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Abstract 

Cervical cancer is one of the most common gynecological malignancies. Due to the high heterogeneity of cervical 
cancer accelerating cancer progression, it is necessary to identify new prognostic markers and treatment regimens for 
cervical cancer to improve patients’ survival rates. We purpose to construct and verify a risk prediction model for cervi-
cal cancer patients. Based on the analysis of data from the Gene Expression Omnibus database (GEO) and The Cancer 
Genome Atlas (TCGA), differences of genes in normal and cancer samples were analyzed and then used analysis of 
WGCNA along with consistent clustering to construct single-factor + multi-factor risk models. After regression analy-
sis, the target genes were obtained as prognostic genes and prognostic risk models were constructed, and the validity 
of the risk model was confirmed using the receiver operating characteristic curve (ROC) and Kaplan–Meier curve. 
Subsequently, the above model was verified on the GSE44001 data validation followed by independent prognostic 
analysis. Enrichment analysis was conducted by grouping the high and low risks of the model. In addition, differences 
in immune analysis (immune infiltration, immunotherapy), drug sensitivity, and other levels were counted by the high 
and low risks groups. In our study, three prognostic genes including APOD, APOC1, and SQLE were obtained, and a 
risk model was constructed along with validation based on the above-mentioned analysis. According to the model, 
immune correlation and immunotherapy analyses were carried out, which will provide a theoretical basis and refer-
ence value for the exploration and treatment of cervical cancer.

Highlights 

•	 Establishment and Validation of a risk model includes APOD, APOC1 and SQLE;
•	 APOD, APOC1 and SQLE are related to immunotherapy;
•	 APOD, APOC1 and SQLE associates with prognosis in cervical cancer
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Introduction
Cervical cancer ranks third as one of the most common 
types of gynecological malignancies to affect females [1–
3]. Common treatments for cervical cancer include sur-
gery, radiotherapy, chemotherapy, and immunotherapy 
[2]. The morbidity and mortality of cervical cancer are 
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significantly declined due to vaccination administration 
and improved screening in recent years.

However, the prognosis of cervical cancer patients 
remains poor, as the one-year survival rate for cervical 
cancer patients is no more than 20%. Cervical cancer is 
a public health concern worldwide at present [2]. As the 
importance of risk screening to improve the prognosis of 
patients with cervical cancer is concerned, the risk fac-
tors affecting the prognosis of patients with cervical can-
cer need to be further explored currently.

Many studies have demonstrated multiple risk predic-
tion models for cervical cancer. Rothberg et al. applied a 
multivariable model based on an electronic health record 
of cervical intraepithelial neoplasia grade 2 or higher 
patients could be more target to screen for cervical can-
cer [4]. In another study involving 768 cases, a deep-
learning neural network model was demonstrated as a 
useful survival prediction tool in cervical cancer patients 
[5]. Boruta analysis with the SVM method was confirmed 
effective for the initial screening of cervical cancer [3]. 
Human papillomavirus (HPV) is a common risk of cer-
vical cancer according to many studies [6–8]. A variety 
of unparalleled molecular characteristics of patients 
with HPV-positive cancer could help prospective medi-
cine of cervical cancer therapy precision precisely [9]. 
Some genes and their involved pathways such as genes 
of ABCG2 + PCNA + TDG were found in the microbial 
community of the cervical to be associated with cervi-
cal intraepithelial neoplasia occurrence and progression 
[10]. Generally speaking, prediction models may play a 
vital role in the risk prediction of cervical cancer.

Tumor microenvironment including the immune sys-
tem and hypoxia correlates with tumor progression and 
therapeutic outcome [11]. It has been verified that the 
systemic immune-inflammation index was a chemother-
apy efficacy predictor for many types of cancers. The pre-
treatment immune-Inflammation Index was indicated as 
an independent predictor of both the prognosis of cervi-
cal squamous cell carcinoma prognosis patients and the 
pathological complete response [12]. It was reported that 
a prognostic signature consisting of immune-related long 
non-coding RNAs, such as CTLA-4, PDCD1, and so on, 
correspondingly predicted risk of cervical cancer and 
responded to cervical cancer patients’ immunotherapy 
of mitomycin C and chemotherapeutics of axitinib and 
docetaxel [13]. Wang et  al. found a series of hypoxia or 
immunity-related genes to establish a prognostic risk 
model to predict tumorigenesis and development along 
with chemotherapy sensitivity in cervical cancer [14]. 
Moreover, DNA methylation plays an important role in 
tumorigenesis by regulating the tumor microenviron-
ment, a prognostic signature related to DNA methylation 
and tumor microenvironment was established to predict 

therapeutic response and clinical outcomes of cervical 
cancer patients [11]. Metabolism involved lipid, carbohy-
drate, and energy pathways associated with immune infil-
tration closely. Therefore, carbohydrate, lipid, and energy 
pathway-related metabolic reprogramming is indicated 
as a crucial predictor for invasive cervical carcinoma 
prognosis due to its correlation with the microenviron-
ment of immune cells [15]. In addition, on account of the 
immune microenvironment of the tumor and risk model, 
a ferroptosis-related gene PTGS2 was identified to pre-
dict the prognosis of patients with early-stage cervical 
cancer [16].

Given the importance of genes, especially immune-
related genes prediction models for cervical cancer 
prognosis, we purposed to establish a genes-related 
prediction model for the prognosis of cervical cancer 
patients. To analyze the data from the Gene Expression 
Omnibus database (GEO) and The Cancer Genome Atlas 
(TCGA), and then construct single-factor accompanied 
with multi-factor risk models to obtain the immune-
related genes associated with prognosis in cervical cancer 
followed by identification of the prognostic risk model, 
it was performed based on the GSE44001 data valida-
tion. Moreover, immune correlation and immunotherapy 
analyses were carried out according to the model, which 
would provide a theoretical basis and targeted program 
for the investigation and treatment of cervical cancer.

