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ABSTRACT The metabolome is a central determinant of human phenotypes and
includes the plethora of small molecules produced by host and microbiome or taken
up from exogenous sources. However, studies of the metabolome have so far
focused predominantly on urban, industrialized populations. Through an untargeted
metabolomic analysis of 90 fecal samples from human individuals from Africa and
the Americas—the birthplace and the last continental expansion of our species,
respectively—we characterized a shared human fecal metabolome. The majority of
detected metabolite features were ubiquitous across populations, despite any geo-
graphic, dietary, or behavioral differences. Such shared metabolite features included
hyocholic acid and cholesterol. However, any characterization of the shared human
fecal metabolome is insufficient without exploring the influence of industrialization.
Here, we show chemical differences along an industrialization gradient, where the
degree of industrialization correlates with metabolomic changes. We identified differ-
ential metabolite features such as amino acid-conjugated bile acids and urobilin as
major metabolic correlates of these behavioral shifts. Additionally, coanalyses with
over 5,000 publicly available human fecal samples and cooccurrence probability
analyses with the gut microbiome highlight connections between the human fecal
metabolome and gut microbiome. Our results indicate that industrialization signifi-
cantly influences the human fecal metabolome, but diverse human lifestyles and
behavior still maintain a shared human fecal metabolome. This study represents the
first characterization of the shared human fecal metabolome through untargeted
analyses of populations along an industrialization gradient.
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IMPORTANCE As the world becomes increasingly industrialized, understanding the
biological consequences of these lifestyle shifts and what it means for past, present,
and future human health is critical. Indeed, industrialization is associated with rises
in allergic and autoimmune health conditions and reduced microbial diversity.
Exploring these health effects on a chemical level requires consideration of human
lifestyle diversity, but understanding the significance of any differences also requires
knowledge of what molecular components are shared between human groups. Our
study reveals the key chemistry of the human gut as defined by varied industrializa-
tion-based differences and ubiquitous shared features. Ultimately, these novel find-
ings extend our knowledge of human molecular biology, especially as it is influenced
by lifestyle and behavior, and provide steps toward understanding how human biol-
ogy has changed over our species’ history.

KEYWORDS human microbiome, industrialization, mass spectrometry, metabolomics

Metabolites fit as the final stage of biology’s central dogma: DNA transcribed into
RNA translated into proteins which enzymatically interact, form, and shed into

small molecules as part of the biochemical pathways of metabolism (1–3). For this
study, we define a metabolite as any small molecule (,1,500 Da) involved in biochemi-
cal pathways and the metabolome as the collection of these small molecules within a
biological system (3–5). Using the definition from the Human Metabolome Database,
these endogenous metabolites (synthesized by the host) are supplemented by exoge-
nous small molecules acquired from external sources, such as cosmetics, medication,
dietary sources, and pollution (6). The human metabolome thus contains both endoge-
nous and exogenous metabolites, representing the nexus of genetic and environmen-
tal influences (5, 7–9).

Characterizing the fecal metabolome requires an understanding of how it is influ-
enced by different factors, such as industrialization (10, 11). Broadly, industrialization is a
series of economic and technological changes relating to the processing and distribution
of resources that ultimately cause a shift from agrarian to industrial societies (12, 13).
Such changes generally involve an increase in manufactured products compared to agri-
culture/hunting and other raw products, a greater percentage of workers employed in
industrial workplaces over agriculture, and changes in the physical landscape such as
increased construction of built environments (14, 15). Industrialization is often linked with
urbanization, which refers to social and demographic shifts increasing population size
and density within a settlement (14). These processes lead to industrialized-urban popula-
tions exhibiting denser populations (14), reduced exposures to nature-derived molecules
but increased exposure to human-derived molecules (16–20), an indirect relationship
with food sources (21, 22), and dietary shifts (22, 23) compared to nonindustrial rural pop-
ulations. Moreover, industrialization is associated with significant biological changes, such
as reduced microbial diversity (20, 24–26), increased allergic diseases (27, 28) and asthma
(29), and heightened susceptibility to illnesses such as inflammatory bowel disease (30–
32), although further work is required to definitively show industrialization processes as
the primary cause of these changes given that such health conditions have complex
causes (33, 34). Investigations into industrially caused fecal metabolomic shifts have iden-
tified differences based in amino acids, amines, sphingolipids, and hexoses, among others
(23, 34, 35). Some studies detailed human fecal metabolomes by comparing rural and
urban populations and found differences in levels of acylcarnitines, amino acids, and
short-chain fatty acids (35–37). However, such studies employed targeted/semitargeted
metabolomic approaches and/or sampled a single human population (23, 25, 35–37). As
a result, these studies do not represent ranges of human diversity and behavior, high-
lighting the need for broader investigations of the human fecal metabolome in terms of
geographic range and chemical space.

We performed untargeted liquid chromatography mass spectrometry (LC-MS)-
based metabolomics on 90 fecal samples obtained from six human populations from
diverse geographic regions (Fig. 1a; Table 1; Table S1 in the supplemental material).
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FIG 1 Fecal metabolomic profiles follow an industrialization gradient. Derived from analyses where sample size (n) = 90. (a) Sampling sites. Star on
tan background, Norman (n = 18); circle on green background, Guayabo (n = 12); square on green background: Tambo de Mora (n = 14); triangle on

(Continued on next page)
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These populations included male and female children and adults. Our sampled popula-
tions were categorized corresponding with their degree of industrialization, based on
lifestyle factors such as dietary practices, built environment, population, etc. (see
Materials and Methods for further details on categorization). Importantly, we included
two populations with similar degrees of industrialization but from distinct continents,
to control for any geographic confounders. This key aspect had not been considered in
prior industrialization-focused metabolomics research. Our populations are Norman
(USA; urban industrial; 18 samples), Guayabo (Peru; rural industrial; 12 samples),
Tambo de Mora (Peru; rural industrial; 14 samples), Boulkiemdé (Burkina Faso; rural tra-
ditional; 11 samples), Tunapuco (Peru; rural traditional; 24 samples), and Matses (Peru;
isolated traditional; 11 samples).

RESULTS AND DISCUSSION

Fecal metabolomes of these populations followed an industrialization gradient,
where populations exhibited similar metabolomes based on the degree of industrializa-
tion determined by principal-coordinate analysis (PCoA; Fig. 1b and c; Fig. S1; permuta-
tional multivariate analysis of variance [PERMANOVA] (38) P = 0.001, R2 = 0.140; Canberra
distance). Moreover, industrialization had a stronger influence on metabolic similarity
between populations than geographic origin, age, or sex (Fig. 1c; ANOVA industrializa-
tion group P = 0.046, effect size [partial Epsilon-squared, eta2] = 0.06; ANOVA geographic
origin P = 0.245, eta2 = 0.01; ANOVA age P = 0.4663, eta2 = 7.29e-3; ANOVA sex
P = 0.5471, eta2 = 4.99e-3). Delay to initial freezing did impact the overall fecal metabo-
lome (PERMANOVA P = 0.001, R2 = 0.04; ANOVA P = 0.4563, eta2 = 6.32e-3), but these
effects were overshadowed by the influence of industrialization (Fig. 1b). For example,
the Boulkiemdé rural traditional and Norman urban industrial samples were frozen
within 1 day of collection, but the Boulkiemdé samples clustered strongly with Peruvian
rural traditional samples frozen within 4 days of collection (Fig. 1b). Our findings concur
with prior studies demonstrating industrialization’s role in shaping the human micro-
biome (39–42), the built environment microbiome (19, 20), the built environment metab-
olome (19), and the plasma metabolome (25, 43). Additionally, the observation of indus-
trialization outweighing the effects of geographic origin is novel for human fecal

FIG 1 Legend (Continued)
green background, Tunapuco (n = 24); oval on green background, approximate Matses location (n = 11); star on a blue background, Boulkiemdé
(n = 11). The specific Matses location was left unmarked due to privacy concerns. (b) Principal-coordinate analysis (Canberra distance metric) depicts
the industrialization gradient, colored by industrialization category and shape-coded by population. Population samples stored in freezer within 1 day
of collection (Norman and Boulkiemdé) are increased in size compared to samples stored within 4 days of collection (all Peruvian samples—Guayabo,
Tambo de Mora, Tunapuco, and Matses). (c to h) Boxplot axis numbers represent different industrialization groups: 1, urban industrial; 2, rural
industrial; 3, rural traditional; 4, isolated traditional. (c) Calculated Canberra distances follow an industrialization gradient, colored by industrialization
category. The color key from panel b applies to panels c to h. (d and e) Normalized abundances of representative features identified by random
forest analysis differing by industrialization category, (d) Leucyl-leucine (leu-leu), associated with nonindustrialized populations (m/z, 245.186; RT,
3.27 min). (e) Urobilin, associated with industrialized populations (m/z, 591.318; RT, 4.16 min). (f to h) Normalized abundances of amino acid-
conjugated bile acids depict an industrialization gradient. (f) Tryptophan-conjugated chenodeoxycholic acid (CHDCA) (m/z, 591.381; RT, 6.07 min). (g)
Phenylalanocholic acid (m/z, 556.36; RT, 5.57 min). (h) Leucocholic acid (m/z, 522.353; RT, 5.38 min).

TABLE 1 Sampled population metadata

Population Abbreviation Geographic origin
Industrialization
group

Sample
size (n)

Time kept on
ice before
frozen

Age distribution Sex distribution

5–17 yrs 18–44 yrs 45+ yrs Female Male
Total 90 28 47 15 47 29
Norman NO Norman, OK, USA Urban industrial 18 Within 24 h 0 18 0 7 11
Guayabo GU Guayabo, Peru, South

America
Rural industrial 12 Within 4 days 4 4 4 8 0

Tambo de Mora TM Tambo de Mora District,
Peru, South America

Rural industrial 14 Within 4 days 5 7 2 7 1

Boulkiemdé BF Boulkiemdé Province,
Burkina Faso, Africa

Rural traditional 11 Within 24 h 0 6 5 6 5

Tunapuco HCO Andean Highlands, Peru,
South America

Rural traditional 24 Within 4 days 13 9 2 13 7

Matses SM Peruvian Amazon, South
America

Isolated
traditional

11 Within 4 days 6 3 2 6 5
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metabolomics analyses but concurs with findings from human fecal microbiome studies
(39–42). To the best of our knowledge, this is the first study to illustrate the industrializa-
tion gradient in the human fecal metabolome—the intuitive path for revealing the key
chemistry of the distal gut.

