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Abstract 

Background:  Breast cancer (BC) grading plays a critical role in patient management despite the considerable inter- 
and intra-observer variability, highlighting the need for decision support tools to improve reproducibility and prog‑
nostic accuracy for use in clinical practice. The objective was to evaluate the ability of a digital artificial intelligence (AI) 
assay (PDxBr) to enrich BC grading and improve risk categorization for predicting recurrence.

Methods:  In our population-based longitudinal clinical development and validation study, we enrolled 2075 patients 
from Mount Sinai Hospital with infiltrating ductal carcinoma of the breast. With 3:1 balanced training and validation 
cohorts, patients were retrospectively followed for a median of 6 years. The main outcome was to validate an auto‑
mated BC phenotyping system combined with clinical features to produce a binomial risk score predicting BC recur‑
rence at diagnosis.

Results:  The PDxBr training model (n = 1559 patients) had a C-index of 0.78 (95% CI, 0.76–0.81) versus clinical 0.71 
(95% CI, 0.67–0.74) and image feature models 0.72 (95% CI, 0.70–0.74). A risk score of 58 (scale 0–100) stratified 
patients as low or high risk, hazard ratio (HR) 5.5 (95% CI 4.19–7.2, p < 0.001), with a sensitivity 0.71, specificity 0.77, NPV 
0.95, and PPV 0.32 for predicting BC recurrence within 6 years. In the validation cohort (n = 516), the C-index was 0.75 
(95% CI, 0.72–0.79) versus clinical 0.71 (95% CI 0.66–0.75) versus image feature models 0.67 (95% CI, 0.63–071). The 
validation cohort had an HR of 4.4 (95% CI 2.7–7.1, p < 0.001), sensitivity of 0.60, specificity 0.77, NPV 0.94, and PPV 0.24 
for predicting BC recurrence within 6 years. PDxBr also improved Oncotype Recurrence Score (RS) performance: RS 31 
cutoff, C-index of 0.36 (95% CI 0.26–0.45), sensitivity 37%, specificity 48%, HR 0.48, p = 0.04 versus Oncotype RS plus 
AI-grade C-index 0.72 (95% CI 0.67–0.79), sensitivity 78%, specificity 49%, HR 4.6, p < 0.001 versus Oncotype RS plus 
PDxBr, C-index 0.76 (95% CI 0.70–0.82), sensitivity 67%, specificity 80%, HR 6.1, p < 0.001.
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Conclusions:  PDxBr is a digital BC test combining automated AI-BC prognostic grade with clinical–pathologic fea‑
tures to predict the risk of early-stage BC recurrence. With future validation studies, we anticipate the PDxBr model will 
enrich current gene expression assays and enhance treatment decision-making.

Keywords:  Breast cancer, Prognostic grade, Artificial intelligent image analysis

Background
Histopathologic characterization of all solid tumors is a 
critical first step in diagnostic classification (i.e., organ/
cell type) and development of the histologic grade or 
state of differentiation. Surgical pathologists have used 
the term differentiation, or histologic grade, as a prog-
nostic feature to communicate tumor aggressiveness and 
the likelihood of spread with increasing risk [1, 2]. The 
challenge with all tumor grading systems, regardless of 
the tumor type, is that the scoring is subjective, interpre-
tive, semiquantitative, skill-dependent, and oftentimes 
inconsistent and variable [3]. These deficiencies are most 
pronounced in tumor types that rely on complex deci-
sion-based scoring systems, which are important compo-
nents in establishing clinical risk, such as those for both 
prostate and breast cancer (BC) [4].

We focused on invasive BC, which is histologically 
graded using the Nottingham grading system (NGS) 
consisting of three features: tubule structures (gland 
architecture), nuclear pleomorphism (nucleus size and 
shape), and the number of mitotically active cells within 
a pre-defined field of view. The challenge is that NGS has 
a reported 25–30% intra- and inter-pathologist discord-
ance, especially in the moderately differentiated (grade 2) 
category. Despite the reported misclassification and lack 
of standardization, grade continues to play an important 
prognostic role in patient management from neoadju-
vant therapy choice to implementation of genetic testing 
results [4–7].

