
Frontiers in Microbiology 01 frontiersin.org

Why vary what’s working? Phase 
variation and biofilm formation 
in Francisella tularensis
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The notoriety of high-consequence human pathogens has increased in 

recent years and, rightfully, research efforts have focused on understanding 

host-pathogen interactions. Francisella tularensis has been detected in an 

impressively broad range of vertebrate hosts as well as numerous arthropod 

vectors and single-celled organisms. Two clinically important subspecies, F. 

tularensis subsp. tularensis (Type A) and F. tularensis subsp. holarctica (Type 

B), are responsible for the majority of tularemia cases in humans. The success 

of this bacterium in mammalian hosts can be at least partly attributed to a 

unique LPS molecule that allows the bacterium to avoid detection by the host 

immune system. Curiously, phase variation of the O-antigen incorporated 

into LPS has been documented in these subspecies of F. tularensis, and these 

variants often display some level of attenuation in infection models. While the 

role of phase variation in F. tularensis biology is unclear, it has been suggested 

that this phenomenon can aid in environmental survival and persistence. 

Biofilms have been established as the predominant lifestyle of many bacteria 

in the environment, though, it was previously thought that Type A and B 

isolates of F. tularensis typically form poor biofilms. Recent studies question 

this ideology as it was shown that alteration of the O-antigen allows robust 

biofilm formation in both Type A and B isolates. This review aims to explore 

the link between phase variation of the O-antigen, biofilm formation, and 

environmental persistence with an emphasis on clinically relevant subspecies 

and how understanding these poorly studied mechanisms could lead to new 

medical countermeasures to combat tularemia.
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Introduction

Found ubiquitously across the Northern Hemisphere, Francisella tularensis is the 
etiological agent of tularemia, or more casually, “rabbit fever”(Ellis et al., 2002). In humans, 
illness presents in several forms with the most common being ulceroglandular, often from 
the bite of an insect carrying F. tularensis or contact with an infected rabbit. From a 
biodefense perspective, tularemia could also manifest as the more severe form of the 
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disease-causing pneumonic or typhoidal tularemia (Ellis et al., 
2002). F. tularensis is comprised of two subspecies that cause 
human disease: F. tularensis subsp. tularensis (Type A) and 
F. tularensis subsp. holarctica (Type B). A third closely related 
subspecies, F. tularensis subsp. novicida, is only associated with 
brackish water or soil and rarely causes disease in humans. 
F. novicida is commonly used as a laboratory surrogate since it has 
a high degree of genetic similarity to F. tularensis, is able to infect 
macrophages in vitro and cause disease in mice, and can 
be handled under BSL-2 conditions (Kingry and Petersen, 2014). 
Throughout this manuscript, F. novicida will be used to note this 
subspecies exclusively while F. tularensis will be used to describe 
Type A and B isolates specifically.

Francisella tularensis is classified as a Tier 1 Select Agent in 
the United States (Dennis et al., 2001) and currently no approved 
Food and Drug Administration (FDA) vaccine is available. While 
a Live Vaccine Strain (LVS) exists and has been used for laboratory 
workers at risk in the past under Investigational New Drug (IND) 
status, the basis of attenuation is poorly characterized and the 
ancestral strain is unknown(Eigelsbach and Downs, 1961; Saslaw 
et  al., 1961; Hornick and Eigelsbach, 1966). Complicating the 
approval of LVS is spontaneous variation of colony phenotypes, 
which is known to adversely affect immunization (Eigelsbach 
et  al., 1951; Eigelsbach and Downs, 1961). Early studies 
determined that the frequency of colony variation, referred to as 
phase or blue/gray variation, could be  as high as 10−3 to 10−4 
depending on culture conditions and, paradoxically, variant 
colony phenotypes dramatically differed in terms of virulence 
when tested in a murine model (Eigelsbach et al., 1951). With this 
in mind, it is curious that the mechanisms responsible for this 
variation were not naturally selected against given the consequence 
for attenuation of an intracellular pathogen. Furthermore, 
understanding how this variation occurs in F. tularensis could lead 
to ways to prevent phase variation from occurring and allow for a 
more stable and efficacious live vaccine.