Materials and methods
Data sources
Sample data used in the present study were downloaded 
from the following datasets: TCGA database (https://​
portal.​gdc.​cancer.​gov) – TCGA-CESC data sets, includ-
ing 3 cases of normal and 304 cases of cervical cancer 
samples and survival data were available in 291 of the 
cancer samples, so the analysis involving survival time 
was performed in only 291 samples. In addition, the GEO 
database (https://​www.​ncbi.​nlm.​nih.​gov/​gds) of the two 
data sets of GSE63514 and GSE44001 was also involved 
in our study. The GSE63514 dataset including 24 normal 
samples and 76 cervical cancer samples was used for the 
analysis of difference and WGCNA. The GSE44001 data-
set consisting of 300 cancer samples with available sur-
vival data was used to validate the prognostic model.

The inclusion criteria of samples were as follows: (1) 
Female, aged 18 to 75 (including 18 and 75); (2) Cervi-
cal cancer patients with definite diagnosis confirmed 
by histology and clinical stage IB1-IIA1; (3) With 0 to 1 
of the Eastern Collaborative Oncology Group (ECOG) 
physical status score; (4) The patients should tolerate 
surgery with organ and hemopoiesis; (5) Contraindica-
tions of conventional surgery were excluded. (6) The 
patients should agree to provide sufficient tumor tissue 
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samples for experimental expression detection. Includ-
ing archived tumor samples (paraffin blocks or unstained 
sections whose number meets the testing requirements 
specified in this study); If no tumor tissue sample is on 
file, the subject agrees to undergo rebiopsy of the tumor 
lesion. The exclusion criteria of patients were as follows: 
(1) Patients received other antitumor therapy (including 
chemotherapy, molecular targeted therapy, radiotherapy, 
immunotherapy, monoclonal antibody therapy) within 4 
weeks prior to the initiation of study therapy; (2) Patients 
who cannot tolerate surgery; (3) Patients with menin-
geal metastasis or symptomatic central nervous system 
metastasis; (4) Patients with a serious medical condition, 
such as severe infections, uncontrolled diabetes, cardio-
vascular disease (New York Heart Association classifica-
tion of heart failure grade III or IV, heart block grade II or 
higher, myocardial infarction in the past 6 months, unsta-
ble arrhythmias or unstable angina, 3 Cerebral infarction, 
etc.) or pulmonary disease (history of interstitial pneu-
monia, obstructive pulmonary disease, and symptomatic 
bronchospasm) within a month; (5) Patients with other 
malignant tumors in the previous 5 years before sur-
gery, except for any type of previously cured carcinoma 
in  situ and cured basal cell carcinoma or squamous cell 
carcinoma of the skin; (6) Patients received allogeneic 
hematopoietic stem cell transplantation or solid organ 
transplantation; (7) Patients with a clear history of neuro-
logical or mental disorders, such as epilepsy and demen-
tia, and poor compliance; (8) The participants are not 
suitable for other reasons confirmed by the researchers.

Genes expression analysis in cervical cancer
To obtain the differentially expressed genes in different 
groups and conduct further functional mining for the 
differentially expressed genes, the differential expression 
score of GSE63514 was analyzed first. Our analysis of 
data sets GSE63514 differentially expressed difference fil-
ter conditions to adjust. P < 0.05 and |log2FC| > 0.5. Then, 
data were analyzed using Weighted Gene Co-expres-
sion Network Analysis (WGCNA), which is an analy-
sis method for analyzing gene expression patterns in 
multiple samples. As modules are distinguished by gene 
expression similarity, the correlation between mod-
ules and modules as well as the correlation between 
modules and sample traits is calculated, so as to screen 
highly correlated models and analyze the genes in mod-
ules, so as to find the target genes related to the study. 
In order to check the overall correlation of all samples 
in the data set, we cluster the samples and eliminate the 
outlier samples to ensure the accuracy of the analysis. 
The core of co-expression matrix construction is to clas-
sify tens of thousands of genes in the input expression 
matrix into dozens of modules. In general, we calculated 

the adjacency between genes and the similarity between 
genes according to adjacency, then deduce the coefficient 
of dissimilarity between genes, and get the systematic 
clustering tree between genes. Then, the minimum num-
ber of genes per gene module is set to 30 according to the 
standard of the dynamic Tree cutting algorithm. To focus 
on the module and the correlation of disease, therefore, 
in the screening of the key module, we select the condi-
tions of the module as follows: the grey module, |cor| > 
0.3, P < 0.05. Moreover, due to our subsequent analysis 
shall be carried out in the TCGA, so we performed differ-
ential expression analysis of differences between the filter 
to adjust P < 0.05 and |log2FC| > 0.5 on the TCGA data 
set and differential expression of key modules of gene 
screening along with consensus clustering were carried 
out accordingly.

Establishment of a risk prediction model for the prognosis 
of patients with cervical cancer
To evaluate whether the obtained genes were correlated 
with the survival of patients survival with cervical can-
cer, univariate and multifactorial proportional hazards 
model(COX) analyses was performed in the present 
study. 291 samples from the TCGA dataset were divided 
into 7:3 (204:87) as the training set and test set respec-
tively. Univariate Cox proportional risk regression anal-
ysis was performed on these genes using the data from 
the training set to verify whether these genes are risk 
factors. We set the single-factor cutoff to 0.05. The genes 
obtained after univariate Cox analysis were then con-
structed into a multivariate Cox regression model. The 
multivariate Cox regression algorithm included multiple 
independent variables (the multiple independent vari-
ables here refer to the variables P < 0.05 in the results of 
univariate Cox regression analysis) into the multivariate 
Cox analysis, followed by the stepwise regression func-
tion step, Parameter direction is set to ‘both’ to adjust the 
multi-factor regression model.