The most recent guidelines from national organizations 
[8–10] emphasize the importance of a complete pathol-
ogy assessment of invasive BC (i.e., tumor size, grade, 
endocrine receptor status, and HER2 amplification) prior 
to genomic test selection and therapeutic sequencing, 
including surgery. In addition, as approximately 50% of 
pathology reports are missing elements critical to patient 
management, specifically grade and margin status, con-
sistency in pathology reporting is required. Although 
not robust, mitotic figure activity, which reflects prolif-
eration, is one of the most important variables to predict 
outcome but also the most common cause of discordance 
due to staining artifacts, mimickers, and tumor cellularity 
[3, 9]. Finally, analysis of molecular signatures revealed 
that BC grade remains an independent risk factor in 
multivariate models and provides additional information 
to improve BC subtyping beyond endocrine status and 

HER2 overexpression [11, 12]. This is clinically signifi-
cant, as BC grade is an independent prognostic feature 
and plays a direct role in whether patients are managed 
via neoadjuvant therapy or surgery, can affect psycho-
logical well-being, and assists in the interpretation of 
genomic-based risk assessments such as MammaPrint, 
EndoPredict, and Oncotype DX Breast Recurrence 
Scores [12].

Here, we developed a deep learning system for ana-
lyzing invasive BC histology images with the purpose 
of enhancing and improving the current BC grading 
approach. We created an AI-digital BC grade and incor-
porated relevant clinical data to produce a BC recurrence 
risk test [13, 14]. Our primary objective was to rely only 
on the BC H&E digital image and readily available clini-
cal data to both standardize BC grading and provide an 
accessible tool to predict breast cancer recurrence within 
6 years.

Methods
Study design
We performed a retrospective longitudinal clinical devel-
opment and validation study utilizing samples from 
breast cancer patients within the Mount Sinai Health 
Care System (which included Mount Sinai Hospital, and 
Mount Sinai Beth Israel, NYC, NY) from 2004 to 2016. 
Eligible participants were ≥ 23  years old with infiltrat-
ing ductal or mixed ductal and lobular carcinoma of the 
breast (IDC) and a median 6-year follow-up data avail-
able. Patients treated with neoadjuvant therapy or prior 
history of BC were excluded. The institutional review 
board approved the use of human patient specimens and 
their clinical data for this study and waived informed 
consent. This study adhered to the TRIPOD checklist 
guidelines to ensure transparency of the reporting of our 
prediction model study.

All participants had H&E slides available for analy-
sis (Department of Pathology, Mount Sinai Hospital, 
NYC, NY) or paraffin blocks for slide generation that 
had been procured from prior resected breast cancer 
specimen investigation. H&E slides were digitized (40X 
magnification) using a Philips UltraFast Digital slide 
scanner (Netherlands). A total of 15,000 H&E slides 
and paired digital images (40X magnification) were 
reviewed with single whole slide images (WSI) selected 
for model development. The manual histologic grade 
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was obtained from the original pathology report. Two 
pathologists (AS, BV), blinded to outcome, reviewed all 
cases to confirm the diagnosis of invasive breast can-
cer and tumor/image quality; no subjects were rejected. 
One image per patient was advanced for feature extrac-
tion and model development. Clinical and pathology 
data were extracted from the Mount Sinai electronic 
medical record system (EPIC). The data were stored 
in a Department of Pathology secure Web-based pro-
prietary software platform for cohort construction and 
statistical analysis.

Image feature construction/digital image analysis
Approved WSI were interrogated with a deep learn-
ing morphology feature array (MFA) to extract tumor 
cell and tissue architectural features [15] (Figs. 1 and 2) 
to produce individual cell and tissue BC features which 
were prioritized based on the risk of BC recurrence with 
a concordance index (c-index) range of < 0.4 or > 0.4. The 
resultant 800-curated features represented BC grad-
ing and tumor composition. After outcome filtering and 
comprehensive mini-performance models, 40 features 
passed for model development. (Supplemental details are 
provided in Additional file 1.)