To determine the factors driving this clustering of metabolite profiles by industriali-
zation degree, we employed a random forest machine learning algorithm applied to
the top 1,000 most abundant metabolite features in our data set (44) (Table 2; Fig. S2a
to ad; Data Set S1). After applying a variable importance cutoff of >1.3 to subset the
most differential metabolite features, 377 features remained for annotation. A total of
163 (43.1%) metabolite features had compound-level annotations (Data Set S1) accord-
ing to the Metabolomics Standards Initiative (45). Random forest annotations included
glycyl-phenylalanine (mass-to-charge ratio [m/z], 223.108; retention time [RT], 0.38 min;
amino acid dipeptide composed of glycine and phenylalanine), piperine (m/z, 286.144; RT,
5.45 min; plant metabolite common to pepper plants [46]), and isoleucylproline (m/z,
228.155; RT, 0.77 min; amino acid dipeptide detected in human urine [47, 48]). When
examining the most differential features, two noteworthy annotations were leucyl-leu-
cine (m/z, 245.186; RT, 3.27 min; Kruskal-Wallis P = 8.73e-09) and urobilin (m/z, 591.318;
RT, 4.52 min; Kruskal-Wallis P = 4.45e-07). Leucyl-leucine (leu-leu) abundance was most
associated with nonindustrial populations, while urobilin abundance was strongly
associated with industrialized populations (Fig. 1d and e). Leu-leu is a common leucine
dipeptide that has not been mentioned in previous industrialization-focused studies of
human fecal metabolomes. However, increased abundance of leucine was noted in
fecal metabolomes of urban Nigerian adults compared to rural adults (35), contrasting
with the nonindustrial association of leu-leu in our data. The second annotated differ-
ential metabolite feature, urobilin, is formed from the metabolic breakdown of hemo-
globin (49). While previous industrialization-focused fecal metabolomics studies did
not report this metabolite, urobilin has been identified as a common metabolite in
human urine and fecal metabolomes (50, 51). Importantly, urobilin abundance is
affected by host diet and behavior (52), with increased abundance seen in populations
consuming diets rich in animal fat, proteins, and carbohydrates (53), such as those
seen in industrialized populations. Given the strong association between industrializa-
tion, diet, and the metabolome (21, 22, 54), it is likely that some unannotated differen-
tial metabolite features represent dietary differences between our sampled popula-
tions. Meat and processed food consumption was most frequent in industrialized
populations, suggesting that any potential dietary metabolites, such as urobilin, likely
originate from these industrialized food sources. One such potential dietary source
could be artificial sweeteners, which can strongly influence fecal metabolomes (55).
Additionally, the higher consumption of raw vegetable and fruit products in less indus-
trialized communities such as the Matses would also likely drive metabolomic differen-
ces. Other potential industrialization-related sources for differential metabolites could
include pharmaceuticals and built environment exposure (16, 19, 20) and gut micro-
biota modulation of dietary metabolite presence/absence (36, 55).

Recent research has revealed novel amino acid-conjugated bile acids that are pro-
duced by gut microbiota (56–58) and enriched in patients with inflammatory bowel
disease (57). Given the possible association between inflammatory bowel disease and
industrialization processes (30–32), we investigated the distribution of these amino
acid-conjugated bile acids across our industrialization gradient. Overall, 10 of the 12
total amino acid-conjugated bile acids annotated in this study demonstrated a striking
increase with industrialization, despite not appearing in the list of the top 1,000 most
abundant features in our data. Such differential amino acid-conjugated bile acids
include phenylalanocholic acid (Kruskal-Wallis P = 1.9e-6), leucocholic acid (Kruskal-
Wallis P = 1.69e-7), leucine-conjugated chenodeoxycholic acid (CHDCA) (Kruskal-Wallis
P = 0.04), tyrosocholic acid (Kruskal-Wallis P = 7.71e-3), tyrosine-conjugated deoxy-
cholic acid (Kruskal-Wallis P = 1.61e-5), glutamate-conjugated CHDCA (Kruskal-Wallis
P = 1.69e-7), tryptophan-conjugated CHDCA (Kruskal-Wallis P = 4.9e-7), aspartate-
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conjugated CHDCA (Kruskal-Wallis P = 1.13e-5), histidine-conjugated CHDCA (Kruskal-
Wallis P = 6.41e-3), and histidine-conjugated cholic acid (Kruskal-Wallis P = 0.04)
(Fig. 1g and h; Fig. S2ae to ap). Interestingly, high abundances of bile acids such as
phenylalanocholic acid and leucocholic acid were noted in mice fed high-fat diets (57),
which is characteristic of Western industrialized societies (59). The enrichment of these
bile acids in our industrialized populations parallels these diet studies, further suggest-
ing a link between diet and the metabolome across industrialization. However, two
amino acid-conjugated bile acids, aspartate-conjugated cholic acid (Kruskal-Wallis
P = 0.05) and threonine-conjugated CHDCA (Kruskal-Wallis P = 0.4), were not enriched
in industrialized populations and did not display any statistically significant differences
based on industrialization category. The functional role of these amino acid-conju-
gated bile acids in health is currently unknown, though our results further support a
link between amino acid-conjugated bile acids and industrialization, and possibly to
associated diseases.

Our sampled populations are considerably different from each other with strong di-
etary, behavioral, and geographic differences and, together, represent distinct realms
of human experience and diversity. Thus, metabolite features common to these mark-
edly separate populations likely constitute shared components of a human fecal
metabolome found in major human groups, even if metabolite abundances vary.
Frequency assessment of metabolite features can, however, be strongly influenced by
data processing parameters, particularly gap-filing and data filtration. Gap-filling identi-
fies peaks that are present in only some samples and searches for these same peaks at
lower intensities in the remaining samples (60). Analyzing non-gap-filled data can artifi-
cially increase divergence between groups, while gap-filling may increase similarities
between groups (61, 62). Gap-filling is a recommended approach for feature-based
molecular networking (61). However, to ensure the greatest transparency, we present
the analysis of both gap-filled and non-gap-filled data here.

Analysis of non-gap-filled data identified 8,017 metabolite features with at least one
occurrence in each population (27,707 common metabolite features in gap-filled data).
Further filtering by occurrences in each population highlighted 7,483 metabolite fea-
tures in non-gap-filled data found in at least six samples in all populations (23,477
metabolite features in gap-filled data), 2,240 metabolite features in non-gap-filled data
found in half of all samples in each population (5,924 metabolite features in gap-filled
data), and 1,080 metabolite features in both non-gap-filled and gap-filled data found
in every sample across all populations (Fig. 2 for gap-filled data; Fig. S1 for non-gap-
filled data). The impact of industrialization on overall fecal metabolome profiles was
comparable between gap-filled and non-gap-filled data (compare Fig. 1b to Fig. S1c).

We discuss here the most stringent results based on the non-gap-filled data, while
acknowledging that this approach likely misses many features that are actually common
across populations, due to analytical considerations. We further filtered out researcher-
derived molecules such as N,N-diethyl-meta-toluamide (DEET) from our list of the shared
fecal metabolome. These retained common metabolite features included chemical
groups such as indoles, steroids, lactones, and fatty acyls (Table S2; Fig. S3). Dipeptides
included threonylphenylalanine (m/z, 267.134; RT, 0.48 min), valylvaline (m/z, 217.155;
RT, 0.45 min), and isoleucylproline (m/z, 229.155; RT, 0.55 min). Shared bile acids include
hyocholic acid (m/z, 158.154; RT, 4.78 min; primary bile acid involved with absorbing and
transporting dietary fats and drugs to the liver [63]), and lithocholic acid (m/z, 323.273;
RT, 6.84 min; secondary bile acid commonly found in feces [64]). Fatty acid examples
include 3-hydroxydodecanoic acid (m/z, 199.169; RT, 7.10 min; medium-chain fatty acid
associated with fatty acid metabolic disorders, potentially acquired from the microbial
genera Pseudomonas, Moraxella, and Acinetobacter [65, 66]), and palmitoleic acid (m/z,
237.001; RT, 6.42 min; fatty acid commonly found in human adipose tissue; also acquired
in diet from human breast milk [67]). Additional metabolites include cholesterol (m/z,
369.352; RT, 10.5 min; essential sterol found in animals [(6]), methionine (m/z, 105.058;
RT, 0.33 min; amino acid), and leucine enkephalin (m/z, 336.192; RT, 3.21 min; peptide
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FIG 2 The shared human metabolome, where n = 90 (Norman n = 18, Guayabo n = 12, Tambo de Mora n = 14, Boulkiemdé
n = 11, Tunapuco n = 24, and Matses n = 11). (a) Metabolic feature overlap across study populations in gap-filled data. (b) The

(Continued on next page)
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naturally produced in animal brains, including humans [6, 68]). While a number of the
shared metabolite features listed above provide key biological functions, some metabo-
lites appear to be derived from dietary sources. An example of a metabolite possibly
acquired from food products includes conjugated linoleic acid (m/z, 263.24; RT, 6.68 min;
commonly found in meat and dairy products [6]).