Evaluation of the risk prediction model for the prognosis 
of patients with cervical cancer
To evaluate the prognostic value of the risk model, the 
risk value of each patient was calculated by analyzing the 
expression amount of the obtained genes. According to 
the risk value, the optimal threshold was calculated to 
divide the patients into two groups of high and low risk. 
We evaluated risk regression models in a training set 
(204 samples). To verify the applicability of the model, 
300 samples from the GSE44001 dataset were used as the 
validation set to verify the risk model mainly including 
the correlation analysis between risk factors and clinical 
features, the influence of prognostic genes on survival, 
using a multi-factor model to calculate the risk score, 
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survival receiver operating characteristic curve (ROC) 
package was applied to calculate false positive and true 
positive, results of which were used to draw ROC curve 
and calculate Area Under Curve (AUC) and the whole 
graph is divided into two parts as the Area below the 
Curve is called AUC, which is used to indicate the accu-
racy of prediction. Univariate and multivariate Cox was 
used to analyze the relationship between clinical traits 
and patient survival. The nomogram which could pre-
dict overall survival (OS) of cervical cancer patients with 
prognostic genes and other clinical traits with p < 0.05 
was established and assessed using a calibration curve 
and decision curve analysis (DCA) curve.

Pathway analysis of the risk prediction model for prognosis 
of patients with cervical cancer
The risk values were divided into high and low-risk 
groups at the optimal threshold, and the Limma pack-
age was used to conduct difference analysis on samples 
from high and low-risk groups. To further explore the 
difference between high and low-risk groups, we sorted 
the log2FC values from high to low and then conducted 
Gene Set Enrichment Analysis (GSEA) enrichment anal-
ysis. In this project, the R software cluster Profiler pack-
age was used for GSEA enrichment analysis to search for 
common functions and related pathways of a large num-
ber of genes in the differentially expressed gene set. The 
enrichment analysis databases used by GSEA include the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
Gene Onotology (GO).

Immune correlation analysis based on the risk prediction 
model for the prognosis of patients with cervical cancer
Single-sample GSEA (ssGSEA) algorithm was used to 
infer immune cell abundance. Through ssGSEA, we can 
get the immune cells or immune function of each sam-
ple and the activity of immune pathways, and then group 
them according to the immune activity. We used the 
Immunoapparent score (IPS) method to calculate IPS 
from all patient samples. IPS is an indicator to meas-
ure the overall immunogenicity of the tumor, which 
mainly includes the following four categories: Effector 
cells, immunosuppressive cells, MHC molecules and 
immunomodulators. IPS can unbiasedly consider using 
machine learning to determine immunogenicity based on 
four categories of genes.

Analysis of immunotherapeutic response and prediction 
of chemotherapeutic drug sensitivity based on the risk 
prediction model for prognosis of patients with cervical 
cancer
It is an important purpose of immunotherapy to reacti-
vate immune cells and reverse the immunosuppressive 

state of the tumor microenvironment. We use the Tumor 
Immune Dysfunction and Exclusion (TIDE, http://​tide.​
dfci.​harva​rd.​edu/) to predict response to immunotherapy.

The Cancer Drug Sensitivity Genomics (GDSC) data-
base is the largest public resource for information on 
molecular markers of drug sensitivity and drug response 
in cancer cells. It contains extensive drug sensitivity and 
genomic data sets that are important for the discovery of 
potential tumor therapeutic targets. PRRopheticPredict 
package (version 0.5) of R language was used to calculate 
138 drugs included in the database, and significant dif-
ferences of IC50 among different groups were obtained 
through calculation in our study.

Real‑time quantitative PCR (qPCR) detection of genes
Ten samples of cervical cancer tissue and ten samples of 
corresponding tissue adjacent to cervical carcinoma were 
obtained from patients at the Affiliated Cancer Hospital 
of Guizhou Medical University, and each patient wrote 
informed consent. The total RNA of the samples was 
isolated using TRIzol Reagent (REF:15,596,018) from 
ambion. All-in-onetM first-strand cDNA Synthesis Kit 
(REF:15,596,018) was used for reverse transcription reac-
tion and PCR was performed using the 2xUniversal Blue 
SYBR Green qPCR Master Mix kit (G3326-05) provided 
by Servicebio. Reaction program was performed with 
40 cycles including pre-denaturation at 95  °C for 1 min, 
denaturation at 95 °C for 20 s, annealing at 55 °C for 20 s, 
and extension at 72 °C for 30 s. The primers were shown 
in Table  1. RNA (Fold Change vs. Cont) =  2^−∆∆CT. 
Results of qPCR were analyzed using GraphPad Prism 9 
(USA). The paired T-test was used for difference analy-
sis, when the p value was less to 0.05 the difference was 
significant.

Results
Differentially expressed genes obtained from screening
Differential expression analysis was performed on the 
GSE63514 data set. According to statistics, a total of 

Table 1  Primers for real-time quantitative PCR

Gene Primers (5′–3′)