Fig. 1  PDxBr AI-Digital Grade Features. Representative images of A–B tumor-infiltrating lymphocyte feature that detects and quantitates 
lymphocytes (highlighted in blue) in the periepithelial area of invasive tumor (dark overlay); C-D nuclear pleomorphism feature that quantitates the 
difference between the largest epithelial nuclei (outlined in red) and the average nuclei (outlined in green) in the invasive tumor; and E–F mitotic 
count feature, which uses clustering methods to identify the regions of highest proliferation (yellow outline—equivalent to 10 high-power fields)
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Primary objective and study endpoints
The primary objective was to assess the performance 
and accuracy of a novel, AI-digital BC grade and clini-
cal feature test to predict the likelihood of BC recur-
rence within 6  years. The composite BC recurrence 
study endpoints included: (1) disease-free survival, 
time from diagnosis to first event including ipsilat-
eral BC recurrence, local recurrence, regional recur-
rence, distant recurrence, contralateral second primary, 
or death without evidence of recurrence; (2) distant 
recurrence-free interval, time from diagnosis to date 
of distant recurrence or death with distant recur-
rence; (3) relapse-free interval, time from diagnosis to 
first recurrence (e.g., ipsilateral, loco-regional, distant, 

metastatic) or date of death with recurrence; and (4) 
overall survival, time from diagnosis to death of any 
cause.

Statistical analysis
Demographic and event-balanced training and valida-
tion cohorts (2004–2016) were used for model develop-
ment with the c-index/area under the curve (AUC) and 
Kaplan–Meier survival analyses. C-indices and hazard 
ratios (HR) are reported as 95% CIs. Significance was 
set as a two-tailed p < 0.05. The only clinical variables 
selected by the model included age, tumor size, Ameri-
can Joint Committee on Cancer (AJCC) v8 stage, and 
lymph node status while pathologist grade, estrogen and 

Fig. 2  PDxBr AI-Digital Grade Architectural Features. Representative patient images of A–B the graph-based approach to establish the extent of 
tubule formation in invasive epithelial structures by quantifying the degree of graph branching; C–D quantitates the degree the invasive epithelium 
is growing in sheets, high feature value shown in red and low feature value in yellow; E–F quantitates the degree the invasive epithelium is growing 
in tubular structures, high feature value shown in green and low feature value in orange



Page 5 of 11Fernandez et al. Breast Cancer Research           (2022) 24:93 	

progesterone receptor status, and HER2 amplification 
were available but not selected. The training performance 
of clinical and imaging features was modeled (unad-
justed) through the construction of a support vector 
regression analysis with censored data (SVRc) [16].

Features in the model are covariates that employ a lin-
ear kernel where the hyperparameters are optimized 
through particle swarm optimization [17], allowing for 
both censored and uncensored events to be appropri-
ately weighted during threshold application. An SVRc 
threshold, which maximizes sensitivity and specificity, 
is selected by the algorithm that divides the dataset into 
high-risk and low-risk categories. Measures of predic-
tive accuracy include negative predictive value (NPV), 
positive predictive value (PPV), sensitivity, and specific-
ity. The output is a risk score from 0 to 100 representing 
an individual’s risk of experiencing an event, with higher 
numbers indicating increased risk.

A subgroup analysis was also performed utilizing only 
those patients with an observed Oncotype Recurrence 
Score (RS, scale of 0–100) compared with our newly 
developed PDxBR risk score based on AUC, NPV, and 
PPV.

Results
Patient and tumor characteristics
A total of 2075 eligible participants were subdivided (3:1) 
into training (n = 1559) and validation (n = 516) cohorts. 
Patient characteristics were similar overall (Table 1). The 
majority of samples were estrogen receptor (ER, 87%) and 
progesterone receptor (PR, 81%) positive, (i.e., Luminal 
A) with 12% (n = 252) Her2 amplified, and 8% (n = 160) 
triple negative. 42% and 40% histologic grade 2 and 3, 
respectively. Given the absence of Ki67 and only 2% of 
low-level ER + cases, the luminal B categorization was 
not feasible. Approximately 70% received tamoxifen and 
74% had chemotherapy in addition to endocrine or radia-
tion treatment. There were 289 (14%) total recurrence 
events (220 in training and 69 in validation) including 
metastases (n = 85), loco-regional and nodal extension 
(n = 72), and overall survival (n = 126). All available clini-
cal features (including pathologist histology grade) were 
included for model development. There was no imputa-
tion necessary for any clinical variables.