Biofilm refers to an adhered community of cells encased by an 
extracellular matrix (ECM) and typically involves distinct changes 
in bacterial behavior, gene expression, and metabolism that are 
not observed in the planktonic state (Hall-Stoodley et al., 2004). 
In pathogens, biofilm is often regarded as a virulence determinant 
as it enables bacteria to cope with the host environment by 
thwarting innate immunity, phagocytosis, and antibiotic treatment 
(Hall-Stoodley and Stoodley, 2009). Francisella species have been 
shown to form biofilm [reviewed by van Hoek (2013)], though 
clinically important subspecies of F. tularensis tend to form a less 
defined biofilm with sparse cell density than F. novicida or other 
Francisella species(Margolis et al., 2010; Mahajan et al., 2011). 
Recent studies demonstrate that O-antigen (O-Ag) of the LPS can 
influence the biofilm-forming capacity of Type A and B isolates, 
changing this perception of biofilm formation in F. tularensis 
(Champion et al., 2019; Mlynek et al., 2021). This review aims to 
explore where phase variation and biofilm may play a role in the 
survival and pathogenesis of F. tularensis which could lead to new 
therapies to prevent disease.

Comparing apples to oranges: Distinct 
genetic differences between Francisella 
novicida and Francisella tularensis 
complicate understanding biofilm 
formation in clinically relevant isolates

While F. novicida shares a high degree of genetic similarity 
with F. tularensis for which it has been utilized as a surrogate 
strain, important genetic differences do exist. First, F. tularensis 
lacks a functional cyclic-di-GMP system (cd-GMP) which is 
present in F. novicida. Secondly, the wbt locus of F. tularensis 
(involved in O-Ag synthesis) contains additional genes that are 
not present in F. novicida (McLendon et al., 2006; Sjodin et al., 
2012; Kingry and Petersen, 2014). These differences between 
F. novicida and the virulent F. tularensis strains highlight the need 
to focus on the latter pathogenic strains to gain a true 
understanding of biofilm and variation.

cd-GMP has been shown to be  an important second 
messenger that impacts multiple aspects of bacterial behavior, 
often influencing genes responsible for the transition between the 
environment and hosts in pathogenic species (Tamayo et al., 2007; 
Jenal et al., 2017). The model that has emerged is that elevated 
levels of cd-GMP inhibit motility and stimulate biofilm formation 
by downregulation of the genes encoding proteins required for 
flagella and/or pili and upregulation of genes encoding 
extracellular polysaccharide (Simm et al., 2004; Hickman et al., 
2005). The intracellular concentrations of cd-GMP are tightly 
controlled by diguanylate cyclase (DGC; for synthesis) and 
phosphodiesterase enzymes (PDE; for degradation). The activity 
of these enzymes depends on a myriad of input signals, often 
through the interaction with other proteins, such as 
two-component systems (Galperin et al., 2001). The gene cluster 
responsible for modulating the levels of cd-GMP in F. novicida 
(FTN_ 0451 to FTN_0456) was noted to be absent in both LVS 
and Schu S4 (Rohmer et al., 2007) and appears to be absent or 
incomplete in all F. tularensis genomes published to date. While it 
is unclear if other genes encode DGC/PDE enzymes capable of 
modulating cd-GMP levels in F. tularensis, cd-GMP appears to 
control virulence and biofilm in F. novicida in a similar manner to 
what has been reported in other bacterial pathogens. A study by 
Zogaj et  al., demonstrated that high cd-GMP levels tempered 
virulence of F. novicida by inhibiting intracellular replication and 
promoted biofilm formation (Zogaj et al., 2012). While Francisella 
genomes have a limited repertoire of bona fide two-component 
systems, it was also found that the orphaned response regulator 
QseB influenced DGC activity, which is consistent with other 
reports suggesting a role for QseB in F. novicida biofilm formation 
(Durham-Colleran et  al., 2010; Zogaj et  al., 2012). However, 
mechanisms responsible for the regulation of biofilm formation in 
Type A and B isolates are largely unknown.