To explore possible interactions between this shared human fecal metabolome and
gut microbiome, we used the neural network platform microbe-metabolite vectors
(mmvec) (69). Briefly, mmvec predicts the abundance of metabolites given specific mi-
crobial sequences and then estimates conditional probabilities of cooccurrences
between the metabolite and microbe being compared. Given the compositional nature
of microbiome and metabolomics data (70, 71), mmvec is a robust approach for infer-
ring interactions between gut metabolites and microbes compared to standard corre-
lation analyses (69). Our mmvec analysis used microbial amplicon sequencing variants
(ASVs) derived from earlier sample analyses (24) (see Materials and Methods for more
details) that were assigned to taxonomic identifications and input to mmvec with our
full metabolite feature data set. After subsetting results to our 67 shared annotated
metabolites and their major predictive taxa (27 total), several probable interactions
between key gut metabolite features and microbes were observed (Fig. 3; Data set S1).
For example, five microbial species within the Sporobacter genus and one unknown
member of the Anaeroplasmataceae family were identified as the most influential taxa.
Given that five of the six most influential taxa in our data set were Sporobacter species,
these results suggest a possible connection between these species and the shared
human fecal metabolome. Metabolite features such as N-acetyl-L-phenylalanine exhib-
ited strong predictive interactions with an unknown Sporobacter species (Fig. 3), as
shown by high conditional probabilities. Other strong relationships were observed
between abrine and another Sporobacter species, as well as glycyl-tyrosine and N-ace-
tyl-D-mannosamine being strongly driven by the Anaeroplasmataceae member. These
potential associations had not been noted in previous literature. All in all, these mmvec
results suggest clear patterns of predicted interactions between our shared metabo-
lites and gut microbial taxa, but further work is needed to investigate the connections
between the shared human fecal metabolome and gut microbiome, especially with
regard to the influence of industrialization.

Our novel data estimate a core human fecal metabolome from populations of
diverse behaviors and lifestyles. The sample set includes the birthplace of humanity
and the last continental expansion of our species, Africa and the Americas, respectively;
moreover, the sample set includes hunter-gatherer, subsistence farmer, and industrial-
ized lifeways. A metabolite observed across these geographic regions and among
these different lifeways is an estimate of a core metabolome, without implying that it
is present in every single individual, similar to definitions used when describing the
microbiome (72). However, we do not presume to have captured the complete range
of diversity of industrial lifestyles or age groups. To broaden our analysis, we coana-
lyzed our data with all the publicly available human fecal samples in the Re-Analysis of
Data User Interface (ReDU) (51). A total of 5,466 human fecal samples from ReDU were
coanalyzed with our 90 samples, resulting in a total of 105,707 metabolite features
detected across the coanalysis (Fig. 2c). These data sets contained samples from male
and female children and adults. Moreover, the data sets included different MS plat-
forms and different metabolite extraction methods, enabling us to assess the common-
ality of these metabolites across experimental methods. Within these data sets, 80% of

FIG 2 Legend (Continued)
UpSet plot of gap-filled data indicates strong similarity of metabolomic profiles. The total number of metabolite features for
each sampled population is depicted in rows with the number of overlapping features reported as bar graphs. More features
were shared by all population groups than were seen across different group comparisons. The red colored box highlights the
intersection of all populations (27,707 total metabolite features). (c) ReDU coanalysis data sets sorted by MS instrument: Thermo
Fisher Scientific Q Exactive (n = 696), Bruker Impact (n = 447), Bruker maXis (n = 143). The coanalysis illustrates overlap across
the data sets, despite instrumental differences. The colored box highlights the intersection of all data sets (846 total metabolite
features).
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our shared metabolites were identified in this coanalysis. While these ReDU samples
are from data sets containing various instrumental and experimental parameters in
addition to wide variation of human diversity and lifestyles, the representation of
shared metabolites further highlights the prevalence of a shared human fecal

FIG 3 Principal-component analyses (PCA) illustrate probable metabolite-microbe cooccurrences. Derived from
analyses where n = 90 (Norman n = 18, Guayabo n = 12, Tambo de Mora n = 14, Boulkiemdé n = 11,
Tunapuco n = 24, and Matses n = 11). Metabolite feature placements are based on conditional probabilities
produced by mmvec (69). Annotated shared metabolite features from gap-filled data are represented as dots
and are shape- and color-coded based on ClassyFire (87) assignments from MolNetEnhancer analyses (88). PCAs
include biplots highlighting the most influential taxa across each principal component (PC) represented with
red arrows showing their influence along the PCs. Taxonomic assignments were simplified to include unique
identifiers for each label, such as “Anaeroplasmataceae_f” representing a read assigned to the family
Anaeroplasmataceae. Multiple Sporobacter genera were identified and were given a “_g” label followed by a
number for each instance of Sporobacter genera. (a) Two-dimensional representation of shared metabolite-
microbe predicted interactions along PCs 1 to 2. Three taxa are represented for each component. Legend from
panel a also applies to panel b. (b) Three-dimensional figure of shared metabolite-microbe predicted
interactions across PCs 1 to 3. Two taxa are represented for each component.
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metabolome across different human populations. Furthermore, we also examined the
human fecal metabolome database (HFMDB) (73), which contains 6,810 metabolites
identified across multiple data sets, for our annotated shared metabolite features. A
total of 65% of our annotated shared metabolite features were present in the HFMDB
(Table S2); examples of identified metabolites also found in the HFMDB include palmit-
oleic acid, hypoxanthine, and xanthosine. However, it should be noted that the HFMDB
comprises data derived from various instrumental, analytical, and processing methods
(73). The absence of some of our shared metabolites from the HFMDB can be attrib-
uted to these methodological differences.

Furthermore, we used the Mass Spectrometry Search Tool (MASST) (58) to search
for MS/MS spectra matches to our shared metabolites in public data sets in GNPS (74),
Metabolomics Workbench (75), MetaboLights (76), Foodomics (77), and skin trace evi-
dence (Table S3). These searches report sample types matched with our spectra, such
as human, mouse, plant, bacterial, or environmental sample types, as well as matched
data set names. Across our 67 shared metabolites, MASST reported a total of 4,485
total data set matches, with an average of 67 total data set matchers per metabolite.
Indeed, 61% of our shared metabolites reported more matches to human samples
than to other sample types (Table S3), and 79% of our shared metabolites also contained
bacterial sample matches, suggesting a possible microbiome origin. Additionally, 39% of
our shared metabolites were present in human urbanization gradient studies, and 67%
were present in studies with cultured bacteria from the gut microbiome. Similar to
HFMDB and ReDU, MASST searches contain data collected through various instrumental
and experimental methods, so any absent shared metabolites can be attributed to these
differences. Nonetheless, the MASST searches demonstrate the prevalence of our shared
metabolites across different databases and MS/MS platforms.

While we were able to reveal a shared human fecal metabolome, only 6.1% of our
complete data set had putative compound-level annotations (level 2 according to the
metabolomics standards initiative [45]). Of these, 15 were validated using standards,
enabling level 1 annotation confidence (45) (Fig. S4) and 28.8% of the data set had
annotations based only on chemical class (level 3 of the metabolomics standards initia-
tive [45]). This underscores the need for further annotation of human fecal metabolites,
especially from human populations traditionally underrepresented in metabolomic
databases. Additionally, it is important to note that samples used for this study were
collected at different times and subjected to various preservation treatments and
lengths. However, our samples clustered based on industrialization category rather
than storage conditions or geographic origin, indicating that any confounding influ-
ence from preservation was overshadowed by the effect of industrialization. Moreover,
industrialization refers to a suite of features that can influence the metabolome, with
diet as a strong candidate (54, 55). Other factors such as demography, genetics, and
environment also influence the metabolome with diet, highlighting a need to explore
the mechanisms of industrialization’s effect on the human metabolome. Furthermore,
our sampled populations had unequal sex and age distributions, potentially obscuring
any effects caused by sex or age on the fecal metabolome. While our results do not
indicate statistically significant differences based on age or sex, further research is
needed with samples equally representing sex and age distributions. Full data are
freely available on GNPS (74) so they can be of use to other researchers and annota-
tions can continue to expand.

Our results demonstrate how industrialization profoundly shapes human fecal met-
abolic environments regardless of age, sex, or geographic origin. We also highlight
strong commonalities in the fecal metabolome across these distinct populations, rep-
resenting shared features of a human fecal metabolome represented by endogenous
and exogenous metabolites. Based on our definition, these shared chemical compo-
nents are core to major human groups or populations but are not necessarily found in
every human individual or LC-MS analysis, given differences in metabolite extraction or
instrumental conditions between studies. Further studies focused on untargeted
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analyses of a spectrum of industrial and nonindustrial populations, including past and
present humans, can help elucidate the shared human fecal metabolome’s ubiquity, its
relationship with the gut microbiome, and how processes such as industrialization
drive human evolution.

MATERIALS ANDMETHODS
Project design. Fecal samples from six human populations were analyzed, representing ranges of in-

dustrialization. Populations were categorized to reflect various degrees of lifestyle behavior and industriali-
zation, based on diet, access to pharmacies and public markets/stores, housing structure, and population
density (19). The grouped categories are urban industrialized (highly industrial urban population, typical
Western industrialized population; n = 18), rural industrialized (industrialized population but primarily rural
environment over urban; n = 26), rural traditional (rural communities with some industrialization; n = 35),
and isolated traditional (isolated rural community with little to no industrialization influence; n = 11). The
study populations include Norman (n = 18), OK, USA, a standard Western industrialization population
located in the Oklahoma City metropolitan area, Guayabo (n = 12), Peru, a large rural town influenced by
industrialization, Tambo de Mora district (n = 14), Peru, a large rural district influenced by industrialization,
Boulkiemdé province (n = 11), Burkina Faso, with some industrialization influence, Tunapuco (n = 24), a tra-
ditional rural community located in the Andean Highlands with minimal industrialization influence, and
the Matses (n = 11), an isolated traditional hunter-gatherer community from the Peruvian Amazon (Fig. 1;
Table 1; Table S1). All populations contained both males and females of ages 3 to 77. Individuals under the
age of 3 were excluded from analyses because gut microbiomes do not stabilize and resemble adult
microbiomes until after age 3 (42, 78).

Populations. Fecal samples from Norman, OK, USA, were analyzed for this project (n = 18), repre-
senting western industrial lifestyles and diets. Norman residents live in the Oklahoma City metropolitan
area, exemplifying a highly industrialized environment. Self-reported diets generally consisted of regular
dairy consumption plus processed and/or prepackaged foods such as canned vegetables. Additionally,
regular meat consumption was common to Norman individuals compared to our other sampled popula-
tions. Due to the strongly industrialized setting and greater consumption of meat, dairy, and processed
food products, this population was categorized as urban industrial.