PDxBr—training
The PDxBr training model (n = 1559) consisted of the 
following clinical variables: age, age combined with 
tumor size (cm), constructed to balance the importance 
of tumor size in conjunction with age, anatomic stage, 
and lymph node (LN) status as well as 7-imaging fea-
tures (Table  2), differentially weighted through SVRc to 
identify patients at increased risk of early BC recurrence 

within 6  years. Representative images of PDxBr model 
grade features are displayed in Fig.  1 and representa-
tive images of PDxBr model architectural features are 
displayed in Fig.  2. The two most important clinical 
variables included were positive lymph nodes and age at 
diagnosis, while the two most significant image features 
represent tubule formation (degree of differentiation) 
and tumor-adjacent lymphoid clusters (< lymphocytes in 
the tumor = greater chance of recurrence). The value and 
direction (positive or negative) of each feature equates to 
its weight within the model and impact on outcome. Nei-
ther histology grade nor ER/PR/Her2 status was selected 
by the model. As shown in Fig. 3A, the PDxBr assay was 
superior to either an optimized clinical-only model (con-
sisting of age, tumor size, stage and lymph node positiv-
ity) or an AI imaging feature model for predicting BC 
recurrence (p < 0.001, Additional file  2: Table  S1 and 
Additional file 3: Table S2). The training AUC/C-index of 
the PDxBr was 0.78 (95% CI, 0.76–0.80) versus optimized 
clinical model 0.71 (95% CI, 0.67–0.74) and AI imaging 
of 0.72 (95% CI, 0.70–0.74, p < 0.001). The AI imaging 
model produced a binomial low- and high-risk classifi-
cation, resulting in the redistribution of the NGS grade 
2 into low- versus high-risk categories (see the following 
section). Finally, since Adjuvant! is no longer available we 
also evaluated the performance of PDxBr with the binary 
clinical risk categorization algorithm used in the MIN-
DACT trial [18, 19]. Of note, the clinical risk algorithm 
is very similar to the PDxBr clinical algorithm, except 
that age is not included and histologic grade is utilized. 
C-index/AUC for clinical risk was 0.63 (95% CI 0.6–0.65) 
versus PDxBr of 0.78 (95%CI 0.76–0.8), demonstrating a 
significant improvement (see Additional File 4: Fig.  S1). 
The demographics of the clinical high-risk group were as 
expected including 19% Her2 +ve, 70% NGS grade 3, 29% 
1–3 positive LN and > 2 cm.

Subjects stratified by the PDxBr risk score below (< 58, 
low risk) versus above (high risk, ≥ 58) yielded an HR of 
5.5 (95% CI 4.2–7.2), p < 0.001 with sensitivity 0.72, speci-
ficity 0.77, NPV 0.95, and PPV 0.32 for predicting BC 
recurrence (Table  3 and Fig.  3B). Increasing risk scores 
indicated a greater risk of recurrence within 6  years of 
which 72% were low risk and 28% high. Of the 220 events 
in training, there were 22 in the triple negative (TN) and 
30 in the Her2 + subgroups for which the model classified 
17/22 (77%) and 20/30 (67%) as high risk, respectively.

PDxBr—validation
In validation, the AUC/C-index of the PDxBr (n = 516) 
improved risk discrimination (0.75, 95% CI, 0.72–0.79) 
when compared with either the clinical (0.71, 95% CI, 
0.66–0.75) or image (0.67, CI, 0.63–0.71, p < 0.001 for 
both) features only models (Fig.  3C and Table  2 and 
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Additional file 2: Table S1 and Additional file 3: Table S2). 
By comparison, C-index/AUC for the binary clinical risk 
in the validation cohort was 0.64 (95% CI 0.6–0.68) (see 
Additional File 4: Fig.  S1B). When patients were strati-
fied by the PDxBr risk score of 58, the HR was 4.4 (95% 
CI 2.7–7.1, p < 0.001), sensitivity 0.60, specificity 0.77, 