APOC1 F CCT​GGT​GGT​GGT​TCTGT​

APOC1 R CTC​TGT​TTG​ATG​CGGCT​

SQLE F TAC​TGG​GCA​AGA​AAA​ACA​T

SQLE R ACC​ACT​ACT​GAG​AAG​GGC​T

APOD F GGC​AGA​GGG​ACA​AGC​ATT​

APOD R CTG​GAG​GGA​GAT​TAG​GGT​

GAPDH F CCC​ATC​ACC​ATC​TTC​CAG​G

GAPDH R CAT​CAC​GCC​ACA​GTT​TCC​C

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
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2339 genes were significantly differentially expressed 
between normal samples and cancer patients, including 
1742 up-regulated genes and 597 down-regulated genes. 
A volcano map of genes of cancer tissue compared with 
normal samples was showed in Fig.  1a. Top 100 differ-
entially expressed genes between caner tissue and nor-
mal samples were showed in the heat map (Fig.  1b). In 
order to further identify genes closely related to diseases, 
WGCNA analysis was performed on 2339 differential 
genes in the GEO dataset (GSE63514), and diseases in 
the GEO dataset were used as traits for WGCNA analy-
sis. For the overall correlation of all samples in the data-
set, we first cluster the samples and the sample clustering 
and heat maps of clinical traits was showed in Fig. 1c. We 
constructed the co-expression matrix to obtain the sys-
tematic clustering tree between genes. MEDissThres is 
set to 0.2 to merge the similar modules analyzed by the 
dynamic clip-tree algorithm. After merging, there are 
finally 5 modules (one of them is gray, indicating that 
genes are not classified into any module), and the follow-
ing module diagram is generated (Fig.  1d). As modules 
correlated with clinical features as concerned, module 
and character association diagram and heat map were 

showed in Fig. 1e, f. In this study, we focused on the cor-
relation between modules and diseases, 400 genes were 
randomly selected for the gene cluster tree and heat map 
(Fig. 1g).

Differential expression analysis of the TCGA data set 
indicated that 3892 genes were significantly differentially 
expressed between normal samples and cancer patients, 
including 1660 up-regulated genes and 2232 down-regu-
lated genes, and the Volcano Plot along with the heat map 
of the expression of the top100 differentially expressed 
genes were showed in Fig. 2a, b. To screen out differen-
tially expressed key module genes in TCGA and GEO, 
we obtained 3892 differential genes and 2306 key module 
genes in TCGA and obtained 673 intersection genes by 
the intersection of the two gene sets, which were defined 
as key genes. For downstream analysis, a VENN diagram 
is shown in Fig. 2c. Consistent cluster analysis was per-
formed using the expression data of 673 key genes in 304 
cancer samples from TCGA. Consistent clustering accu-
mulative distribution function (CDF) diagram and con-
sistent clustering heat map are shown in Fig. 2d, e. Next, 
we conducted survival analysis based on different cluster 
subtypes and survival information of cancer patients, and 

Fig. 1  Differential expression of genes analyzed on GSE63514 data set. a Volcano map of genes of caner tissue compared with normal samples. 
b Heat map top 100 differentially expressed genes between caner tissue and normal samples. c The sample clustering and heat maps of clinical 
traits to exhibit the overall correlation of all samples in the dataset. d The module diagram of co-expression matrix with systematic clustering 
tree between genes. e Module and character association diagram with clustering tree and heat map. f Heat map of correlation between different 
modules and clinical traits. g Cluster diagram of topological matrix containing 40 genes



Page 6 of 14Zhang et al. BMC Women’s Health          (2022) 22:534 

the results are shown in the Fig. 2f. It can be seen that the 
overall survival time of the two categories is significantly 
different, and the survival probability of Cluster1 patients 
is higher. The TCGA samples were divided into Clus-
ter1: the 236 cases, Cluster2:68 examples, we have ana-
lyzed differentially expressed between different subtypes. 
According to statistics, 804 genes were significantly dif-
ferentially expressed between Cluster1 samples and Clus-
ter2 patients, including 395 up-regulated genes and 409 
down-regulated genes (Fig. 2g, h). To screen out different 
genes between subtypes, we obtained 673 key genes and 
804 differential genes between subtypes, and the inter-
section of the two gene sets was used to obtain 20 over-
lapping genes for downstream analysis, as shown in the 
Venn diagram (Fig. 2i). In order to evaluate whether the 
20 genes are associated with patient survival, 291 samples 
from the TCGA dataset were divided into 7:3 (204:87) 
as training set and test set respectively. Univariate Cox 
proportional risk regression analysis was performed on 

these genes using the data from the training set to verify 
whether these genes are risk factors and four genes were 
obtained (Table 2; Fig. 2j). After multivariate Cox analy-
sis, a total of 3 genes appeared in the multivariate Cox 
analysis results, including APOD, APOC1, and SQLE, 
which were taken as prognostic factors of this study 
(Table 3; Fig. 2k). The expression levels of the prognostic 
factors were plotted in Additional files 1 and 2: Figures S1 
and S2. Simultaneously, the mRNA expression of APOD, 

Fig. 2  Differential expression of genes analyzed on TCGA data set. a Volcano map of genes between caner tissue compared and normal samples. b 
Heat map top 100 differentially expressed genes in caner tissue compared with normal samples. c Venn diagram of key gene modules differentially 
expressed. d Consistent clustering accumulative distribution function (CDF) diagram. e Heat map of consistent clustering. f Kaplan–Meier curves 
of cancer patients with different clustering subtypes. g TCGA samples were divided into Cluster1:236 cases and Cluster2:68 cases. Volcano map of 
Cluster2 compared with Cluster1 sample gene. h Heat map of Cluster2 compared with Cluster1 samples. i Venn diagram of differential genes and 
key genes between subtypes. j Forest map of univariate COX results. k Forest map with multivariate COX results. l The mRNA expression of APOD 
assayed by qPCR in 10 samples of cervical cancer tissue and normal tissue. m The mRNA expression of APOC1 assayed by qPCR in 10 samples of 
cervical cancer tissue and normal tissue. n The mRNA expression of SQLE assayed by qPCR in 10 samples of cervical cancer tissue and normal tissue. 
n = 10. **P = 0.01 compared with normal tissue

Table 2  Results of univariate analysis

ID z HR HR.95 L HR.95 H P value

APOD −2.23279 0.737162 0.564038 0.963424 0.025563

ACKR1 −2.1105 0.755724 0.582643 0.980221 0.034815

APOC1 −2.10039 0.827697 0.6938 0.987437 0.035695

SQLE 2.015182 1.341524 1.008083 1.785256 0.043886
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APOC1, and SQLE was further assayed in cervical can-
cer tissues and normal tissues. The results, as shown in 
Fig. 2l–n, illustrated that APOD was significantly down-
regulated while the gene expressions of APOC1 and 
SQLE were higher in cancer samples compared with nor-
mal samples, which was consistent with that in online 
databases.

