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Purpose: High-field magnetic resonance-linear accelerators (MR-Linacs), linear accelerators 

combined with a diagnostic magnetic resonance imaging (MRI) scanner and online adaptive 

workflow, potentially give rise to novel online anatomic and response adaptive radiation 

therapy paradigms. The first high-field (1.5T) MR-Linac received regulatory approval in late 

2018, and little is known about clinical use, patient tolerability of daily high-field MRI, and 

toxicity of treatments. Herein we report the initial experience within the MOMENTUM Study 

(NCT04075305), a prospective international registry of the MR-Linac Consortium.

Methods and Materials: Patients were included between February 2019 and October 2020 

at 7 institutions in 4 countries. We used descriptive statistics to describe the patterns of care, 

tolerability (the percentage of patients discontinuing their course early), and safety (grade 3-5 

Common Terminology Criteria for Adverse Events v.5 acute toxicity within 3 months after the end 

of treatment).

Results: A total 943 patients participated in the MOMENTUM Study, 702 of whom had 

complete baseline data at the time of this analysis. Patients were primarily male (79%) with 

a median age of 68 years (range, 22-93) and were treated for 39 different indications. The 

most frequent indications were prostate (40%), oligometastatic lymph node (17%), brain (12%), 

and rectal (10%) cancers. The median number of fractions was 5 (range, 1-35). Six patients 

discontinued MR-Linac treatments, but none due to an inability to tolerate repeated high-field 

MRI. Of the 415 patients with complete data on acute toxicity at 3-month follow-up, 18 (4%) 

patients experienced grade 3 acute toxicity related to radiation. No grade 4 or 5 acute toxicity 

related to radiation was observed.

Conclusions: In the first 21 months of our study, patterns of care were diverse with respect to 

clinical utilization, body sites, and radiation prescriptions. No patient discontinued treatment due 

to inability to tolerate daily high-field MRI scans, and the acute radiation toxicity experience was 

encouraging.

Introduction

High-precision external beam radiation therapy may allow treatment intensification without 

increasing toxicity, potentially leading to improved clinical outcome, quality of life, or 

overall survival.1–4 Magnetic resonance linear accelerators (MR-Linacs)—a combination 

of a linear accelerator (linac), magnetic resonance imaging (MRI) scanner, and an online 

adaptive workflow—hold promise for high-precision radiation therapy using magnetic 

resonance (MR)-guided radiation therapy (MRgRT).5,6 Visualization of anatomy during 

MRgRT on the MR-Linac enables daily adaptation of radiation therapy treatment plans, 

thereby compensating for motion and shape changes of targets and organs at risk 

(OARs).7–9 Consequently, this may allow for treatment with smaller safety margins and 

therefore treatment with higher doses.10,11 Furthermore, serial imaging with quantitative 

MRI sequences during treatments may facilitate response monitoring. In the future, this 

information may guide adaptation of treatments to tumor or normal tissue responses.12–15 

High-field MR-Linacs represent the most recent implementation of MRgRT. By integrating 

a 1.5 T MR magnet, high-field MR-Linacs may generate improved signal-to-noise ratios that 

facilitate both anatomic and biological response adaptive therapy.16,17
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MR-Linacs are generally more expensive than computed tomography based linacs and 

introduce new patient-related complexities to the radiation therapy workflow, such as 

MR-safety and claustrophobia, as well as treatment-related challenges. The latter includes 

geometric distortions, alterations of visible anatomy or the target due to nonlinearities of the 

gradients and inhomogeneities in B0 field, along with dosimetric impacts of the magnetic 

field, called the electron return effect (ERE), which results in curvature of electrons’ 

pathways, particularly at tissue-air barriers.14,18–20 Despite mitigation strategies for these 

complexities, early clinical studies are needed to confirm patient tolerability and toxicity 

outcomes associated with the use of this novel device. To make rational decisions about 

health care investments and individual treatment decisions, patients, providers, and payers 

need timely information about safety and efficacy profiles.21

Historically, during the implementation of new radiation therapy devices, research on these 

devices has been ad hoc, usually encompassing proof of concept and limited patient 

safety studies.22,23 Furthermore, evaluation of efficacy in larger populations treated on 

novel radiation therapy devices often occurs many years after their introduction, long after 

broad implementation in clinical practice.24–26 Systematic prospective collection of clinical, 

toxicity, and patient-reported outcome (PRO) data concurrent with the implementation of 

a novel device and treatment paradigm would facilitate early evaluation of the device.27 

Such data would also provide the opportunity to identify indications wherein patients are 

most likely to benefit from the innovations, warranting further evaluation in randomized 

controlled trials.