LPS is considered a major virulence factor in F. tularensis as it 
allows the bacterial cell to evade the host immune response 
(Sandstrom et al., 1992; Gunn and Ernst, 2007; Wang et al., 2007; 
Weiss et al., 2007) and deleterious mutations within genes involved 
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in LPS or O-Ag synthesis often lead to attenuation (Raynaud et al., 
2007; Apicella et al., 2010; Kim et al., 2012; Jones et al., 2014; 
Rasmussen et  al., 2014, 2015; Chance et  al., 2017). While the 
structure of F. tularensis LPS contains notable and unique features 
for lipid A, core, and O-Ag [reviewed by Gunn and Ernst, 2007], 
recent studies suggest the O-Ag is a driving determinant of 
biofilm-forming capacity (Champion et al., 2019; Mlynek et al., 
2021). As the case with a wide range of other Gram-negative 
bacteria, O-Ag has been demonstrated to play a role in biofilm 
formation (Nakao et  al., 2006, 2012; Murphy et  al., 2014; 
Hathroubi et al., 2016).

Francisella tularensis isolates share an O-Ag repeat of 
Qui4NFm-GalNAcAN-GalNAcAN-GuiNac (Vinogradov et al., 
1991, 2002; Prior et al., 2003). In contrast, the terminal saccharides 
differ in F. novicida with the QuiNAc4NAc at the reducing residue 
and a third GalNAcAN at the non-reducing residue (Vinogradov 
et al., 2004; Thomas et al., 2007). The most likely cause for this 
difference is that F. tularensis contains five additional genes (wbtI, 
wbtJ, wbtK, wbtL, and wbtM) within the wbt locus (McLendon 
et  al., 2006; Rohmer et  al., 2007; Sjodin et  al., 2012). Each 
additional gene is thought to encode for an enzyme involved in 
the biosynthesis of Qui4NFm (Prior et al., 2003; Li et al., 2007; 
Twine et al., 2012; Zimmer et al., 2014). Furthermore, mutations 
made to genes within the wbt operon can result in an altered O-Ag 
phenotype consistent with “phase” or “gray” variants (Bandara 
et al., 2011). Interestingly, growth environment can influence the 
relative amount of O-Ag displayed on the cell surface, either by 
LPS chain length or incorporation into a capsule, suggesting that 
this feature may be important in host or environmental adaptation 
(Zarrella et al., 2011; Holland et al., 2017). However, transcriptional 
regulation of the O-Ag has not been associated with phase 
variation as this phenomenon is attributed to physical alterations 
of this molecule (Cowley et al., 1996; Hartley et al., 2006; Soni 
et al., 2010).

O-antigen influences the 
biofilm-forming capacity of Francisella 
tularensis isolates

Early researchers noted a distinct reduction in virulence 
when F. tularensis was cultured on artificial medium (Foshay, 
1932; Ransmeier, 1943; Eigelsbach et  al., 1951). A study by 
Eigelsbach in 1951 aimed to systematically correlate colony 
morphology to virulence by identifying smooth and 
non-smooth colonies and then further classifying these colonies 
using oblique lighting. It was found that medium pH, inoculum 
size, and culture duration influenced the rate at which 
spontaneous changes in colony morphology occurred. Most 
importantly, this study determined that colonies which 
appeared gray under oblique lighting were highly attenuated 
compared to those that appeared blue. Eigelsbach also noted 
that some of these morphologies were unstable, and reversion 
between blue and gray variant forms was possible. It would 

be 45 years before these findings were linked to an antigenic 
shift of the LPS O-Ag displayed on the cell surface (Cowley 
et al., 1996).

A study by Champion et al. identified O-Ag and glycosylation 
of the capsule-like complex (CLC) as factors that can influence 
biofilm formation in F. tularensis isolates (Champion et al., 2019). 
While F. novicida can form a robust biofilm in 2–3 days, 
F. tularensis isolates typically required 10 days to form a 
comparable biofilm. O-Ag deficient mutants of LVS and TI0902 
(virulent Type A) developed biofilms within 5 days that were 2-5x 
more robust than parental strains (Champion et  al., 2019). 
Further, surface attachment and biofilm formation were enhanced 
in a double mutant deficient in O-Ag and CLC glycosylation, 
suggesting that there is an inverse relationship between cell surface 
carbohydrates and biofilm formation. It is notable that F. tularensis 
can produce an electron transparent CLC as well as an electron-
dense capsule, with the latter being chiefly composed of O-Ag 
[Hood, 1977; Cherwonogrodzky et al., 1994; Apicella et al., 2010; 
reviewed by Freudenberger Catanzaro and Inzana, 2020]. 
Highlighting the differences in biofilm formation among 
F. tularensis subspecies, O-Ag mutants in F. novicida form biofilms 
that are equal or less than the parental wild-type (Champion 
et al., 2019).