Establishment and validation of risk prediction model 
for prognosis of patients with cervical cancer
Based on three genes of APOD, APOC1, and SQLE, the 
risk prediction model for the prognosis of patients with 
cervical cancer was established, tested and validated. 
We evaluated risk regression models in a training set 
(204 samples). The risk value of each patient was cal-
culated by the expression levels of three genes, and the 
optimal threshold was calculated according to the risk 
value to divide the patients into two groups of high and 
low risk. From the survival analysis of the high-low-risk 
group (Fig. 3a), it can be seen that there is a significant 
difference in the survival of the high-low-risk group 
(P < 0.05). ROC Curve was drawn using the results and 
AUC was calculated (Fig. 3b). The whole graph of AUC 
was divided into two parts. The higher the AUC value 

Table 3  Results of multivariate analysis

ID z HR HR.95 L HR.95 H P value

APOD −0.21299 0.808161 0.617038 1.058482 0.121833

APOC1 −0.14381 0.866049 0.723332 1.036926 0.117513

SQLE 0.246593 1.279659 0.943892 1.734866 0.112266

Fig. 3  Establishment and validation of prediction model including three genes of APOD, APOC1 and SQLE risk for prognosis of patients with 
cervical cancer. Risk regression model evaluation was performed. a Kaplan–Meier survival curve of Risk score. b To evaluate the validity of the risk 
model using the ROC curve. c Risk curves for the high and low risk groups. d Heat map of overview of correlation between Risk Score and clinical 
features. Risk model testing as follows. e Kaplan–Meier survival curve of test set-risk score. f Test suite-ROC curve to assess the effectiveness of 
the risk model. g Test set - Risk curves for high and low risk groups. h Test set profile of the correlation between Risk Score and clinical features. 
Validation of risk model was performed. i Kaplan–Meier survival curve of verifying set-risk score. j Validate set-ROC curve to evaluate the validity of 
risk model. k Validation set - Risk curves for high and low risk groups. l Overview of the correlation between risk score and clinical features
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is, that is, the larger the area under the curve (and the 
smoother the curve), the higher the prediction accuracy 
will be. The closer the curve is to the top left corner (the 
smaller the X, the larger the Y), the higher the prediction 
accuracy. The AUC of 1, 3, 5 and 7 years were all greater 
than 0.6, indicating that the constructed risk regression 
model could effectively serve as a prognostic model. The 
risk curve is composed of the upper and lower graphs 
(Fig. 3c). The abscissa of the two graphs is consistent, and 
the risk value of patients increases successively from left 
to right. The samples were divided into high and low risk 
groups according to the optimal threshold. We proposed 
the available clinical data in the data set and displayed 
them in the heat map(Fig. 3d). Risk was combined with 
clinical data of patients in Table  4, and the chi-square 
test was used to evaluate the correlation between the 
risk model and clinical traits. P < 0.05 means that risk has 
significant differences among different groups. As can 
be seen from the table, M, N, T and GRADE traits were 
significantly different between high and low-risk groups. 
Analogously, the risk prediction model for the prognosis 
of cervical cancer was tested (Fig.  3e–h) and validated 
(Fig. 3i–l).

Moreover, results of univariate and multivariate COX 
analysis showed that risk score and T were significant 
independent prognostic factors (Tables  5 and 6, Addi-
tional file  3: Figure S3). Hence the nomogram and cor-
responding calibration curve were pictured in Additional 
file  4 and 5: Figures  S4 and S5, indicating that it had a 
good predicted capability for 3-year OS of patients with 
cervical cancer. DCA analysis confirmed the clinical 
validity of the nomogram (Additional file  6: Figure S6). 
Likewise, risk score also had significant independent 
prognostic power in the external validation set.

Pathways involved in the risk prediction model 
for prognosis of patients with cervical cancer
The GO function of differentially expressed genes 
was annotated and the biological significance of each 
gene was explored. A total of 21 KEGG pathways were 
enriched in GSEA [17–19]. The KEGG pathways were 
visualized as follows, the ordinate in Fig.  4a represents 
the enrichment score. ES is positive, indicating that a 
certain functional gene set is enriched in the front of the 
sequence. ES is negative, indicating that a certain func-
tional gene set is enriched in the rear of the sequence. 
The horizontal axis represents the gene, and each little 
vertical line represents a gene. On the whole, it can be 
seen that this pathway or GO has an upward/downward 
trend. A total of 748 GO pathways were enriched, and 
the top10 GO pathways were selected for visualization 
(Fig. 4b).