In line with this systematic approach to data collection, an international prospective 

registry, called the Multi-Outcome Evaluation of radiation therapy using the MR-

Linac (MOMENTUM) Study (NCT04075305) was designed to facilitate evidence-based 

implementation of the world’s first commercially available high-field MR-Linac (The 

Elekta Unity, Elekta AB, Stockholm, Sweden) and capture its initial experience.28,29,30 

MOMENTUM serves as a research infrastructure enabling the various steps necessary 

for evidence-based implementation of high-field MRgRT through systematic collection of 

treatment and outcome data of patients treated on the Elekta Unity, in accordance with 

R-IDEAL, a methodological tool for the implementation of radiotherapy devices.27

Herein we report the initial 21 months’ experience with high-field MRgRT: how clinicians 

are using it, how patients tolerate daily high-field MRI, and the grade 3+ toxicity patterns of 

treatments.

Methods and Materials

The MOMENTUM Study is an academic industrial collaboration between international 

institutions and the manufacturer of the high-field MR-Linac (Unity, Elekta AB, Stockholm, 

Sweden) within the context of the MR-Linac Consortium.31 All patients >18 years old 

treated on an MR-Linac at participating institutions were eligible for inclusion. Patients 

consented to prospective collection of clinical and technical patient data. Patients had the 

option to consent to additional collection of PROs and additional MRI scans for research 

purposes for up to 90 minutes of additional table time per week. Patients in the Netherlands 
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had the choice to share their data with the industry partner, whereas patients at the other 

institutions automatically shared their data when consenting to the study. These data are 

used by the industry partner to improve the device. All data were pseudonymized at the 

institution before storage in the registry.

Clinical and technical patient data

Trained clinical research coordinators collected clinical data upon entry into the cohort 

(baseline) and at 3, 6, 12, and 24 months after treatment on the MR-Linac. These 

data included demographics, tumor characteristics, treatment details, toxicity, and disease-

response assessment data.

To assess the tolerability of daily high-field MRI, we captured whether and why a patient 

discontinued an MR-Linac course earlier than initially planned. Acute toxicity was defined 

as new-onset adverse event of grade 3, 4, or 5 (as per the National Cancer Institute’s 

Common Terminology Criteria for Adverse Events v 5.0) that was classified as related or 

unrelated to radiation and that was apparent within 3 months of completion of radiation 

therapy. For this study, the safety of the MR-Linac treatment was determined by the acute 

radiation-related toxicity rate.

MOMENTUM also captured technical data, defined as all data generated and used by the 

MR-Linac, including the treatment details: total gray (in cGy), number of fractions, and 

fractions on conventional linacs in cases where patients were treated using conventional 

linacs. Treatment fractions are described as adapt-to-shape (ATS), adapt-to-position (ATP), 

or a combination of these workflows. In the ATS workflow, target and/or OAR contours 

are deformed or recontoured to the daily anatomy of the patient, and the radiation plan is 

reoptimized. The ATP workflow refers to fractions where the MRI is only used for image 

guidance and where the reference plan is shifted to account for position changes of the 

target volume, akin to a couch shift in conventional therapy. Contours are not modified or 

deformed in the ATP workflow. In ATP, instead of shifting the couch, multileaf collimators 

are shifted to change the dose distribution in space. More detailed descriptions of the ATS 

and ATP workflow have been published elsewhere.7,32,33

Statistical analysis

Descriptive statistics were used to describe patient characteristics and treatment details. 

Patient, tumor, and treatment characteristics were presented as means with standard errors, 

median with (interquartile) range, or frequencies with percentages, depending on their 

distribution. Data were visualized using Statistical Package for Social Sciences version 25 

(released 2017, IBM SPSS Statistics for Windows, Version 25.0; IBM Corp, Armonk, NY).