NPV 0.94, and PPV of 0.24 for predicting BC recurrence 
(Table 3 and Fig. 3D). Comparable to training, 72% were 
classified as low risk and 28% high. Of the 69 events in 
validation, there were 10 in the triple negative (TN) and 
8 in the Her2 + subgroups for which the model classi-
fied 6 (60%) and 7 (87%) as high risk, respectively. The 

Table 1  Demographics of the PDxBr training and validation cohorts

LN Lymph node

Train
(N = 1559)

Validation
(N = 516)

Median age, y (range) 60 (24, 90) 60 (28, 90)

Race/ethnicity, N (%)

 Asian 9 (0.6) 6 (1)

 Black 81 (5) 21 (4)

 Latino 22 (1) 8 (1)

 Other 186 (12) 69 (13)

 Unknown 408 (26) 128 (25)

 White 853 (55) 284 (55)

Estrogen receptor, N (%)

 0 204 (13) 68 (13)

 1 1355 (87) 448 (87)

Progesterone receptor, N (%)

 0 292 (19) 100 (19)

 1 1267 (81) 416 (81)

HER2, N (%)

 0 1362 (87) 461 (89)

 1 197 (13) 55 (11)

Tumor size (cm) 1.5 ± 1.1 (0.1, 17.0) 1.5 ± 0.9 [0.1, 8.0]

 T1 1168 (75) 398 (77)

 T2 367 (24) 112 (22)

 T3 24 (2) 6 (1)

Stage

 Stage1 1055 (68) 362 (70)

 Stage 2 386 (25) 123 (24)

 Stage IIIA/B 81 (5) 21 (4)

 Stage IIC 36 (2) 10 (2)

 Stage IV 1 (0.1) 0 (0)

Lymph node status

 posLN = 0 1075 (69) 350 (68)

 microLN or isolatedLN and posLN = 0 127 (8) 56 (11)

 1 ≤ posLN ≤ 3 239 (15) 79 (15)

 posLN > 3 118 (8) 31 (6)

Grade

 1 290 (19) 68 (13)

 2 649 (42) 219 (42)

 3 620 (40) 229 (44)

Total events

 0 1339 (86) 447 (87)

 1 220 (14) 69 (13)

Time to event (months) 75.3 [-16.0, 68.0, 200.0] 79.4 [0.0, 69.0, 1173.0]
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demographics of the clinical high-risk group in the vali-
dation cohort were identical to the clinical high risk in 
training.

PDxBr AI grade versus pathologist‑assigned breast cancer 
grade
We compared the pathologist histologic grade with the 
PDxBr test and the AI grade (image-only model) utiliz-
ing the existing training and validation cohorts. Of note, 
the pathologist histologic grade as an independent clini-
cal feature was not selected during model development. 
When the full PDxBr model is evaluated with AUC/C-
index in training (Tr) and validation (Val) the significant 
incremental improvement for predicting BC recurrence 
is primarily driven by the univariate performance of 
AI grade (CI: Tr 0.72, Val 0.68) when compared to his-
tologic grade (CI: Tr, 0.64, Val, 0.61) versus final PDxBr 
model (CI: Tr 0.78, Val, 0.75, p < 0.001). Kaplan–Meier 
curves comparing AI grade versus histology grade reflect 
significant differences in both training (HR: 3.65, p 
value < 0.001) and validation models (HR: 2.1, p < 0.001, 
Additional file 5: Fig. S2).

With the PDXBr model, 187 (22%) of the 868 NGS 
grade 2 patients (representing 41% of 2075) were reclassi-
fied as high risk and 681 (78%) as low risk. With AI grade, 

177 (20%) were reclassified as high risk and 691 (80%) as 
low risk, suggesting that the NGS grade 2 is a hybrid of 
NGS grade of 1 and 3.