Table 4  Risk is correlated with clinical traits of patients

Total 
(N = 142)

Risk

High (N = 59) Low (N = 83) P value

Age (years)

 ≥60 29 (20.4%) 14 (23.7%) 18 (18.1%) 0.54

 <60 113 (79.6%) 45 (76.3%) 68 (81.9%)

M

 M0 66 (46.5%) 17 (28.8%) 49 (59.0%) 0.00162

 M1 8 (5.6%) 5 (8.5%) 3 (3.6%)

 MX 68 (47.9%) 37 (62.7%) 31 (37.3%)

N

 N0 71 (50.0%) 25 (42.4%) 46 (55.4%) 0.00154

 N1 35 (24.6%) 10 (16.9%) 25 (30.1%)

 NX 36 (25.4%) 24 (40.7%) 12 (14.5%)

T

 T1 77 (54.2%) 25 (42.4%) 52 (62.7%) 0.0129

 T2 38 (26.8%) 16 (27.1%) 22 (26.5%)

 T3 11 (7.7%) 5 (8.5%) 6 (7.2%)

 T4 5 (3.5%) 5 (8.5%) 0 (0.0%)

 Tis 8 (5.6%) 5 (8.5%) 0 (0.0%)

 TX 10 (7.0%) 7 (11.9%) 3 (3.6%)

Stage

 Stage I 83 (58.5%) 32 (54.2%) 51 (61.4%) 0.169

 Stage II 32 (22.5%) 15 (25.4%) 17 (20.5%)

 Stage III 17 (12.0%) 5 (8.5%) 12 (14.5%)

 Stage IV 10 (7.0%) 7 (11.9%) 3 (3.6%)

Grade

 G1 9 (6.3%) 3 (5.1%) 6 (7.2%) 0.00229

 G2 63 (44.4%) 26 (44.1%) 37 (44.6%)

 G3 58 (40.8%) 19 (32.2%) 39 (47.0%)

 GX 12 (8.5%) 11 (18.6%) 1 (1.2%)

Menopause

 Indetermi-
nate

1 (0.7%) 1 (1.7%) 0 (0.0%) 0.117

 Peri 16 (11.3%) 3 (5.1%) 13 (15.7%)

 Post 47 (33.1%) 23 (39.0%) 24 (28.9%)

 Pre 78 (54.9%) 32 (54.2%) 46 (55.4%)

Table 5  Results of independent prognostic—univariate analysis

Variable Coef. HR HR.95 L HR.95 H P value

T 0.60209 1.825931 1.366611 2.439629 4.65E−05

STAGE 0.391985 1.479915 1.189982 1.840489 0.000426

Riskscore 0.657107 1.929203 1.299253 2.864589 0.001122

N 0.9396 2.558958 1.30283 5.026186 0.006372

M 1.267485 3.551909 1.195447 10.55343 0.022532

age 0.015432 1.015552 0.998192 1.033214 0.079386

Menopause 0.082692 1.086208 0.805541 1.464665 0.587699

GRADE −0.04339 0.957536 0.628443 1.458961 0.839951
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Immune correlation of the risk prediction model 
for prognosis of patients with cervical cancer
We obtained the immune cells with immune functions 
of each sample and the activity of immune pathways 
through ssGSEA analysis, and then group them accord-
ing to the immune activity. 28 immune-related gene sets 
were used, which not only included immune cell types, 
but also immune-related pathways and immune-related 
functions. The heat map of different cell content calcu-
lated by ssGSEA was shown in Fig.  5a. The box plot of 
cell content calculated by ssGSEA between high and 
low-risk groups was shown in Fig. 5b. Among all the 28 
cell species, 18 species showed significant differences 
between groups (rank-sum test). Next, we explored the 
correlation between immune cells and RiskScore, con-
ducted correlation analysis, and visualized it as a scatter 
plot. Only three graphs were shown in Fig. 5c–e, and the 
other 25 types of immune cells were shown in Additional 
file 7: Figure S7.

IPS was calculated on a scale of 0–10 based on the 
representative cell type gene expression Z-score, and 
the higher the score, the stronger the immunogenicity. 
The IPS method was used to calculate IPS for all patient 
samples. One of the pie charts of the samples is shown 
in Fig. 5f. We calculated the differences between the four 
parts (EC, SC, MHC and CP) and the population (IPS) of 

the high-low risk group, and visualized them as a box plot 
(Fig. 5g–k). Results demonstrated significant differences 
in EC, SC, MHC, CP, and overall (IPS) values between 
high and low-risk groups.

Immunotherapeutic response and chemotherapeutic 
drug sensitivity correlate with the risk prediction model 
for the prognosis of patients with cervical cancer
TIDE was used to predict the likelihood of response to 
immunotherapy. After TIDE analysis, the predicted like-
lihood of response to immunotherapy was not significant 
(Fig.  6a). Survival analysis was conducted based on the 
response to immunotherapy and survival information of 
cancer patients, and the results are shown in Fig.  6b, it 
can be seen in which that there is no significant differ-
ence in the overall survival time of samples with different 
immunotherapy responses. We then used the SubMap 
algorithm to predict the likelihood of a single sample or 
subtype responding to immunotherapy. The basic princi-
ple is to resist the immunosuppressive effect of the tumor 
microenvironment by targeting the immune checkpoint 
receptors—CTLA4, PD1 and their ligands (PDL1, PDL2), 
so as to remove the immune suppression and enhance the 
immune function to play an anti-tumor role. As shown in 
Fig.  6c, low and high are high-low risk groups, low risk 
is more likely to be more sensitive to anti-PD1 therapy 
(Nominal P and corrected P were both less than 0.05).

Through calculating and analyzing 138 chemotherapy 
drugs contained in the database, the significant differ-
ence in median inhibitory concentration (IC50) between 
different groups could be obtained through calculation. 
According to the calculation results, a total of 41 drugs 
showed significant differences in the high and low risk 
groups, which were visualized as a boxplot as shown in 
Fig. 6d–i, in which only 6 drugs were shown, and all the 

Table 6  Results of independent prognostic—multiple analysis

Variable coef HR HR.95 L HR.95 H P  value

Riskscore 1.364655 3.914371 1.219048 12.56907 0.021863

T 0.76528 2.149597 1.011026 4.570375 0.046761

STAGE −0.71097 0.491167 0.224645 1.073892 0.074856

N 0.880091 2.41112 0.869176 6.688521 0.090908

Fig. 4  Pathway involved in the risk prediction model for prognosis of patients with cervical cancer. a The top10 KEGG pathways were enriched by 
high and low risk groups. bTop10 GO pathways enriched by high and low risk groups
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41 significant drugs were shown in Additional file 8: Fig-
ure S8.