We also selected fecal samples from the Guayabo (n = 12) and Tambo de Mora (n = 14) populations,
which practice similar lifestyles. These populations exhibit rural lifestyles and diets but are still strongly
influenced by industrialization. Both communities have regular access to public markets and pharmacies
and live in densely packed areas. Their diets are generally reliant on foods obtained from these markets,
as well as local produce and livestock. While the Guayabo diet commonly consists of maize with some
meat and dairy consumption, the Tambo de Mora population relies more on fish, due to their proximity
to the Peruvian coastline. Consumption of processed foods is common for both communities, albeit less
so than Norman individuals. Because the Guayabo and Tambo de Mora communities exhibit some char-
acteristics of nonindustrial and industrial lifestyles and live in primarily rural settings, these populations
were categorized as rural industrial.

The Boulkiemdé (n = 11) and Tunapuco (n = 24) communities represent the next degree of industrializa-
tion in our sampled populations. Although these populations are from Africa and South America, respec-
tively, they practice similar traditional nonindustrial, rural lifestyles and share some features of industrialized
populations, such as access to public markets. The Boulkiemdé samples were collected from the Boulkiemdé
province of Burkina Faso. This Burkinabé community practices an agricultural lifestyle, usually growing their
own crops, raising livestock, and rarely consuming dairy products. Boulkiemdé meat consumption often
ranged from once every 1 to 3 weeks or once every 4 to 6 months. Vegetable consumption was high in self-
reported diets of Boulkiemdé individuals. Common vegetables included cabbage, okra, eggplant, beans, car-
rots, potato, manioc, couscous, rice, corn, etc. Processed foods such as canned vegetables were highly rare.
Meanwhile, the Tunapuco population have similar traditional agricultural lifestyles, relying on local produce
and livestock. Residing in the Peruvian Andes highlands, the Tunapuco people have diets largely consisting
of root and stem tubers, bread, and rice. The Tunapuco people occasionally consume animal proteins and
dairy products such as cuy, beef, pork, or sheep. Overall, rice, mote, carrots, cabbages, bread, cuy, oca, and
potatoes (fermented, dehydrated, etc.) were the most common self-reported foods for the Tunapuco peo-
ple. Additionally, Tunapuco residents have access to lowland markets, which offer other dietary sources
such as fruit (apples, bananas, pineapples, mangos, etc.), depending on seasonal availability. Similar to the
Boulkiemdé community, processed foods are rarely consumed by the Tunapuco people. Since both the
Boulkiemdé and Tunapuco communities sampled for this project lived in largely rural yet partly industrial
environments with diets focused more on raw food products, these populations were grouped as rural
traditional.

Our last sampled population is the Matses (n = 11). The Matses people practice traditional hunter-
gatherer lifestyles, making them unique for this study. Their diet is based heavily on tubers, plantains,
fish, and game meat. Specifically, varieties of manioc, plantains/bananas, and fish are staples of the
Matses diet., while bushmeat, reptiles, birds, bread, and other crops are less frequent. Dairy and proc-
essed foods are very rarely consumed by the Matses community. Due to their location in the Amazonian
regions of Peru and unique lifestyles characterized by self-reliant food production over processed foods,
the Matses are almost completely isolated from external sociocultural and economic influences such as
industrialization, so they were categorized as isolated traditional.
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Sample collection. Fecal material was deposited into polypropylene containers and then put on ice.
Samples were kept in ice while in the field until arriving at research facilities equipped with freezers. The
Norman samples were kept in ice after collection and frozen at the laboratory within 24 h. The Peruvian
samples were secured similarly to the Norman samples. After collection, samples were stored on ice for 4
days until arriving at Lima, Peru. Samples were frozen and sent to the laboratory in Norman, Oklahoma.

The Norman, Tunapuco, and Matses samples had previously been aliquoted and underwent 16S
rRNA gene sequencing for an earlier study (24), using the MoBio PowerSoil DNA isolation kit protocol
(full details can be found in the original article [24]). The raw fecal samples were otherwise kept frozen
at280°C until use for this project.

Boulkiemdé samples were collected similarly to Norman and Peruvian samples. After collection,
Boulkiemdé samples were frozen at 220°C within 24 h and kept frozen overnight. Samples were thawed
the following evening to extract DNA, refrozen at 220°C, and kept frozen until they were shipped to the
laboratory in Norman, OK. Upon arrival, 2 g of fecal material was extracted from each sample for anaero-
bic culturing. Following this 2-g aliquoting, samples were frozen at280°C until use for this project.

While field conditions mandated different storage protocols, we confirmed that these effects are
overshadowed by the industrialization gradient (see Results).

Full metadata with health conditions, such as primary water sources, pharmaceutical consumption,
date of latest hospital visit, etc., were collected for the Boulkiemdé samples. However, the Norman and
Peru samples had been collected several years before the Boulkiemdé samples and unfortunately lack sim-
ilar detailed metadata about health conditions. While this metadata cannot be provided for the Norman
and Peru samples, the full deidentified metadata for the Boulkiemdé samples are available in Data Set S1.

Ethics approval and informed consent. Ethical protocols for community engagement and sample
collection were developed through collaboration with representatives and authorities from each
sampled region and in accordance with institutional regulations. All Peruvian samples were obtained
through community engagement with local and national authorities and with informed consent with
consultation from the Center for Intercultural Health of the Peruvian Institute of Health and Peruvian
National Institute of Health ethics committee. This project was reviewed and approved by the research
ethics committee of the Instituto Nacional de Salud del Peru (projects PP-059-11 and OEE-036-16).

Human fecal samples were collected with informed consent from resident volunteers in central
Burkina Faso under the ethics review committee of Centre MURAZ, a national health research institute
in Burkina Faso (institutional review board [IRB] ID no. 31/2016/CE-CM). University of Oklahoma IRB
deemed this project consistent with US policy 45 CRF 46.101(b) exempt category 4 (OU IRB 6976).

LC-MS/MS fecal sample preparation. The sample preparation protocol used for this project was
adapted from a global metabolite extraction protocol with proven success (79, 80). Samples were thawed,
and 500 mL of chilled LC-MS-grade water (Fisher Scientific) was added to 50 mg of fecal material. Next, a
TissueLyser homogenized samples at 25 Hz for 3 min. Following homogenization, chilled LC-grade metha-
nol (Fisher Scientific) spiked with 4mM sulfachloropyridazine as the internal standard (IS) was added, bring-
ing the total concentration to 50% methanol. The TissueLyser homogenized samples again at 25 Hz for 3
min, followed by overnight incubation at 4°C. The next day, samples were centrifuged at 16,000 � g at 4°C
for 10 minutes. Aqueous supernatant was then removed and dried using a SpeedVac vacuum concentrator.
Dried extracts were frozen at 280°C until the day of MS analysis. Immediately prior to MS analysis, extracts
were resuspended in 150 mL chilled LC-MS methanol:water (1:1) spiked with 1 mg/mL sulfadimethoxine as
a second IS. After resuspension, samples were diluted to a 1:10 ratio. Diluted samples were sonicated using
a Fisher Scientific ultrasonic cleaning bath at maximum power for 10 min. Supernatants were spun briefly
to remove any particulates and then loaded into a 96-well plate for MS analysis. One well contained only
150mL of the resuspension solution to serve as a blank control.

LC-MS/MS analysis. LC was performed on a Thermo Fisher Scientific Vanquish Flex binary LC system
with a Kinetex C18 core-shell column (50 by 2.1 mm, 1.7mM particle size, 100 Å pore size). The LC column
was kept at 40°C and the sample compartment was held at 10°C. The LC system was coupled to a
Thermo Fisher Scientific Q Exactive Plus hybrid quadrupole-orbitrap mass spectrometer for MS/MS anal-
ysis. For the LC mobile phase, solvent A was LC-MS-grade water (Fisher Scientific) with 0.1% formic acid
and solvent B was LC-MS-grade acetonitrile (Fisher Scientific) with 0.1% formic acid. The elution gradient
started at 5% solvent B for 1 min, increased to 100% solvent B until minute 9, held at 100% solvent B for
2 min, dropped to 5% solvent B over 30 s, and held at 5% solvent B for 1 min as reequilibration. Samples
were injected in random order with an injection volume of 5 mL. After elution, electrospray ionization
was conducted with a spray voltage of 3.8 kV, auxiliary gas flow rate of 10, auxiliary gas temperature of
350°C, sheath gas flow rate of 35, and sweep gas flow of 0. Capillary temperature was 320°C, and S-lens
radio frequency (RF) was 50 V.

MS1 scan range was 100 to 1,500 m/z, MS1 resolution was set to 35,000, and the MS1 automatic
gain control (AGC) target was set to 1e6. MS1 data were obtained in positive mode and MS2 data were
obtained using data-dependent acquisition. In each cycle, MS/MS scans of each of the five most abun-
dant ions were recorded. Both MS1 and MS2 injection times were set at 100 ms. MS2 resolutions were
set to 17,500, the MS2 AGC target was set to 5e5, and the inclusion window was set to 2 m/z. MS/MS
was conducted at an apex trigger of 2 to 8 s and an exclusion window of 10 s. MS/MS collision energy
gradually increased from 20 to 40%.

Authentic standards also underwent LC-MS/MS analysis to validate metabolite annotations. A total
of 15 standards were purchased from AA Blocks (hyocholic acid, 13-docosenamide), AvaChem (lenticin),
Biosynth (bilirubin, N-acetylmuramic acid, fructosyl-L-lysine), BLD Pharm (N-palmitoylglycine, trans-ferulic
acid), ChemScene (leucine enkephalin), LGC Standards (L-saccharopine), Sigma-Aldrich (L-abrine, N-acetyl
L-phenylalanine, enoxolone, octadecanamide, lithocholic acid, paraxanthine), and VWR (nicotinamide
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N-oxide). Each pure standard was diluted to 100 mM, 50 mM, 10 mM, 5 mM, and 1 mM concentrations.
All standards (and their five dilutions) were analyzed according to the same LC-MS/MS parameters as
the original samples. Additionally, fecal extracts with the highest abundance for each standard were
reanalyzed as part of the same LC-MS/MS batch to ensure that standard peaks were present in samples
and to prevent confounding from retention time shifts caused by the gap between initial data acquisi-
tion and annotation validation.