In our analysis, we report on several distinct subgroups within the MOMENTUM Study. 

Because MOMENTUM is a prospective registry and patient accrual and follow-up is a 

continuous process, the number of patients may differ for the various analyses, with more 

patients available when analyzing baseline characteristics, than when analyzing 3 months 

toxicity. The MOMENTUM Study allows retrospective inclusion and therefore includes 
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patients treated on the MR-Linac before the start of MOMENTUM. Data presented are 

based on data received in the registry up to November 2020.

Results

Between February 1, 2019 and November 1, 2020, 934 patients were enrolled in the 

MOMENTUM Study. Based on publicly available global treatment volume data collected 

by Elekta, we estimate that the MOMENTUM cohort represents approximately 50% of all 

patients treated globally with high-field MRgRT.34 Within our cohort and at the time of this 

analysis, 702 patients had complete baseline data, of whom 6 received multiple courses on 

the MR-Linac (Table 1). Of the 702 patients, 486 (69%) consented to collection of additional 

PROs and 491 (70%) to acquisition of additional research MRI scans, and almost all patients 

(695, 99%) shared their data with the industry partner.

Median age of patients was 68 (range, 22-93) years; 554 (79%) patients were male, and 

most patients (523, 70%) received treatment with a curative intent (Table 1). There were 39 

different tumor sites treated, the most common being prostate (281, 40%), oligometastatic 

lymph node (117, 17%), brain (85, 12%), and rectum (70, 10%) cancers. Radiation of 

the primary tumor (70%) was the most common clinical indication, followed by (regional) 

lymph node (16%), distant metastases (10%), and tumor recurrence at the primary tumor site 

(4%).

At the time of this analysis, we had complete (re)irradiation treatment data for 516 treatment 

courses (of 510 patients). Of these, 497 (96%) courses were delivered entirely using the MR-

Linac, whereas 19 (4%) were delivered partly on an MR-Linac and partly on a conventional 

device (Table 2). In these mixed-modality courses, the MR-Linac was typically used for the 

boost phase of a treatment. For the most frequently treated tumor sites, the median number 

of fractions was 29 for oropharynx and brain and 5 for prostate, oligometastatic lymph node, 

rectum, and pancreas (Fig. 1).

Of the 516 courses, 152 (29%) used ATP for every fraction, 328 (64%) used ATS for 

every fraction, 35 (7%) used both ATP and ATS, and 1 (0.2%) was unknown. For the most 

frequently treated tumor sites, both adaptation strategies were used except for patients with 

brain tumors, in whom treatment was adapted using an ATP strategy only (Table 3).

Six of 516 (1%) MR-Linac courses were discontinued earlier than expected (Table 2). Three 

courses were discontinued due to machine downtime: In the first case, the patient received 

treatment on a conventional linac for 4 days while the MR-Linac was down before returning 

to the MR-Linac; in the second case, the patient received a final fraction of the prescribed 

radiation course on a conventional linac when the MR-Linac went down; and in the third 

case, the treating physician cancelled the final fraction after the machine went down. Two 

courses were discontinued due to clinical progression: In the first case, the patient was found 

to have progressive cancer outside of the radiation field, and in the second case, the patient 

did not experience an improvement in pain control and was transitioned to an alternative 

therapy. One course of therapy was discontinued when the patient was hospitalized at a 

remote facility for side effects that were attributed to chemotherapy.

de Mol van Otterloo et al. Page 5

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2022 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



At the time of this analysis, 415 patients had complete data on acute toxicity. Of these, 18 

(4%) patients experienced a new-onset grade 3+ adverse event within 3 months of treatment 

that was deemed possibly, probably, or definitely related to radiation. The details of all 

recorded adverse events are provided in Table 4.