Discussion
Cervical cancer is a malignant tumor in women. Con-
ventional treatment of cervical cancer includes radio-
therapy, chemotherapy and surgery currently, but 
progress of tumors in patients are prone to chemora-
diotherapy resistance [20]. In addition, the high het-
erogeneity of cervical cancer accelerates the process 
of cancer development [21]. Many researchers devote 
oneself to find new prognostic markers and treatment 
regimens for cervical cancer. Peritoneal HPV-DNA 
test in cervical cancer could server a potential clini-
cal implication of prognosis [22]. Some markers such 
as E-cadherin, Ki67, CEA, and CD44 were reported 
to server detecting invasive forms of cervical cancer, 
which might be useful in evaluation and monitoring of 
treatments of patients with evaluation and monitoring 

of treatments [23]. Moreover, it remains necessary to 
identify new prognostic markers and treatment regi-
mens for cervical cancer to improve the survival rate of 
cervical cancer patients at present.

Immunotherapy has shown great potential in treat-
ing cancer in recent years. Immunotherapy consisting 
of anti-CTLA4 and anti-PD1 agents has been reported 
to be effective in the treatment of oropharyngeal cancer 
and cervical cancer. Immune checkpoint inhibitors (ICIs) 
can treat advanced chemotherapy-resistant cervical can-
cer. Immune cells and cytokines secreted in the immune 
microenvironment can inhibit the development of cer-
vical cancer [24]. In summary, response to the immune 
system in patients with cervical cancer affects tumor 
progression and treatment. However, there are few thera-
peutic immunodetection sites, and the research on tumor 
immunotherapy is far from enough. Therefore, we mainly 
screened immune-related genes (IRGs) in cervical can-
cer, constructed a risk model based on these genes, and 

Fig. 5  Immunocorrelation of the risk prediction model for prognosis of patients with cervical cancer. a Heat maps of different cell content inferred 
by ssGSEA. b Boxplots of ssGSEA inferred cell content between high and low risk groups. c Scatter plot of the correlation between Activated B cell 
and Risk Score. d Scatter plot of the correlation between Activated CD4 T cell and Risk Score. e Scatter plot of the association between Activated 
CD8 T cell and Risk Score. f IPS pie chart of TCGA-2 W-A8YY-01 A-11R-A37O-07 sample. g EC value between high and low risk groups. h CP value 
boxplot between high and low risk groups. i The boxplot of SC value between high and low risk groups. j Boxplot of MHC value between high and 
low risk groups. k The boxplot of IPS values between high and low risk groups
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explored the possible molecular mechanism of cervical 
cancer in the present study.

In our study, we firstly downloaded GSE63514 data 
from the GEO database, and the differences between 
normal and cancer samples were analyzed, then 2339 
differential genes were obtained, which were analyzed 
using WGCNA and 4 modules were screened, including 
2306 key module genes. WGCNA is an analysis method 
for analyzing gene expression patterns in multiple sam-
ples, which can cluster the genes with similar expression 

patterns [25]. The analysis module is widely used in the 
study of the association between disease and other traits 
and genes because of its association with specific traits or 
phenotypes. Many articles use this method to find poten-
tial biomarkers and drug targets [25–27]. Then, modules 
are distinguished through gene expression similarity, 
and then the correlation between modules and modules 
as well as the correlation between modules and sample 
traits is calculated, so as to screen highly correlated mod-
els of traits, and analyze the genes in modules, so as to 

Fig. 6  Immunotherapeutic response and chemotherapeutic drug sensitivity correlates with the risk prediction model for prognosis of patients with 
cervical cancer. a Boxplot of TIDE predicting response to high-low subgroups of immunotherapy. b Survival curves of cancer patients with different 
clustering subtypes. c SubMap algorithm predicts the likelihood of response to immunotherapy in the high and low risk groups. d The difference 
of sensitivity to JW.7.52.1 between the high and low risk groups was significant. e The difference of sensitivity to Bortezomib between the high and 
low risk groups was significant. f The difference of sensitivity to Rapamycin between the high and low risk groups was significant. g The difference 
of sensitivity to PF.02341066 between the high and low risk groups was significant. h The difference of sensitivity to NVP.TAE684 between the high 
and low risk groups was significant. i The difference of sensitivity to AS601245 between the high and low risk groups was significant
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find the target genes related to our study. Afterwards we 
download the TCGA data for differences analysis in nor-
mal and cancer samples to acquire 3892 different genes, 
then gene takes overlap with the key module and got 673 
intersection genes. 673 overlapping genes were used for 
consistent clustering in TCGA cancer samples, which 
were divided into two categories: Cluster1 contains 236 
cases, Cluster2 contains 68 cases, and two subtypes have 
significant differences in survival. A total of 804 differen-
tial genes were obtained. The intersection of 673 inter-
sected genes and 804 differentially differentiated genes 
between subtypes was selected for 20 intersected genes 
for further being used to construct single-factor + multi-
factor risk models. After regression analysis, 3 genes such 
as APOD, APOC1 and SQLE were obtained as prognos-
tic genes and prognostic risk models were constructed. 
According to previous studies, APOD was an immune-
related gene and is associated with the risk of multiple 
types of cancer such as gastric cancer [28], thyroid cancer 
[29], breast cancer and cervical cancer [30], which was 
also considered as one of prognostic signatures in cancer. 
APOC1 was reported as an oncogene to promote tumo-
rigenesis and progression of glioblastoma [31], gastric 
cancer [32], hepatocellular carcinoma [33], breast cancer 
[34] and so on. SQLE is a key enzyme of cholesterol bio-
synthesis [35] and tends to be over-expressed along with 
treatment sensitivity in colon cancer [36], breast cancer 
and non-small cell lung cancer [37], Acute Myeloid Leu-
kemia [38] and pancreatic cancer [39]. SQLE associates 
prognosis prediction of patients with bladder cancer [40]. 
Based on the differential genes screened, the expression 
of APOD, APOC1 and SQLE was also measured in 10 
samples of cervical cancer tissue and para-cancer normal 
tissue in our study, results of which demonstrated that 
APOD expression was lower as well as APOC1 and SQLE 
were higher in cancer samples than normal samples.