Data analysis and processing. MSConvert v3.0.19014 (81) converted raw data files to mzXML for-
mat in preparation for data processing via feature-based molecular networking (FBMN) (82). MZmine
v2.33 (83) was used to identify MS features for all samples (Table S4). All non-gap-filled analyses were
performed using parameters identical to those of the gap-filling steps in MZmine, with the exception of
the gap-filling step. After feature filtering, only features with abundance three times greater than the
abundance of blanks were retained in these analyses. Total ion current (TIC) normalization was con-
ducted through R programming language v3.5.3 (84) in Jupyter Notebook (85). FBMN and library spec-
tral database searches were completed using the FBMN workflow in Global Natural Products Social
Molecular Networking (GNPS) (74). FBMN GNPS parameters for MS/MS analysis were as follows: precur-
sor and fragment ion mass tolerance, 0.02 Da; minimum cosine score for networking and library
matches, 0.7; minimum number of matched MS2 fragment ions for networking and library matches, 4;
network topK, 50; maximum connected component size, 100; maximum shift between precursors,
500 Da; analog search, enabled; maximum analog mass difference, 100 Da; precursor window filtering,
enabled; 50 Da peak window filtering, enabled; normalization per file, row sum normalization. Results
were analyzed by visually evaluating mirror plot similarity, cosine score, and match likelihood. Molecular
networking results were exported to Cytoscape v3.7.1 (86) to visualize and analyze networks. Predicted
ClassyFire (87) classifications for shared metabolites were derived using the MolNetEnhancer (88) work-
flow in GNPS. In addition, select annotations were confirmed using authentic standards (Fig. S4).

MS filtering was performed in MZmine (83). Three separate filtering workflows were done: 6 mini-
mum peaks in a row (half the number of samples in a single population), 45 minimum peaks in a row
(half our total samples), and 90 minimum peaks in a row (all samples). After each filtering step, gap-fill-
ing was performed using the previous parameters. For the six-sample filtering, additional processing
was done in R (84) to remove any features that were not found in at least six samples from each popula-
tion. The resulting files were also analyzed in GNPS as described above.

Mass Spectrometry Search Tool (MASST) (58) was used to search for data set matches to the MS2
spectra of our shared metabolites. MASST parameters were as follows: parent mass tolerance, 0.02 Da;
minimum matched peaks, 4; ion tolerance, 0.5 Da; score threshold, 0.7; top hits per spectrum, 1; selected
databases to search, all (GNPS [74], Metabolomics Workbench (75), MetaboLights (76), Foodomics (77),
and skin trace evidence); no analog searches; and no unclustered data search.

For 16S rRNA gene sequencing data, we used AdapterRemoval v2 (89) to filter out sequences of
,90 bp in length. QIIME1 (90) was used generate ASVs/zero-operational taxonomic unis (zOTUs) using
the EzTaxon database (91) for assigning taxonomic identifiers. EzTaxon was selected over other data-
bases such as Greengenes (92) because EzTaxon is regularly updated, and taxonomic identification was
not the purpose for utilizing our 16S data. All samples with fewer than 10,000 reads were removed from
analyses. Any ASVs detected in fewer than 10 samples with a maximum abundance of ,0.01% were
also removed. Generated taxon summaries were limited to genus-level identifications. Only ASVs with
>0.5% relative frequency were included in mmvec analyses.

Mmvec and statistical analyses. Metabolite and microbe feature tables were input to the
Quantitative Insights into Microbial Ecology 2 (QIIME2) (93) microbe-metabolite vectors (mmvec) plugin
(69). Conditional probabilities were exported to R (84). Conditionals were subset to our 67 annotated shared
metabolites, while major taxa were filtered by exploring high conditional probability values. Filtered results
were exported to a new table as .csv. Principal-component analyses were run and visualized using the R
(84) package pca3d (94). Further figure modifications were done using Inkscape (https://inkscape.org/) v1.2.

Principal coordinate analysis (PCoA) plots were created using Canberra distance metrics from QIIME2 (93)
and visualized using EMPeror (95). PERMANOVA (38) via QIIME2 assessed statistical significance for beta diver-
sity measures. Kruskal-Wallis P values were calculated in R (84) through Jupyter Notebook (85). Boxplots
(Fig. 1c to h; Fig. S2 and S3) and principal-component analyses (Fig. 3) were also generated using R (84) in
Jupyter Notebook (85). For these boxplots, the center line represents the median, the upper and lower box
lines reflect upper and lower quartiles, whiskers reflect the interquartile range multiplied by one-and-a-half,
and outliers are dots. The R packages ggplot2 (96) and rworldmap (97) were used to create Fig. 1a and c to h.
The R package effect size (98) provided P values for ANOVA effect size. UpSet plots (99) (Fig. 2b and c;
Fig. S1b) were created using the Python 3 (100) packages pandas (101), UpSetPlot (102), and matplotlib (103).

To identify metabolite features unique to specific populations or lifestyles, a random forest machine
learning algorithm from the R package RandomForest was used in Jupyter Notebook (44). The number
of trees increased gradually from five until reaching a plateau from out-of-bag error at 200 trees. SIRIUS
v4.4.26 (104) with ClassyFire (87) classification and CANOPUS (105) compound prediction were used to
provide class-level annotations for features identified by random forest analysis.

Data availability. LC-MS/MS data were uploaded to MassIVE (106) (accession number MSV000084794).
GNPS FBMN jobs are available at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=505b8b39810c48eb
9f9b65fee7c6bc7b (v23, original analysis with gap-filling), https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
b76893f1a07e4cb0be3b603c14cea1b2 (v23, gap-filling, primarily used throughout data analysis), and
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=af7ec76b02ac482bbd2b7ee3a3ccbdc5 (v23, no gap-fill-
ing). FBMN jobs for filtered data are available at: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=db
26beb51aff418585e6ad0b92f522b7 (six-sample per population filter, gap-filling), https://gnps.ucsd.edu/
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ProteoSAFe/status.jsp?task=4693e01a2af740ceb39bfb19720e798d (six-sample per population filter, no gap-
filling), https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=220d1afd0a564ec1818601d3d928d27a (half-sample
filter, gap-filling), https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=d9686d483e5b496299a02750d6a3ec23
(half-sample filter, no gap-filling), https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=45150c751a8e42eea51f3
ea4936aee95 (all-sample filter, gap-filling), and https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=45150
c751a8e42eea51f3ea4936aee95 (all-sample filter, no gap-filling). ReDU coanalysis is available at https://gnps
.ucsd.edu/ProteoSAFe/status.jsp?task=cc2c2d20b20d4bd28c22beb777d2782a (coanalysis with all human fecal
samples available in ReDU as of 27 August 2021). This study and the associated raw data are available at the
NIH Common Fund’s National Metabolomics Data Repository (NMDR) website, Metabolomics Workbench (75)
(https://www.metabolomicsworkbench.org; study ID ST002320; DataTrack ID 3495; http://dx.doi.org/10.21228/
M8N999). MASST search links are provided in Table S3. Instructions for recreating data analyses in R and
Python are available as Jupyter Notebook (85) links at: https://github.com/jhaffner09/core_metabolome_2021.
16S data were uploaded to the Qiita database (study ID 13802; also see study ID 1442 for Norman, Tunapuco,
and Matses data).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
DATA SET S1, XLSX file, 0.1 MB.
FIG S1, PDF file, 1.1 MB.
FIG S2, PDF file, 1.1 MB.
FIG S3, PDF file, 0.9 MB.
FIG S4, PDF file, 0.2 MB.
TABLE S1, PDF file, 0.1 MB.
TABLE S2, PDF file, 0.2 MB.
TABLE S3, PDF file, 0.4 MB.
TABLE S4, PDF file, 0.04 MB.

ACKNOWLEDGMENTS
We thank our collaborators at the Communidad Native Matses Anexo San Mateo,

Caserío de Tunapuco, Centre MURAZ Research Institute, and the Ministry of Health in
Burkina Faso for their collaboration and for opening their communities to our research.
We thank Marielle Hoefnagels and students of the OU BioWriting class for their
assistance with editing and reviewing the manuscript.

C.M.L., L.-I.M., and K.S. conceived and designed the study. C.M.L., A.J.O.-T., R.Y.T.,
L.M.R., E.G.-P., and L.T.-C. led Peruvian sample collection and developed ethical
guidelines for community engagement. T.S.K. led fieldwork, metadata curation and
sample processing in Burkina Faso and contributed to lab work in the United States. D.J.
assisted with fieldwork in Burkina Faso and metadata curation and conducted data
analysis. L.-I.M. directed all LC-MS/MS experimentation and data analyses. J.J.H., E.H.,
and L.-I.M. acquired LC-MS/MS data. J.J.H. and L.-I.M. performed LC-MS/MS data analysis
with contributions from M.K., A.R.P., and K.F. J.J.H. wrote the manuscript with
contributions from L.-I.M. and C.M.L. All authors reviewed the final manuscript.

We declare no conflicts of interest.
This study was supported by grants from the National Institutes of Health (NIH R01

GM089886) and the National Science Foundation (Doctoral Dissertation Improvement
Grant 1925579). Financial support was also provided by the University of Oklahoma
Libraries’ Open Access Fund.

REFERENCES
1. Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P,

Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner
LW. 2004. Potential of metabolomics as a functional genomics tool. Trends
Plant Sci 9:418–425. https://doi.org/10.1016/j.tplants.2004.07.004.

2. Dettmer K, Aronov PA, Hammock BD. 2007. Mass spectrometry-basedmetab-
olomics. Mass Spectrom Rev 26:51–78. https://doi.org/10.1002/mas.20108.

3. Patti GJ, Yanes O, Siuzdak G. 2012. Metabolomics: the apogee of the omics
trilogy. Nat Rev Mol Cell Biol 13:263–269. https://doi.org/10.1038/nrm3314.