Mlynek et al. identified a link between variation of the O-Ag 
and biofilm formation in F. tularensis (Mlynek et al., 2021). In 
agreement with the Champion findings, biofilm formation 
typically required at least 7 days to occur. However, it was noted 
that robust biofilm formation occurred stochastically at earlier 
time points and increased in frequency as culture duration 
increased. It was subsequently determined that biofilm 
formation was associated with a distinct population of gray 
variants that emerged within the culture. While the exact 
alteration of the LPS in these variants was unknown, western 
blotting with α-LPS or α-capsule mAbs against O-Ag yielded no 
reactivity (Mlynek et al., 2021). The studies Champion et al. and 
Mlynek et al. found that external conditions, such as culture 
medium and pH, impacted biofilm development, which 
suggests additional gene regulation and/or environmental 
checkpoints beyond antigenic variation of O-Ag may factor into 
F. tularensis biofilm formation.

Is variety the spice of life for Francisella 
tularensis?

F. tularensis has been identified in a diverse collection of hosts 
ranging from amoeba to humans. Further, it has been well 
established that F. tularensis can be harbored within arthropod 
vectors as well as detected in water sources. While biofilm is 
typically thought to be the predominant lifestyle of bacteria in the 
environment, it is unclear what role, if any, biofilm plays in these 
diverse environments and how phase variation, or more properly, 
antigenic variation factors into biofilm formation by F. tularensis 
in this context (Figure 1).
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Vertebrates and hosts cells
Given the pathogenicity of this bacterium for humans, 

research efforts have focused on the mammalian host cell response 
and the role of LPS in avoiding immune detection. While 
structural modifications to lipid A and core of the LPS have been 
attributed to phase variation (Soni et al., 2010), the most common 
cause of phase variation is arguably alterations to the O-Ag 
(Cowley et al., 1996; Hartley et al., 2006). In Francisella, it has 
been well established that O-Ag is important for the subversion of 
mammalian innate immune defenses, namely complement 
(Sandstrom et  al., 1988; Sorokin et  al., 1996; Ben Nasr and 
Klimpel, 2008; Clay et al., 2008) and, along these lines, serum 
increases the uptake of gray variants by macrophages (Hartley 
et al., 2006). Additionally, poor intracellular replication of gray 
variants within macrophages has been reported (Thomas et al., 
2007; Lindemann et al., 2011). However, this begs the question 
why is phase variation frequently observed in F. tularensis if 
immune evasion and intracellular replication are decreased 
in variants?

One hypothesis is that F. tularensis gray variants (GVs) enable 
persistence inside host macrophages by stimulating bacteriostatic 
levels of the nitric oxide response to set up a carrier state (Cowley 
et al., 1996). Recently, biofilm-like structures, termed intracellular 
bacterial communities (IBC), have been identified for many 
bacteria persisting intracellularly within host cells [reviewed by 
Mirzaei et  al., 2020]. IBCs consist of small aggregates of cells 
encased within a matrix, often formed from extracellular 
polysaccharides and/or pili. It is currently unclear if GVs produce 
biofilm when grown intracellularly, though conceivably, IBCs 
would contribute to persistence within the host. While F. tularensis 
is typically studied as an intracellular pathogen, bacteria can 
be detected extracellularly in host blood (Forestal et al., 2007; Yu 
et  al., 2008). In this environment, biofilm could play a more 

traditional role in pathogenesis and armor variants during the 
extracellular phase of the infection. Outer membrane vesicles 
(OMV) have been shown to stimulate biofilm in F. tularensis 
(Siebert et  al., 2019) and facilitate early interactions with 
macrophages (McCaig et al., 2013; Pavkova et al., 2021); however, 
OMVs were not detected when the bacterium is intracellular 
(Pavkova et al., 2021).