To explore the risk prediction signature in cervical can-
cer, a three-genes of APOD, APOC1 and SQLE-involved 
risk model was constructed, tested and verified in our 
further study. By drawing the ROC curve and Kaplan–
Meier curve, the validity of the risk model (AUC > 0.6) 
was confirmed. Subsequently, this model was veri-
fied on the GSE44001 data validation set and verified 
(AUC > 0.6), indicating that the risk model constructed 
by us can effectively predict the prognosis of the disease. 
In addition, in order to verify whether the risk model can 
accurately predict patient survival rate, we conducted an 
independent prognostic analysis of the risk model and 
found that the risk model can accurately predict patient 
survival rate.

In order to investigate why the model can effec-
tively predict the prognosis of patients, we conducted 
an enrichment analysis of GSEA based on the high and 

low-risk groups of the model. The enrichment analysis 
databases GSEA includes KEGG and GO. KEGG is the 
Kyoto Encyclopedia of Genes and genomes, designed to 
understand advanced functional and biological systems 
(such as cells, organisms and ecosystems), from mole-
cule-level information, especially from large molecular 
data sets generated by genome sequencing and other 
high-throughput experimental techniques of the utility 
database resources, which is one of the most commonly 
used bioinformatic databases in the world and is known 
as “a repository of advanced functions and utilities for 
understanding biological systems“ [41]. The GO system 
consists of three parts: Biological process, molecular 
functions, and cellular components [42]. We annotated 
the GO function of differentially expressed genes and 
explored the biological significance of each gene.

Moreover, we analyzed the differences in immunoassay 
(immune infiltration, immunotherapy) and drug sensi-
tivity at different levels in the high and low-risk groups. 
Through SsGSEA method, we can get the immune cells 
or immune function of each sample and the activity 
of immune pathways, and then group them according 
to the immune activity SsGSEA is an implementation 
method proposed mainly for a single sample that can-
not do GSEA. IPS is an indicator to measure the overall 
immunogenicity of tumors, which is used in our study 
and can determine immunogenicity without bias using 
machine learning based on four categories of genes. 
Immunotherapy is to artificially enhance or inhibit the 
immune function of patients with cancers. Tumor immu-
notherapy aims to activate the body’s immune system to 
kill pathogenic factors (bacteria, fungi, cancer cells or 
tumor tissue) by its own immune function. Unlike pre-
vious surgery, chemotherapy, radiotherapy and targeted 
therapy, immunotherapy targets the body’s own immune 
system rather than tumor cells and tissues. Therefore, 
it is an important goal of immunotherapy to reactivate 
immune cells and reverse the immunosuppressive state 
of the tumor microenvironment. Therefore, we used the 
TIDE [43] to predict the response to immunotherapy and 
SubMap, an unsupervised approach to estimate the asso-
ciations between subtypes observed in two independent 
data sets, to predict the response to immunotherapy for a 
single sample or subtype in the present study.

Drug sensitivity correlates with patient prognosis 
closely, therefore, the GDSC database was used to evalu-
ate the differences in drug sensitivity between the high 
and low-risk groups divided by the risk prediction mode 
in our study. The GDSC database is the largest public 
resource for information on molecular markers of drug 
sensitivity and drug response in cancer cells. It con-
tains extensive drug sensitivity and genomic data sets 
that are important for the discovery of potential tumor 



Page 13 of 14Zhang et al. BMC Women’s Health          (2022) 22:534 	

therapeutic targets. The GDSC data came from 75,000 
trials describing the reactions of about 200 anticancer 
drugs in more than 1,000 tumor cells. Our results dem-
onstrated that 41 drugs exited significant differences in 
the high and low-risk groups.

In summary, we firstly performed WGCNA analysis in 
GSE63514 dataset and obtained 2306 module genes sig-
nificantly associated with cervical cancer. Based on the 
TCGA-CESC dataset, 3892 differentially expressed genes 
(DEG1) were obtained, and 673 differentially expressed 
genes significantly correlated with cervical cancer were 
obtained, which were defined as “key genes”. And then 
based on the key genes, consensus clustering analysis, 
and differential expression analysis were performed in 
the TCGA-CESC dataset to obtain 804 differentially 
expressed genes (DEG2) in different cervical cancer 
subtypes. Twenty differentially expressed genes related 
to cervical cancer subtypes were obtained by cross-key 
genes and DEG2. After one-way and multivariate analy-
sis of variance, we finally obtained three prognostic genes 
of APOD, APOC1 and SQLE significantly related to 
survival, and the expression of which was assayed in 10 
cervical cancer tissue samples and 10 normal samples by 
RT-qPCR. A risk model involved in the three prognostic 
genes was then constructed along with validation accord-
ing to the above-mentioned analysis in the present study. 
Based on the model, immune correlation and immuno-
therapy analyses were carried out, which will provide a 
theoretical basis and reference value for the exploration 
and treatment of cervical cancer. The limitations of our 
study were that the sample size for clinical validation of 
the three prognostic genes was small which would be 
improved in our further study.

Conclusion
In the study, APOD, APOC1 and SQLE were identified 
as prognostic genes, and a prognostic genes-based risk 
model was constructed and validated, which will provide 
a novel viewpoint and reference value for the treatment 
and prognosis of cervical cancer.
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