Discussion

In an effort to accelerate both the clinical development and evaluation of MRgRT according 

to the R-IDEAL frame-work, the MR-Linac Consortium opened the MOMENTUM clinical 

registry, which has captured approximately half of the first cohort of high-field MR-Linac 

patients treated globally.27 In this initial report, we observed 3 important findings: First, 

early in its clinical implementation, the MR-Linac has been used in a wide variety of 

clinical indications; second, no patients discontinued their MR-Linac treatment course 

due to claustrophobia or discomfort; and third, the high-grade acute toxicity rates were 

acceptable, with 4% (n = 18) reporting radiation-related acute grade 3 toxicity.

Twenty-one months since the start of this study, MOMENTUM comprises a substantial 

amount of all known patients treated on a high-field MR-Linac. These patients represent 

a specific population because patient selection for MRgRT is determined by the 

treating physician. However, with the aim to include every patient treated on the 

MR-Linac irrespective of treatment outcomes, our study prospectively collects data 

of consecutively treated patients and facilitates objective reports on this population.27 

Moreover, MOMENTUM can be used to design clinical studies and randomized trials 

with appropriate assumptions and suitable power for specific subgroups. These studies can 

guide identification of the treatment indications with the most clinical value. At the time 

of writing, several initiatives within the Consortium have requested data for several disease 

sites, which suggests that investigators indeed appreciate the potential of this registry in 

optimizing patient selection for high-field MRgRT.

In this study, patients were treated for a wide variety (39) of clinical indications. This 

variety illustrates the keenness of investigators to apply MRgRT for the different treatment 

indications but might also reflect the diversity of technical challenges this new device 

is meant to address by visualizing targets and OARs.12,20,35 Also, the large number of 

indications might be a result of the systematic clinical evaluation strategy that was used to 

introduce this technology, which facilitated rapid diversification of the use of this tool.27,31 

It is worth noting that in the literature of a recently released low field MR-Linac (MRidian; 

Viewray Inc, Oakwood, USA), the dominant initial indications are similar to the sites treated 

on the MR-Linac.36–40 In 2 large single-center studies evaluating their initial experience 

and patterns of care with the MRIdian, we see distinct treatment indications per center: 

Sahin et al primarily treated patients with prostate (n = 24, 33%) and lung cancer (n = 15, 

21%), whereas Klüter et al primarily treated lymph node metastases (n = 19, 42%) and liver 

lesions (n = 8, 14%).41,42 The overlap of the treatment indications with the results from this 

study suggests that similar clinical advantages are explored irrespective of MR-Linac field 

strength.
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Our study also shows that in more than half of total fractions, patients underwent an ATS 

treatment strategy, meaning the attending radiation oncologist felt it was necessary to adapt 

contours on a daily basis. This process is associated with a cost in clinic and clinician time, 

but it was consistently implemented across multiple institutions. These findings are in line 

with literature exploring the potential of adaptive radiation therapy (ART) using low-field 

devices; both Sahin and Klüter mention that daily image guidance or ART was used in the 

majority of patients.43–45 Furthermore, in a recent retrospective study by Güngör et al44 that 

reports on patients treated through ART strategies on a low-field MR-Linac, 774 (80.4%) 

of the total 962 fractions were delivered using ART. Moreover, daily adaptation using 

MRgRT has many postulated benefits, in particular reduction of uncertainties and enabling 

physicians to reduce treatment margins. The early results of this study and the available 

literature on low-field MR-Linacs reflect a broad appetite and willingness to perform this 

activity on the part of radiation oncologists.

Another important finding was that no patients discontinued their own MR-Linac treatments. 

When MR-Linacs were first proposed, there were concerns that patients may not tolerate 

repeated exposures to high-field MRI due to claustrophobia or discomfort from peripheral 

nerve stimulation or specific absorption rate heating (heating of patient tissue by energy 

absorption of said tissue).46,47 Our results indicate that the features of the device evaluated 

in this report meant to mitigate these potential effects (eg, a wide and short bore to 

reduce claustrophobia and anxiety, controls on radiofrequency pulse rate and gradient 

slew rate to minimize physiological stress) are indeed effective: No patient discontinued 