For the 358 NGS grade 1 cases (17% of 2075), PDxBr 
reclassified 15 (4%) as high risk and 343 (96%) as low 
risk, while the AI grade reclassified 5 (1%) as high risk 
and confirmed 353 (99%) as low risk. Importantly, for 
the 849 NGS grade 3 patients (41% of 2075), the PDxBr 
confirmed 377 (44%) as high risk and reclassified 506 
(66%) as low risk, while AI grade confirmed 115 (14%) 
as high risk and 734 (86%) as low risk. This adjustment 
in grade characterization will impact the performance of 
clinical risk models (e.g., MindAct), which in this cohort 
was non-contributory for predicting recurrence with 
CI’s of 0.63 in training and 0.64 in test. (Additional file 4: 
Fig. S1).

PDxBr improves oncotype recurrence score (RS) risk 
discrimination: subgroup analysis
We also evaluated the performance of the PDxBr com-
pared to the gene expression assay (Oncotype DX) 
Breast in a subpopulation (n = 599), combining the 
training and validation groups to optimize events 
(n = 36, 6%). Of the 36 events, 21 (60%) were local–
regional recurrences. Cohort characteristics were 

Table 2  PDxBr training and validation: image and clinical features

Image features: Proliferative activity: mitotic figure count; nuclear pleomorphism: nuclear shape, size, contour, chromatin content; tumor-infiltrating lymphocytes: 
number of intra-tumoral lymphocytes; tumor sheets/architecture: concentrated islands of tumor with and without intervening stroma; intact tubules: varying sized 
gland structures composed of epithelial cells with an intact lumen and adjacent stromal components. Clinical feature: age and size composite; novel feature that 
balances impact of tumor size as a function of age

*Model threshold of 57.77 was rounded to 58 for subsequent risk categorization and reporting

Training dataset

 Concordance index (C-index): 0.78

 *Training sensitivity/specificity threshold: 57.77

 Train sensitivity: 0.72

 Train specificity: 0.77

Validation dataset

 Concordance index (C-index): 0.75

 Test sensitivity: 0.61

 Test specificity: 0.77

Feature Weight in 
final model

Proliferative activity − 17.11

Nuclear pleomorphism − 28.53

Age and size composite − 11.07

Age at diagnosis − 23.14

Stage − 12.21

Tumor-infiltrating lymphocytes 23.48

Positive lymph nodes − 29.34

Tumor sheets/architecture 8.36

Intact tubules 42.91
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similar to the larger cohort (Additional File 6: Table S3). 
Of note, there were 55% histologic Grade 2 cases in this 
population. Combining Oncotype model with assorted 
sub-models including histologic grade, clinical fea-
tures, AI grade, or PDxBr model (see Additional File 7 : 
Tables S4A–D, for complete model characteristics) in a 
SVRc analysis demonstrated incremental improvement 
in the C-index for predicting BC recurrence (Table  4 
and Additional File 8: Fig.  S3): Oncotype RS: Ci 0.63 
(95% CI 0.55–0.71) versus Oncotype RS and AI grade, 
Ci 0.73 (95% CI 0.65–0.80) versus Oncotype RS and 
PDxBr, Ci 0.76 (95%CI 0.70–0.82). Applying a cutoff to 
identify low- versus high-risk patients showed improve-
ment over oncotype alone: Oncotype RS: sensitivity 
42%, specificity 86%, HR 3.5 p < 0.01 versus Oncotype 
RS and AI image features: sensitivity 72%, specificity 

82%, HR 6.1 p < 0.001 versus Oncotype RS and PDxBr: 
sensitivity 66%, specificity 80%, HR 6.1, p < 0.001.

In the oncotype RS plus PDxBr model, there were 14 
events in the low-risk population: local regional recur-
rences (n = 10), metastasis (n = 2), and death (n = 2). By 
comparison, in the oncotype RS-only low-risk (≤ 25) 
group there were 24 events: local regional recurrences 
(n = 16), metastasis (n = 5), and death (n = 3).