Alternatively, if GVs and by extension biofilm formation are 
important for F. tularensis pathogenesis, phase variation may 
impede the ability to survive within certain hosts which has 
implications for host range. Supporting this hypothesis, many 
mammalian animal models are highly susceptible to F. tularensis, 
especially at low doses (<10 CFU), while only mice typically 
succumb to F. novicida at this dose [reviewed in Kingry and 
Petersen, 2014]. The LPS structure is likely a contributing factor 
to differences in host susceptibility as F. tularensis growth was 
suppressed in rat macrophages by the nitric oxide response when 
co-infected with F. novicida (Cowley et  al., 1997). While 
F. tularensis infects a plethora of vertebrate hosts (including, 
amphibian, fish, birds, and mammals; Burroughs et  al., 1945; 
Hopla, 1974), it is largely unknown how the immune response of 
individual species reacts to F. tularensis LPS and phase variant 
O-Ag. It is possible that the LPS presented by GVs favors the 
survival of F. tularensis in vertebrate host other than routinely 
studied laboratory models. Further studies are needed to address 
the in vivo role of biofilm formation during vertebrate infections 
in F. tularensis.

Arthropod vectors
Arthropod transmission of F. tularensis to humans has been 

noted nearly since the first reports of tularemia in the early 1900s 
(Francis, 1919; Parker et al., 1924), and still today, the glandular 
and ulceroglandular forms are by far the most common 

FIGURE 1

Traits of Francisella tularensis antigenic variation and outstanding questions. F. tularensis is known to transition between a “blue” or “gray” state by 
altering the O-antigen. The properties of these states are outlined in each box (Host Adaptation, left; Environmental Survival, right) grouped by 
where trait likely aids the bacterial cell. The traits are further separated within these boxes based on the associated state of the cell (blue, top; gray, 
bottom). Outstanding aspects of F. tularensis biology where phase variation is potentially important are displayed in blue or gray text.
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manifestation of tularemia in humans (Rosenberg et al., 2018). 
Association with a vector can increase survivorship and biological 
transmission of a bacterial population while decreasing the risk of 
“dead-end” infections in pathogens associated with a high 
mortality. Biofilm has been found to aid in the transmission of 
bacterial pathogens closely associated with arthropod vectors to 
mammalian hosts with the most notable example being Yersinia 
pestis in fleas (Jarrett et al., 2004; Hinnebusch and Erickson, 2008). 
While F. tularensis is transmissible through multiple vectors, 
tularemia is mostly associated with bites from deer flies, 
mosquitoes, and hard ticks [reviewed in Telford and Goethert 
(2020)].

Type A and B isolates tend to have different vector ecology. 
Classically, Type A isolates have been associated with ticks in arid 
environments, while Type B isolates have more often been 
associated with mosquitos near aquatic systems (Parker et al., 
1951; Jellison, 1974; Eliasson et al., 2006; Tully and Huntley, 2020). 
Transstadial transmission has been reported for both vectors 
(Lundstrom et al., 2011; Backman et al., 2015; Coburn et al., 2015; 
Mani et  al., 2015), with ticks maintaining bacteria capable of 
infection at each stage (Coburn et al., 2015; Mani et al., 2015) and 
the American dog tick (Dermacentor variabilis) was identified as 
a major factor for perpetuation in an environmental setting 
(Goethert et al., 2004; Goethert and Telford, 2009). While a fair 
amount of literature has been published on the ticks and tularemia 
(thorough reviews by the Huntley group; Zellner and Huntley, 
2019; Tully and Huntley, 2020), little is known about the role, if 
any, of F. tularensis biofilm formation in tick vectors.

Mosquito larvae have been shown to feed on both planktonic 
and biofilm cultures of F. tularensis in an aquatic laboratory setting 
(Mahajan et al., 2011; Backman et al., 2015). In these models, 
F. tularensis localized intracellularly within the mosquito, 
suggesting that bacterial persistence in this vector is not solely due 
to ingestion. In this context, the seasonality of tularemia in 
mammals could be indicative of an overwintering state within 
arthropod vectors; however, long-term exposure to F. tularensis 
biofilm lowered the overall fitness of mosquito larvae and 
fecundity of adults (Mahajan et al., 2011).

An important aspect to note is that invertebrate immunology 
remains largely unknown in these vectors, making it difficult to 
interpret if phase variation or biofilm is advantageous for survival 
within arthropods. Drosophila have been shown to detect LPS 
through C-type lectins and β-glucan recognition proteins (βGRPs; 
Kim et al., 2000; Xia et al., 2018). A careful examination of the role 
biofilm formation plays in arthropod vectors, if any, would greatly 
advance the understanding of both biofilm and LPS variation.