4. Viant MR, Kurland IJ, Jones MR, Dunn WB. 2017. How close are we to
complete annotation of metabolomes? Curr Opin Chem Biol 36:64–69.
https://doi.org/10.1016/j.cbpa.2017.01.001.

5. Johnson CH, Ivanisevic J, Siuzdak G. 2016. Metabolomics: beyond bio-
markers and towards mechanisms. Nat Rev Mol Cell Biol 17:451–459.
https://doi.org/10.1038/nrm.2016.25.

6. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R,
Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N,
Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela
A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert
A. 2018. HMDB 4.0: the human metabolome database for 2018. Nucleic
Acids Res 46:D608–D617. https://doi.org/10.1093/nar/gkx1089.

7. Lewis CM, Jr, McCall LI, Sharp RR, Spicer PG. 2020. Ethical priority
of the most actionable system of biomolecules: the metabolome.

The Shared Human Fecal Metabolome mSystems

November/December 2022 Volume 7 Issue 6 10.1128/msystems.00710-22 16

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=4693e01a2af740ceb39bfb19720e798d
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=220d1afd0a564ec1818601d3d928d27a
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=d9686d483e5b496299a02750d6a3ec23
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=45150c751a8e42eea51f3ea4936aee95
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=45150c751a8e42eea51f3ea4936aee95
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=45150c751a8e42eea51f3ea4936aee95
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=45150c751a8e42eea51f3ea4936aee95
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=cc2c2d20b20d4bd28c22beb777d2782a
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=cc2c2d20b20d4bd28c22beb777d2782a
https://www.metabolomicsworkbench.org
http://dx.doi.org/10.21228/M8N999
http://dx.doi.org/10.21228/M8N999
https://github.com/jhaffner09/core_metabolome_2021
https://doi.org/10.1016/j.tplants.2004.07.004
https://doi.org/10.1002/mas.20108
https://doi.org/10.1038/nrm3314
https://doi.org/10.1016/j.cbpa.2017.01.001
https://doi.org/10.1038/nrm.2016.25
https://doi.org/10.1093/nar/gkx1089
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00710-22


Am J Phys Anthropol 171:177–181. https://doi.org/10.1002/ajpa
.23943.

8. Nordström A, O’Maille G, Qin C, Siuzdak G. 2006. Nonlinear data align-
ment for UPLC-MS and HPLC-MS based metabolomics: quantitative anal-
ysis of endogenous and exogenous metabolites in human serum. Anal
Chem 78:3289–3295. https://doi.org/10.1021/ac060245f.

9. Wishart DS. 2016. Emerging applications of metabolomics in drug dis-
covery and precision medicine. Nat Rev Drug Discov 15:473–484. https://
doi.org/10.1038/nrd.2016.32.

10. Lamichhane S, Sen P, Dickens AM, Oreši�c M, Bertram HC. 2018. Gut
metabolome meets microbiome: A methodological perspective to
understand the relationship between host and microbe. Methods 149:
3–12. https://doi.org/10.1016/j.ymeth.2018.04.029.

11. Vernocchi P, Del Chierico F, Putignani L. 2016. Gut microbiota profiling:
Metabolomics based approach to unravel compounds affecting human
health. Front Microbiol 7:1144. https://doi.org/10.3389/fmicb.2016.01144.

12. Treiman DJ. 1970. Industrialization and social stratification. Sociol Inq 40:
207–234. https://doi.org/10.1111/j.1475-682X.1970.tb01009.x.

13. Gollin D, Jedwab R, Vollrath D. 2016. Urbanization with and without in-
dustrialization. J Econ Growth 21:35–70. https://doi.org/10.1007/s10887
-015-9121-4.

14. Ritchie H, Roser M. 2020. Urbanization. https://ourworldindata.org/
urbanization.

15. Nguyen TD, Lesani M, Forrest I, Lan Y, Dean DA, Gibaut QMR, Guo Y,
Hossain E, Olvera M, Panlilio H, Parab AR, Wu C, Bernatchez JA, Cichewicz
RH, McCall LI. 2020. Local phenomena shape backyard soil metabolite com-
position. Metabolites 10:86–16. https://doi.org/10.3390/metabo10030086.

16. Höppe P, Martinac I. 1998. Indoor climate and air quality. Review of cur-
rent and future topics in the field of ISB study group 10. Int J Biometeorol
42:1–7.

17. Katemauswa M, Hossain E, Liu Z, Lesani M, Parab AR, Dean DA, McCall L-
I. 2021. Optimized extraction method enables quantitative analysis of
surface metabolite recovery for exposomics and behavioral studies. bio-
Rxiv. https://doi.org/10.1101/2021.08.25.457715.

18. McCall L-I, Anderson VM, Fogle RS, Haffner JJ, Hossain E, Liu R, Ly AH, Ma
H, Nadeem M, Yao S. 2019. Analysis of university workplace building
surfaces reveals usage-specific chemical signatures. Build Environ 162:
106289. https://doi.org/10.1016/j.buildenv.2019.106289.

19. McCall LI, Callewaert C, Zhu Q, Song SJ, Bouslimani A, Minich JJ, Ernst M,
Ruiz-Calderon JF, Cavallin H, Pereira HS, Novoselac A, Hernandez J, Rios
R, Branch OLH, Blaser MJ, Paulino LC, Dorrestein PC, Knight R,
Dominguez-Bello MG. 2020. Home chemical and microbial transitions
across urbanization. Nat Microbiol 5:108–115. https://doi.org/10.1038/
s41564-019-0593-4.

20. Ruiz-Calderon JF, Cavallin H, Song SJ, Novoselac A, Pericchi LR, Hernandez
JN, Rios R, Branch OH, Pereira H, Paulino LC, Blaser MJ, Knight R,
Dominguez-Bello MG. 2016. Walls talk: microbial biogeography of homes
spanning urbanization. Sci Adv 2. https://doi.org/10.1126/sciadv.1501061.

21. Popkin BM. 1999. Urbanization, lifestyle changes and the nutrition
transition. World Dev 27:1905–1916. https://doi.org/10.1016/S0305
-750X(99)00094-7.

22. Satterthwaite D, McGranahan G, Tacoli C. 2010. Urbanization and its
implications for food and farming. Philos Trans R Soc Lond B Biol Sci 365:
2809–2820. https://doi.org/10.1098/rstb.2010.0136.

23. Kisuse J, La-Ongkham O, Nakphaichit M, Therdtatha P, Momoda R,
Tanaka M, Fukuda S, Popluechai S, Kespechara K, Sonomoto K, Lee YK,
Nitisinprasert S, Nakayama J. 2018. Urban diets linked to gut microbiome
and metabolome alterations in children: a comparative cross-sectional
study in Thailand. Front Microbiol 9:1345–1316. https://doi.org/10.3389/
fmicb.2018.01345.

24. Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC,
Ursell LK, Zech Xu Z, Van Treuren W, Knight R, Gaffney PM, Spicer P,
Lawson P, Marin-Reyes L, Trujillo-Villarroel O, Foster M, Guija-Poma E,
Troncoso-Corzo L, Warinner C, Ozga AT, Lewis CM. 2015. Subsistence
strategies in traditional societies distinguish gut microbiomes. Nat Com-
mun 6:6505. https://doi.org/10.1038/ncomms7505.

25. Winglee K, Howard AG, Sha W, Gharaibeh RZ, Liu J, Jin D, Fodor AA, Gordon-
Larsen P. 2017. Recent urbanization in China is correlated with aWesternized
microbiome encoding increased virulence and antibiotic resistance genes.
Microbiome 5:121. https://doi.org/10.1186/s40168-017-0338-7.

26. Stamper CE, Hoisington AJ, Gomez OM, Halweg-Edwards AL, Smith DG,
Bates KL, Kinney KA, Postolache TT, Brenner LA, Rook GAW, Lowry CA.
2016. The microbiome of the built environment and human behavior:
implications for emotional health and well-being in postmodern

Western societies. Int Rev Neurobiol 131:289–323. https://doi.org/10
.1016/bs.irn.2016.07.006.

27. Carlsten C, Rider CF. 2017. Traffic-related air pollution and allergic dis-
ease: An update in the context of global urbanization. Curr Opin Allergy
Clin Immunol 17:86–89. https://doi.org/10.1097/ACI.0000000000000351.

28. Nicolaou N, Siddique N, Custovic A. 2005. Allergic disease in urban and
rural populations: Increasing prevalence with increasing urbanization. J
Allergy Clin Immunol 60:1357–1360. https://doi.org/10.1111/j.1398-9995
.2005.00961.x.

29. Ponte EV, Cruz AA, Athanazio R, Carvalho-Pinto R, Fernandes FLA,
Barreto ML, Stelmach R. 2018. Urbanization is associated with increased
asthma morbidity and mortality in Brazil. Clin Respir J 12:410–417.
https://doi.org/10.1111/crj.12530.

30. Abu Freha N, Schwartz D, Elkrinawi J, Ben Yakov G, Abu Tailakh M,
Munteanu D, Abu Ganim A, Fich A. 2015. Inflammatory bowel disease
among Bedouin Arabs in southern Israel: Urbanization and increasing
prevalence rates. Eur J Gastroenterol Hepatol 27:230–234. https://doi
.org/10.1097/MEG.0000000000000263.

31. Barreiro-de Acosta M, Alvarez Castro A, Souto R, Iglesias M, Lorenzo A,
Dominguez-Muñoz JE. 2011. Emigration to western industrialized coun-
tries: a risk factor for developing inflammatory bowel disease. J Crohns
Colitis 5:566–569. https://doi.org/10.1016/j.crohns.2011.05.009.

32. Benchimol EI, Kaplan GG, Otley AR, Nguyen GC, Underwood FE,
Guttmann A, Jones JL, Potter BK, Catley CA, Nugent ZJ, Cui Y, Tanyingoh
D, Mojaverian N, Bitton A, Carroll MW, Debruyn J, Dummer TJB, El-
Matary W, Griffiths AM, Jacobson K, Kuenzig ME, Leddin D, Lix LM, Mack
DR, Murthy SK, Sánchez JNP, Singh H, Targownik LE, Vutcovici M,
Bernstein CN. 2017. Rural and urban residence during early life is associ-
ated with a lower risk of inflammatory bowel disease: a population-
based inception and birth cohort study. Am J Gastroenterol 112:
1412–1422. https://doi.org/10.1038/ajg.2017.208.

