
engaged to half of the graphene flake. By lifting the stamp off the
substrates, we pick up only the part of the graphene which was
covered by the top h-BN layer, leaving the remaining part of the
graphene on the substrate. After the detachment, the substrate was
rotated at a controlled angle. Engaging the graphene/h-BN stack on
the adhesive polymer to the other half piece of graphene on the
substrate makes the artificial bilayer graphene with a controlled
twist angle. The whole stack was then transferred onto a thin SiN
membrane TEM grid.

4L-WS2. Large monolayer WS2 single crystals were synthesized by
metal-organic chemical vapor deposition (MOCVD) on 300 nm
oxide silicon wafers34. A single triangular domain from the growth
was selected, then tear-and-stacked four times with a twist of 4
degrees and delaminated onto a Si/SiO2 substrate by a vacuum
assembly robot10. To prepare the twisted four-layer WS2 for TEM
imaging, the sample was spun coated with PMMA and floated in
1M KOH until the substrate detached from the PMMA, then wet
transferred onto a 1 μm holey carbon/copper TEM grid. Lastly, the
TEM grid was solvent cleaned in acetone to remove all polymer
(from stamp residue and PMMA).

2L+2L CrI3. For the fabrication of twist double bilayer (tDB) CrI3, the
bilayer CrI3 flakes were firstly exfoliated and identified inside a nitrogen
gas-filled glovebox and assembled with a desirable twist angle by the
’tear-and-stack` method. tDB CrI3 samples were double encapsulated
with thin hexagonal boron nitride (h-BN) flakes (~5 nm) to prevent the
degradation from the oxygen and moisture from the ambient condi-
tion. The prepared tDB CrI3 samples were finally transferred onto the
TEM grids, cleaned with chloroform solvent, and dried in nitrogen gas.

WSe2/MoSe2 heterobilayer. Monolayers of TMDs were prepared via
mechanical exfoliation from bulk crystals (from HQ Graphene) onto a
PDMS stamp (PF Film X0 from Gel-Pak). The PDMS stamp was pre-
treated and treated by oxygen plasma to minimize the PDMS residue
left on the monolayers. Heterostructures were fabricated using the
PDMS-assisted dry transfer technique operating under a home-built
setup with micromanipulators, and a rotational stage, and the mono-
layers were aligned under an optical microscope. Heterostructures
were annealed in a vacuum at 130 °C for 1 h.

Data availability
Raw SAED micrographs are publicly available in (https://doi.org/10.
6084/m9.figshare.20352933.v2). Any additional data that support the
findings of this study are available in the article and Supplementary
Information.

Code availability
The simulation parameters for running multislice simulation are pub-
licly available (https://doi.org/10.6084/m9.figshare.20352933.v2).
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