Discussion
We developed a novel AI-enabled digital platform to 
identify and phenotype infiltrating ductal (with mixed 
lobular/ductal) breast carcinoma from an H&E-stained 
image. By applying image analysis tools to isolate and 
quantify individual elements of the invasive cancer, we 
extracted features representing tissue architecture and 
cell type characteristics, which we call the AI grade. This 

Fig. 3  Accuracy of training and validation models predicted recurrence risk and performance in patients stratified by high and low risk of 
recurrence. AUC-ROC curves of A training model and C validation model compared with the optimized clinical model and image feature model. 
Kaplan–Meier curve of B training and D validation model performance with a cutoff distributing patients as high or low risk for breast cancer 
recurrence
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platform identifies discrete biologically driven tumor ele-
ments that are not captured using current breast can-
cer grading such as the NGS [14]. In contrast to other 
approaches in computational histopathology that focus 
on classification problems (e.g., tumor versus no tumor) 
with multi-instance learning [20], we employ a super-
vised pathologist driven feature design process. The 
result is readily explainable features for pathologists and 
oncologists, appropriate for risk modeling and potential 
predictive response. We then combined the AI grade 
with clinical features such as the patients’ age, tumor 
size, stage and number of positive lymph nodes to gen-
erate the PDxBr risk score to categorize patients as low 

or high risk for BC recurrence within 6 years of a defini-
tive treatment (i.e., lumpectomy or mastectomy). The ini-
tial objective was to develop a readily accessible tool that 
had utility for patients with early-stage ER + invasive BC. 
However, we also observed that the PDxBr model was 
able to effectively risk stratify patients with Her2 +ve and 
triple-negative disease by identifying 50 of the combined 
70 events (70%), relying only on age, tumor size, stage, 
lymph node status and their H&E AI-grade phenotype.

Validation of the PDxBr model produced a C-index 
of 0.75 versus optimized clinical or imaging models of 
0.71 and 0.67, respectively. Using a validated risk score 
to discriminate low versus high risk yielded an HR of 4.4 
(p < 0.001) with an NPV of 94. The data suggest that with 
an NPV of 94% and a PPV of 24%, due to the lower preva-
lence of events in this low-risk cohort, the PDxBr would 
potentially be effective in combination with oncotype RS 
and other gene expression tests to rule-out chemother-
apy. Moreover, our studies comparing histologic grade 
versus AI grade provide evidence of improved risk dis-
crimination and the importance of advancing objective 
and adaptive (biological intent) grading systems for inva-
sive BC. In the PDxBr model, histology grade (generated 
by experienced BC pathologists) has been replaced by the 
AI features and additional tumor-infiltrating lymphocyte 
feature provides a prognostic/predictive role for immune 
characterization in the pre-treatment setting. Additional 
studies are underway to characterize the spatial and 
organizational properties of these infiltrates and their 
relationship with invasive cancer and recurrence.

The seminal paper promoting the use of gene expres-
sion to predict BC recurrence [21] reported that the 
grade concordance between any two pathologists was 
59–65% and overall concordance among three patholo-
gists was 43%, with the lowest for well-differentiated 
and moderately differentiated tumor grades and high-
est for poorly differentiated. Of note, the interobserver 
variability in tumor grading was reported to be typical 
in oncology practice. As such, in 2002, the AJCC Breast 
Task Force did not add tumor grade to its staging criteria 
due to sparseness and variability of the data. Since then, 
the AJCC, 8th edition, has included the NGS as a recom-
mended feature for appropriate BC staging [22]. Here, 
we demonstrate the impact of improved performance of 
Oncotype RS when combined with PDxBr in a subset of 
the training and validation cohorts. Applying a thresh-
old to discriminate low versus high risk for recurrence, 
the Oncotype + PDxBr and Oncotype + AI image grade 
models were superior to Oncotype alone, suggesting that 
application of an improved BC grade with Oncotype RS 
may enhance overall risk discrimination. In context with 
our previous study [23], the conceptual view of using 
readily available materials to recapitulate genomic assays, 

Table 3  Utilization of the PDxBr training and validation models 
with cutoff to stratify patients into high- and low-risk recurrence 
groups

PPV positive predictive value, NPV negative predictive value

*Model cutoff of 57.77 rounded to 58

Events Censored Total

Training model

 *Risk score ≥ 58 140 295 435

 *Risk score < 58 80 1044 1124

Training performance metric Performance (95% CI)

 Sensitivity 0.715

 Specificity 0.772

 PPV 0.319

 NPV 0.948

 Confidence interval 0.787 (0.764, 0.808)