MR-Linac treatment themselves. However, physicians may not offer MR-Linac treatment 

to patients with known claustrophobia, or these patients may decline. Also, undiagnosed 

claustrophobia may become apparent during preparatory MRI scans in the MRgRT 

workflow. These patients would likely be deemed unsuitable for MRgRT and not be 

captured in MOMENTUM. In our current analysis, we did not examine the number of 

patients with unknown claustrophobia, but from the retrospective analysis by Klüter et al 

that evaluated 1 year of implementing a low-field MR-Linac we know that this number 

is low (n = 2 of 23 screen failures). Alternatively, it is also possible that with repeated 

exposures patients may grow accustomed to the experience—even patients who have less 

severe forms of claustrophobia. Moreover, the results of 3 studies reporting on patient-

reported experience on low-field devices are promising, and overall patient tolerability is 

good.41,48,49 In the future, we expect more indepth analysis of patient experience on the 

MR-Linac as several patient experience studies started within the MR-Linac Consortium.

This study showed an overall reassuring radiation-related acute toxicity pattern in a diverse 

and international cohort. For this study, we have described and analyzed all registered 

adverse events and whether they were classified as related to radiation (Table 3). Although 

toxicity attribution is always a subjective matter, our approach maximizes completeness 

and transparency. Further indication-specific toxicity analyses will be needed to make more 

nuanced observations on the dosimetric impact of ERE. In this initial cohort, treatments 

within the pelvis, where ERE is probably least important, were the most common body 

site; treatments of the thorax, where ERE is likely to be most important, were the least 

common body site (Table 1), suggesting that clinicians may be taking a cautious approach 
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with this new technology. Publication of more detailed disease-specific analyses with longer 

follow-up that include both clinician-reported toxicity and PROs are expected.

Our study has limitations. We have not captured the experience of patients who were 

treated at non-MOMENTUM institutions over the study period. Our cohort represents 

approximately half of the initial global experience with high-field MRgRT, but all the 

patients included so far are from Europe and North America. The initial patterns of 

care and experience at institutions from Asia and Australia may be different. In addition, 

because MOMENTUM is a registry without a comparison arm, we can only estimate safety 

and tolerability; we cannot draw conclusions about how these outcomes compare to a 

conventional radiation therapy cohort. Furthermore, we do not have a view in MOMENTUM 

of which subsets of patients are being selected for MR-Linac treatment or the proportion 

of patients who screen out due to contraindications to MRI (eg, metallic implants, cardiac 

devices, claustrophobia) or other reasons that may be important for understanding the cohort 

presented here. Lastly, we presently only report the acute toxicity experience, and longer 

follow-up is required to draw definitive conclusions about safety and efficacy. Furthermore, 

because this registry captures maximum toxicity since the previous assessment and the first 

follow-up assessment is 3 months after end of treatment, it is possible that some acute 

toxicities are not fully captured. We believe that our registry is well suited to capturing 

major toxicities (ie, grade 3+) or other major safety events (the primary purpose of this 

manuscript); however, in capturing maximum toxicity scores, more subtle low-grade toxicity 

patterns may not be captured by the patient or provider. In the future, we plan to implement 

electronic PRO assessment that patients can complete at home, which should allow us to 

more cost-effectively implement more frequent evaluations.

Conclusions

The large, diverse, and international cohort of patients treated using MRgRT allowed us to 

analyze patients and treatments in the initial phase of high-field MR-Linac implementation. 

We observed that a wide variety of clinical indications have been treated and that the 

tolerability and clinician-reported acute toxicity profile are encouraging. In the future, the 

MR-Linac Consortium intends to continue to follow this initial cohort at least 2 years 

posttreatment to estimate the late toxicity experience and cancer control outcomes. In 

addition, comparative effectiveness studies will be needed to evaluate the performance of 

high-field MRgRT relative to alternative radiation therapy paradigms.
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Fig. 1. 
Median number of fractions (and range) for the most frequently treated tumor sites. Number 

of patients per tumor site is the total number of patients with complete treatment data.*The 

liver tumor site includes patients with cancers of the intrahepatic bile ducts.
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Table 1

Radiation courses and tumor characteristics of patients with baseline data (n = 702), complete treatment data 

(n = 516), and toxicity data (n = 415)

n (%)*

Patients with baseline data Total patients 702

   Patients with multiple courses
 6

†

Male 554 (79%)

Age, y
‡ 68 (22-93)

Good performance score
§
 (n = 384)