33. Bach J-F. 2018. The hygiene hypothesis in autoimmunity: the role of
pathogens and commensals. Nat Rev Immunol 18:105–120. https://doi
.org/10.1038/nri.2017.111.

34. Sonnenburg ED, Sonnenburg JL. 2019. The ancestral and industrialized
gut microbiota and implications for human health. Nat Rev Microbiol 17:
383–390. https://doi.org/10.1038/s41579-019-0191-8.

35. Ayeni FA, Biagi E, Rampelli S, Fiori J, Soverini M, Audu HJ, Cristino S,
Caporali L, Schnorr SL, Carelli V, Brigidi P, Candela M, Turroni S. 2018.
Infant and adult gut microbiome and metabolome in rural Bassa and
urban settlers from Nigeria. Cell Rep 23:3056–3067. https://doi.org/10
.1016/j.celrep.2018.05.018.

36. Turroni S, Fiori J, Rampelli S, Schnorr SL, Consolandi C, Barone M, Biagi E,
Fanelli F, Mezzullo M, Crittenden AN, Henry AG, Brigidi P, Candela M.
2016. Fecal metabolome of the Hadza hunter-gatherers: a host-micro-
biome integrative view. Sci Rep 6:328269. https://doi.org/10.1038/
srep32826.

37. Zierer J, Jackson MA, Kastenmüller G, Mangino M, Long T, Telenti A,
Mohney RP, Small KS, Bell JT, Steves CJ, Valdes AM, Spector TD, Menni C.
2018. The fecal metabolome as a functional readout of the gut microbiome.
Nat Genet 50:790–795. https://doi.org/10.1038/s41588-018-0135-7.

38. Anderson MJ. 2017. Permutational multivariate analysis of variance (PER-
MANOVA), p 1–15. In Balakrishnan N, Colton T, Everitt B, Piegorsch W,
Ruggeri F, Teugels JL (ed), Wiley StatsRef statistics reference online.
Wiley, New York, NY. https://doi.org/10.1002/9781118445112.stat07841.

39. Schnorr SL, Mandela M, Rampelli S, Centanni M, Consolandi C, Basaglia
G, Turroni S, Biagi E, Peano C, Severgnini M, Fiori J, Gotti R, De Bellis G,
Luiselli D, Brigidi P, Mabulla A, Marlowe F, Henry AG, Crittenden AN.
2014. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 5:
3654. https://doi.org/10.1038/ncomms4654.

40. Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K,
Modry D, Todd A, Jost Robinson CA, Remis MJ, Torralba MG, Morton E,
Umaña JD, Carbonero F, Gaskins HR, Nelson KE, Wilson BA, Stumpf RM,
White BA, Leigh SR, Blekhman R. 2016. Gut microbiome of coexisting
BaAka pygmies and Bantu reflects gradients of traditional subsistence
patterns. Cell Rep 14:2142–2153. https://doi.org/10.1016/j.celrep.2016
.02.013.

41. Mancabelli L, Milani C, Lugli GA, Turroni F, Ferrario C, van Sinderen D,
Ventura M. 2017. Meta-analysis of the human gut microbiome from
urbanized and pre-agricultural populations. Environ Microbiol 19:
1379–1390. https://doi.org/10.1111/1462-2920.13692.

42. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG,
Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath
AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber

The Shared Human Fecal Metabolome mSystems

November/December 2022 Volume 7 Issue 6 10.1128/msystems.00710-22 17

https://doi.org/10.1002/ajpa.23943
https://doi.org/10.1002/ajpa.23943
https://doi.org/10.1021/ac060245f
https://doi.org/10.1038/nrd.2016.32
https://doi.org/10.1038/nrd.2016.32
https://doi.org/10.1016/j.ymeth.2018.04.029
https://doi.org/10.3389/fmicb.2016.01144
https://doi.org/10.1111/j.1475-682X.1970.tb01009.x
https://doi.org/10.1007/s10887-015-9121-4
https://doi.org/10.1007/s10887-015-9121-4
https://ourworldindata.org/urbanization
https://ourworldindata.org/urbanization
https://doi.org/10.3390/metabo10030086
https://doi.org/10.1101/2021.08.25.457715
https://doi.org/10.1016/j.buildenv.2019.106289
https://doi.org/10.1038/s41564-019-0593-4
https://doi.org/10.1038/s41564-019-0593-4
https://doi.org/10.1126/sciadv.1501061
https://doi.org/10.1016/S0305-750X(99)00094-7
https://doi.org/10.1016/S0305-750X(99)00094-7
https://doi.org/10.1098/rstb.2010.0136
https://doi.org/10.3389/fmicb.2018.01345
https://doi.org/10.3389/fmicb.2018.01345
https://doi.org/10.1038/ncomms7505
https://doi.org/10.1186/s40168-017-0338-7
https://doi.org/10.1016/bs.irn.2016.07.006
https://doi.org/10.1016/bs.irn.2016.07.006
https://doi.org/10.1097/ACI.0000000000000351
https://doi.org/10.1111/j.1398-9995.2005.00961.x
https://doi.org/10.1111/j.1398-9995.2005.00961.x
https://doi.org/10.1111/crj.12530
https://doi.org/10.1097/MEG.0000000000000263
https://doi.org/10.1097/MEG.0000000000000263
https://doi.org/10.1016/j.crohns.2011.05.009
https://doi.org/10.1038/ajg.2017.208
https://doi.org/10.1038/nri.2017.111
https://doi.org/10.1038/nri.2017.111
https://doi.org/10.1038/s41579-019-0191-8
https://doi.org/10.1016/j.celrep.2018.05.018
https://doi.org/10.1016/j.celrep.2018.05.018
https://doi.org/10.1038/srep32826
https://doi.org/10.1038/srep32826
https://doi.org/10.1038/s41588-018-0135-7
https://doi.org/10.1002/9781118445112.stat07841
https://doi.org/10.1038/ncomms4654
https://doi.org/10.1016/j.celrep.2016.02.013
https://doi.org/10.1016/j.celrep.2016.02.013
https://doi.org/10.1111/1462-2920.13692
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00710-22


C, Clemente JC, Knights D, Knight R, Gordon JI. 2012. Human gut micro-
biome viewed across age and geography. Nature 486:222–227. https://
doi.org/10.1038/nature11053.

43. Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, Chehoud C,
Albenberg LG, Nessel L, Gilroy E, Star J, Weljie AM, Flint HJ, Metz DC,
Bennett MJ, Li H, Bushman FD, Lewis JD. 2016. Comparative metabolo-
mics in vegans and omnivores reveal constraints on diet-dependent gut
microbiota metabolite production. Gut 65:63–72. https://doi.org/10
.1136/gutjnl-2014-308209.

44. Liaw A, Wiener M. 2002. Classification and regression by RandomForest.
R News 3:18–22.

45. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan
TWM, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J,
Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily
MD, Thaden JJ, Viant MR. 2007. Proposed minimum reporting standards
for chemical analysis: Chemical Analysis Working Group (CAWG) Metab-
olomics Standards Initiative (MSI). Metabolomics 3:211–221. https://doi
.org/10.1007/s11306-007-0082-2.

46. Meghwal M, Goswami TK. 2013. Piper nigrum and piperine: an update.
Phytother Res 27:1121–1130. https://doi.org/10.1002/ptr.4972.

47. Jandke J, Spiteller G. 1986. Dipeptide analysis in human urine. J Chroma-
togr B Biomed Sci Appl 382:39–45. https://doi.org/10.1016/S0378
-4347(00)83502-1.

48. Mattarucchi E, Baraldi E, Guillou C. 2012. Metabolomics applied to urine
samples in childhood asthma; differentiation between asthma pheno-
types and identification of relevant metabolites. Biomed Chromatogr 26:
89–94. https://doi.org/10.1002/bmc.1631.

49. Jones-Lepp TL. 2006. Chemical markers of human waste contamination:
analysis of urobilin and pharmaceuticals in source waters. J Environ
Monit 8:472–478. https://doi.org/10.1039/b512858g.

50. Cao H, Huang H, Xu W, Chen D, Yu J, Li J, Li L. 2011. Fecal metabolome
profiling of liver cirrhosis and hepatocellular carcinoma patients by ultra
performance liquid chromatography-mass spectrometry. Anal Chim
Acta 691:68–75. https://doi.org/10.1016/j.aca.2011.02.038.

51. Jarmusch AK, Wang M, Aceves CM, Advani RS, Aguire S, Aksenov AA,
Aleti G, Aron AT, Bauermeister A, Bolleddu S, Bouslimani A, Rodriguez
AMC, Chaar R, Coras R, Elijah EO, Ernst M, Gauglitz JM, Gentry EC,
Husband M, Jarmusch SA, Jones KL, Kamenik Z, Gouellec AL, Lu A,
McCall L-I, McPhail KL, Meehan MJ, Melnik AV, Menezes RC, Giraldo YAM,
Nguyen NH, Nothias LF, Nothias-Esposito M, Panitchpakdi M, Petras D,
Quinn R, Sikora N, Hooft JJJ, van der Vargas F, Vrbanac A, Weldon K,
Knight R, Bandeira N, Dorrestein PC. 2019. Repository-scale co- and re-
analysis of tandem mass spectrometry data. bioRxiv. https://doi.org/10
.1101/750471.

52. Hill MJ. 1971. The effect of some factors on the faecal concentration of
acid steroids, neutral steroids and urobilins. J Pathol 104:239–245.
https://doi.org/10.1002/path.1711040405.

53. Jain A, Li XH, Chen WN. 2019. An untargeted fecal and urine metabolo-
mics analysis of the interplay between the gut microbiome, diet and
human metabolism in Indian and Chinese adults. Sci Rep 9:9191. https://
doi.org/10.1038/s41598-019-45640-y.