Validation model

 Risk score ≥ 58 39 104 143

 Risk score < 58 30 343 373

Performance metric Performance (95% CI)

 Sensitivity 0.605

 Specificity 0.768

 PPV 0.242

 NPV 0.941

 Confidence interval 0.755 (0.717, 0.792)

Table 4  AUC comparison of oncotype alone and then 
combined with histology grade, clinical data (age, stage, tumor 
size, and LN pos), AI grade, and the PDxBr model

Model C-index CI lower limit CI upper limit

Oncotype RS 0.35 0.26 0.48

Oncotype + grade 0.51 0.42 0.60

Oncotype + Clinical 0.64 0.57 0.71

Oncotype + AI grade 0.72 0.67 0.79

Oncotype + PDX Br 0.76 0.70 0.82
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which by nature reflect morphological attributes, war-
rants further investigation [24].

The TAILORx study to redistribute the intermediate-
risk group continues to use clinical grade as a determi-
nant for chemotherapy in the ≤ 50-year-old population 
with a recurrence score of 16–25, emphasizing the neces-
sity to provide the most accurate grade assessment pos-
sible [25]. This study also served as the source material 
for the RSClin tool that identified an improvement in 
the prediction of distant recurrence when combining the 
RS score with clinical features, one of which was histo-
logic grade [26]. Introducing an automated grade into the 
RSClin has the potential to further improve performance. 
A more recent study [27] illustrates the importance of 
grade variability between and within pathologists, which 
is more pronounced when using digital images, specifi-
cally for mitotic figure assessment and nuclear pleomor-
phism. Since many academic pathology departments 
and large commercial pathology laboratories are moving 
toward digital platforms for diagnosis, image-based tools 
that improve accuracy is increasingly important.

Several studies have highlighted histologic grade as 
an independent prognostic feature, specifically when 
genomic assays such as Oncotype DX are under consid-
eration. A sizeable study of 1268 patients suggested that 
pathologic data (i.e., grade/stage) was sufficient to replace 
the use of the Oncotype RS for low- and high-risk indi-
viduals, reserving the assay instead for the intermedi-
ate group alone [21]. Our binomial high- and low-risk 
categorization for grade utilizing only the PDx AI grade 
addresses the current ambiguity associated with grade 
2 breast cancer by redistributing 22% into the high risk 
category and 78% into the low risk. Anecdotally, many 
breast oncologists report that there is an overriding 
belief that grade 2 is a hybrid of grade 1 and 3 disease. 
Furthermore, we have also demonstrated a 99% concord-
ance of grade 1 with AI low risk versus a redistribution of 
grade 3 into 44% high risk and 66% as low. The implica-
tion behind this reassignment is a potential adjustment of 
clinical risk which includes grade, tumor size, and stage. 
Additional studies are underway to evaluate. As the indi-
vidual models in Fig. 3 illustrate, there is significant and 
incremental improvement when imaging features (rep-
resenting AI-augmented BC grade) and clinical features 
(including age, tumor size, tumor stage, and lymph node 
status) are combined.

Limitations
Although not unexpected, the number of events (14%) 
is low given that this cohort is classified as low risk but 
still important to consider due to the underlying disease 
potential and mortality associated with BC. Addition-
ally, we have a limited follow-up, limited reported racial 

diversity and currently lack an external validation cohort. 
To address these deficiencies, we are actively pursu-
ing access to several geographically diverse populations 
as well as completed Phase III Clinical Trial cohorts to 
interrogate grading system prognostication, the use of 
clinical risk, and alignment with genomic strategies.

Summary and conclusion
Through advances in WSI AI-digital H&E image analy-
sis of invasive BC, we have produced an assay to stratify 
patients for early-stage BC recurrence. This approach is 
both quantifiable and reproducible, combining MFA with 
standard-of-care attributes including patients’ age, tumor 
size, and extent of disease. By introducing novel tissue 
and cellular attributes such as tumor–stromal ratios and 
lymphocytic content, the models have produced an addi-
tional layer of biological intent for phenotyping breast 
cancer. Future studies with extended follow-up are in 
progress to facilitate treatment decision-making, enrich 
gene expression assays, and improve disease manage-
ment within the broader breast cancer community.
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