353 (92%)

Clinical indication Primary tumor/tumor bed 491 (70%)

   Regional lymph nodes  110 (16%)

   Metastasis  70 (10%)

   Recurrence primary site  31 (4%)

Treatment intent Curative 523 (75%)

   Palliative  164 (23%)

   Unknown  15 (2%)

Tumor sites treated 39

Patients per tumor site
║ Prostate 281 (40%)

   Lymph nodes  117 (17%)

   Brain  85 (12%)

   Rectum  70 (10%)

   Liver
#  33 (5%)

   Pancreas  29 (4%)

   Oropharynx  13 (2%)

   Lung  8 (1%)

   Esophagus  7 (1%)

   Bladder  6 (1%)

Patients with treatment Data Total patients 516**

   Patients with multiple courses  6

Male 418 (81%)

Age, y
‡ 69 (25-93)

Good performance score
§
 (n = 244)

221 (91%)

Patients per tumor site Prostate 223 (42%)

   Lymph nodes  106 (21%)

   Rectum  57 (11%)

   Liver
#  30 (6%)

   Pancreas  21 (4%)

   Oropharynx  12 (2%)

   Brain  7 (1%)
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n (%)*

Patients with toxicity Data Total patients 415**

   Patients with multiple courses  5

Male 331 (80%)

Age, y
‡ 68 (25-93)

Good performance score
§
 (n = 287)

261 (91%)

Patients per tumor site Prostate 167 (40%)

   Lymph nodes  92 (22%)

   Rectum  43 (10%)

   Liver
#  27 (7%)

   Pancreas  19 (5%)

   Oropharynx  12 (3%)

*
Numbers (percentage) except where indicated.

**
For the treatments and toxicity data all courses were analyzed.

†
For clarity, the table only summarizes the characteristics of a patient’s first course within MOMENTUM, except where indicated.

‡
Frequencies given in median (range).

§
Good performance score defined as Karnofsky Performance Score (KPS) ≥80%, Eastern Cooperative Oncology Group (ECOG) score 0, or 

Charlson Comorbidity Index (CCI) score ≤2.

║
Total number of patients (%) for the 10 most frequently treated tumor sites.

#
The liver tumor site includes patients with cancers of the intrahepatic bile ducts.
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Table 2

Descriptive parameters for 516 MR-Linac courses

n (%)*

Course details Total courses 516

   Mixed modalities
†    19 (4%)

Fractions (median [range]) 5 (1-35)

Plan adaptation strategy
‡ ATS 328 (64%)

   ATP    152 (29%)

   Mixed (ATP and ATS)    35 (7%)

   Unknown    1 (0.2%)

Discontinued Courses 6 (1%)

   MR-Linac downtime

Clinical deterioration
#

   3
3

Abbreviations: ATP = adapt-to-position; ATS = adapt-to-shape; MR-Linac = magnetic resonance-linear accelerators.

*
Numbers (percentage) except where indicated.

†
Course was delivered using the MR-Linac and a conventional linac or other radiation therapy method.

‡
In the ATS strategy the plan is adapted based on daily anatomy, whereas during ATP the plan is adapted based on daily patient position.

#
The reason to discontinue treatment was not related to the MR-Linac treatment in these patients.
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Table 3

Treatment strategy for the most frequently treated disease sites

ATS* ATP
†

Mixed (ATS and ATP)

Brain (n = 7) - 7 (100%) -

Oropharynx (n = 12) 1 (33%) 4 (8%) 7 (58%)

Pancreas (n = 21) 16 (76%) 5 (24%) -

Liver
‡
 (n = 30)

5 (17%) 25 (83%) -

Rectum (n = 75) 40 (70%) 14 (25%) 3 (5%)

Lymph nodes (n = 106) 87 (82%) 19 (18%) -

Prostate (n = 223) 144 (5%) 61 (27%) 18 (8%)

Abbreviations: ATS = adapt-to-shape; ATP = adapt-to-position.

*
Treatment adaptation strategy based on daily anatomy.

†
Treatment adaptation strategy based on daily patient position.

‡
The liver tumor site includes patients with cancers of the intrahepatic bile ducts.
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