Protozoan hosts and aquatic survival

The presence of F. tularensis in aquatic systems places the 
bacterium in proximity of single-celled organisms, such as amoeba 
(Hopla, 1974; Abd et al., 2003), as well as an environment that 
provides the potential for multi-species biofilms. It is possible that 
both phase variation and biofilm could offer a competitive 

advantage. For instance, it has been shown that protozoan preying 
upon Salmonella display feeding preference when presented 
multiple serovars and can distinguish prey based solely upon the 
O-Ag (Wildschutte et al., 2004). Along these lines, phase variation 
may enable predator avoidance as the edibility of F. tularensis has 
previously been shown to differ depending on subspecies, even 
isolate (Thelaus et al., 2009). However, Abd et al. demonstrated 
that F. tularensis can utilize Acanthamoeba castellanii as a host, 
following an infection cycle that is similar to murine macrophages 
once bacteria were engulfed (Anthony et al., 1991; Abd et al., 2003; 
El-Etr et al., 2009). Further work is needed to determine if 
protozoans display preference for a particular F. tularensis O-Ag 
variant as well as the mechanisms enabling invasion.

Francisella tularensis has been found to remain viable as 
determined by CFU counts in conditions mimicking natural water 
for at least 3 weeks (Golovliov et al., 2021). Under these conditions, 
wild-type F. tularensis strains did not form biofilms; however, a 
wbtI mutant (O-Ag deficient) formed biofilms that were 
maintained throughout the study at both 20°C and 4°C (Golovliov 
et al., 2021). Differences in virulence were observed after 24 weeks 
at 4°C, as mice infected with Schu S4 (Type A) displayed no 
symptoms of disease, while FSC200 (Type B) remained virulent 
(Golovliov et al., 2021). Along these lines, LVS was found to 
persist in a viable, but non-culturable state (VBNC) for at least 
140 days at 8°C in tap water, but at the cost of virulence as mice 
were symptomless when challenged with VBNC cells (Forsman  
et al., 2000). A connection between biofilm-forming variants and 
a VBNC state was found by Mlynek et al. (2021), but it is unclear 
how F. tularensis prioritizes the convergence of mechanisms that 
could impact environmental survival. External signals such as 
nutrient availability or pH have been found to factor into both 
phase variation and biofilm formation (Eigelsbach et al., 1951; 
Champion et al., 2019; Mlynek et al., 2021).

Additional considerations

Biofilm formation is considered a virulence determinant in 
many bacteria as it facilitates the establishment of chronic 
infections (Costerton et  al., 1999; James et al., 2008). A 
contributing factor to the persistence of these infections is the 
ability of cells within the biofilm to withstand antibiotic 
treatment. In F. novicida and LVS, biofilms have been shown to 
decrease the susceptibility of embedded bacteria to ciprofloxacin 
(Siebert et al., 2019, 2020), a first-line drug for post-exposure 
prophylaxis (Dennis et al., 2001). However, it was determined 
that ciprofloxacin-exposed biofilms readily entered a VBNC state 
(Siebert et al., 2020), providing yet an additional link between 
biofilm formation and a VBNC phenotype. Interestingly, Chung 
and colleagues demonstrated that biofilms formed by a F. novicida 
chiA mutant can be re-sensitized to an antibiotic it was previously 
resistant to if the ECM was enzymatically degraded (Chung et al., 
2014). These studies highlight the potential health implications 
to consider if F. tularensis biofilm formation plays a role in 
human pathogenesis.
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Conclusion and future directions

Recent studies have demonstrated a link between phase 
variation and biofilm formation in F. tularensis. While the field 
appears to agree that both these phenotypes likely aid in 
environmental survival, many unanswered questions remain that 
would significantly advance our understanding of the mechanisms 
enabling survival and persistence, and even potentially help 
identify emerging threats in this genus of bacteria. Lastly, the 
focus of this review was on phase variation and biofilm formation; 
however, it is possible that multiple mechanisms and genetic 
pathways exist to control biofilm formation in F. tularensis. 
Understanding what role, if any, variation and biofilm plays in 
F. tularensis could allow for insights to develop better vaccines and 
therapeutics to prevent tularemia.
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