54. Requena T, Martínez-Cuesta MC, Peláez C. 2018. Diet and microbiota
linked in health and disease. Food Funct 9:688–704. https://doi.org/10
.1039/c7fo01820g.

55. Tang ZZ, Chen G, Hong Q, Huang S, Smith HM, Shah RD, Scholz M,
Ferguson JF. 2019. Multi-omic analysis of the microbiome and metabo-
lome in healthy subjects reveals microbiome-dependent relationships
between diet and metabolites. Front Genet 10:454. https://doi.org/10
.3389/fgene.2019.00454.

56. Hoffmann MA, Nothias L-F, Ludwig M, Fleischauer M, Gentry EC, Witting
M, Dorrestein PC, Dührkop K, Böcker S. 2021. Assigning confidence to
structural annotations from mass spectra with COSMIC. bioRxiv. https://
doi.org/10.1101/2021.03.18.435634.

57. Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, Bodai Z,
Belda-Ferre P, Tripathi A, Chung LK, Downes M, Welch RD, Quinn M,
Humphrey G, Panitchpakdi M, Weldon KC, Aksenov A, da Silva R, Avila-
Pacheco J, Clish C, Bae S, Mallick H, Franzosa EA, Lloyd-Price J, Bussell R,
Thron T, Nelson AT, Wang M, Leszczynski E, Vargas F, Gauglitz JM,
Meehan MJ, Gentry E, Arthur TD, Komor AC, Poulsen O, Boland BS,
Chang JT, Sandborn WJ, Lim M, Garg N, Lumeng JC, Xavier RJ,
Kazmierczak BI, Jain R, Egan M, Rhee KE, Ferguson D, Raffatellu M,
Vlamakis H, et al. 2020. Global chemical effects of the microbiome
include new bile-acid conjugations. Nature 579:123–129. https://doi.org/
10.1038/s41586-020-2047-9.

58. Wang M, Jarmusch AK, Vargas F, Aksenov AA, Gauglitz JM, Weldon K,
Petras D, da Silva R, Quinn R, Melnik AV, van der Hooft JJJ, Caraballo-
Rodríguez AM, Nothias LF, Aceves CM, Panitchpakdi M, Brown E, Di
Ottavio F, Sikora N, Elijah EO, Labarta-Bajo L, Gentry EC, Shalapour S,
Kyle KE, Puckett SP, Watrous JD, Carpenter CS, Bouslimani A, Ernst M,
Swafford AD, Zúñiga EI, Balunas MJ, Klassen JL, Loomba R, Knight R,
Bandeira N, Dorrestein PC. 2020. Mass spectrometry searches using
MASST. Nat Biotechnol 38:19–22. https://doi.org/10.1038/s41587-019
-0375-9.

59. Segata N. 2015. Gut microbiome: westernization and the disappearance
of intestinal diversity. Curr Biol 25:R611–R613. https://doi.org/10.1016/j
.cub.2015.05.040.

60. Katajamaa M, Oreši�c M. 2005. Processing methods for differential analy-
sis of LC/MS profile data. BMC Bioinformatics 6:179. https://doi.org/10
.1186/1471-2105-6-179.

61. Phelan VV. 2020. Feature-based molecular networking for metabolite
annotation. in. Methods Mol Biol 2104:227–243. https://doi.org/10.1007/
978-1-0716-0239-3_13.

62. Pluskal T, Korf A, Smirnov A, Schmid R, Fallon TR, Du X, Weng JK. 2020.
Metabolomics data analysis using MZmine, p 232–254. In Processing
metabolomics and proteomics data with open software. The Royal Soci-
ety of Chemistry, London, UK. https://doi.org/10.1039/9781788019880
-00232.

63. Chiang JYL. 2017. Bile acid metabolism and signaling in liver disease and
therapy. Liver Res 1:3–9. https://doi.org/10.1016/j.livres.2017.05.001.

64. Ridlon JM, Kang DJ, Hylemon PB. 2006. Bile salt biotransformations by
human intestinal bacteria. J Lipid Res 47:241–259. https://doi.org/10
.1194/jlr.R500013-JLR200.

65. Chickos JS, Way BA, Wilson J, Shaharuzzaman M, Laird J, Landt M. 2002.
Analysis of 3-hydroxydodecanedioic acid for studies of fatty acid meta-
bolic disorders: preparation of stable isotope standards. J Clin Lab Anal
16:115–120. https://doi.org/10.1002/jcla.10033.

66. Ktsoyan ZA, Beloborodova NV, Sedrakyan AM, Osipov GA, Khachatryan
ZA, Kelly D, Manukyan GP, Arakelova KA, Hovhannisyan AI, Olenin AY,
Arakelyan AA, Ghazaryan KA, Aminov RI. 2011. Profiles of microbial fatty
acids in the human metabolome are disease-specific. Front Microbiol 1:
148. https://doi.org/10.3389/fmicb.2010.00148.

67. Ogunleye A, Fakoya AT, Niizeki S, Tojo H, Sasajima I, Kobayashi M,
Tateishi S, Yamaguchi K. 1991. Fatty acid composition of breast milk
from Nigerian and Japanese women. J Nutr Sci Vitaminol (Tokyo) 37:
435–442. https://doi.org/10.3177/jnsv.37.435.

68. Ozalp A, Barroso B, Meijer J, van den Beld C. 2018. Determination of me-
thionine-enkephalin and leucine-enkephalin by LC-MS in human plasma:
study of pre-analytical stability. Anal Biochem 559:24–29. https://doi
.org/10.1016/j.ab.2018.07.001.

69. Morton JT, Aksenov AA, Nothias LF, Foulds JR, Quinn RA, Badri MH,
Swenson TL, Van Goethem MW, Northen TR, Vazquez-Baeza Y, Wang M,
Bokulich NA, Watters A, Song SJ, Bonneau R, Dorrestein PC, Knight R.
2019. Learning representations of microbe–metabolite interactions. Nat
Methods 16:1306–1314. https://doi.org/10.1038/s41592-019-0616-3.

70. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. 2017. Micro-
biome datasets are compositional: and this is not optional. Front Micro-
biol 8:2224. https://doi.org/10.3389/fmicb.2017.02224.

71. Kalivodová A, Hron K, Filzmoser P, Najdekr L, Jane�cková H, Adam T. 2015.
PLS-DA for compositional data with application to metabolomics. J Che-
mometrics 29:21–28. https://doi.org/10.1002/cem.2657.

72. Lewis CM, Obregón-Tito A, Tito RY, Foster MW, Spicer PG. 2012. The
Human Microbiome Project: lessons from human genomics. Trends
Microbiol 20:1–4. https://doi.org/10.1016/j.tim.2011.10.004.

73. Karu N, Deng L, Slae M, Guo AC, Sajed T, Huynh H, Wine E, Wishart DS.
2018. A review on human fecal metabolomics: methods, applications
and the human fecal metabolome database. Anal Chim Acta 1030:1–24.
https://doi.org/10.1016/j.aca.2018.05.031.

74. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD,
Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik
AV, Meehan MJ, Liu W-T, Crüsemann M, Boudreau PD, Esquenazi E,
Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu C-
C, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D,
Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P,
Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw C-C, Yang Y-L,
Humpf H-U, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom
AM, Sedio BE, et al. 2016. Sharing and community curation of mass spec-
trometry data with Global Natural Products Social Molecular Networking
. Nat. Nat Biotechnol 34:828–837. https://doi.org/10.1038/nbt.3597.

The Shared Human Fecal Metabolome mSystems

November/December 2022 Volume 7 Issue 6 10.1128/msystems.00710-22 18

https://doi.org/10.1038/nature11053
https://doi.org/10.1038/nature11053
https://doi.org/10.1136/gutjnl-2014-308209
https://doi.org/10.1136/gutjnl-2014-308209
https://doi.org/10.1007/s11306-007-0082-2
https://doi.org/10.1007/s11306-007-0082-2
https://doi.org/10.1002/ptr.4972
https://doi.org/10.1016/S0378-4347(00)83502-1
https://doi.org/10.1016/S0378-4347(00)83502-1
https://doi.org/10.1002/bmc.1631
https://doi.org/10.1039/b512858g
https://doi.org/10.1016/j.aca.2011.02.038
https://doi.org/10.1101/750471
https://doi.org/10.1101/750471
https://doi.org/10.1002/path.1711040405
https://doi.org/10.1038/s41598-019-45640-y
https://doi.org/10.1038/s41598-019-45640-y
https://doi.org/10.1039/c7fo01820g
https://doi.org/10.1039/c7fo01820g
https://doi.org/10.3389/fgene.2019.00454
https://doi.org/10.3389/fgene.2019.00454
https://doi.org/10.1101/2021.03.18.435634
https://doi.org/10.1101/2021.03.18.435634
https://doi.org/10.1038/s41586-020-2047-9
https://doi.org/10.1038/s41586-020-2047-9
https://doi.org/10.1038/s41587-019-0375-9
https://doi.org/10.1038/s41587-019-0375-9
https://doi.org/10.1016/j.cub.2015.05.040
https://doi.org/10.1016/j.cub.2015.05.040
https://doi.org/10.1186/1471-2105-6-179
https://doi.org/10.1186/1471-2105-6-179
https://doi.org/10.1007/978-1-0716-0239-3_13
https://doi.org/10.1007/978-1-0716-0239-3_13
https://doi.org/10.1039/9781788019880-00232
https://doi.org/10.1039/9781788019880-00232
https://doi.org/10.1016/j.livres.2017.05.001
https://doi.org/10.1194/jlr.R500013-JLR200
https://doi.org/10.1194/jlr.R500013-JLR200
https://doi.org/10.1002/jcla.10033
https://doi.org/10.3389/fmicb.2010.00148
https://doi.org/10.3177/jnsv.37.435
https://doi.org/10.1016/j.ab.2018.07.001
https://doi.org/10.1016/j.ab.2018.07.001
https://doi.org/10.1038/s41592-019-0616-3
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.1002/cem.2657
https://doi.org/10.1016/j.tim.2011.10.004
https://doi.org/10.1016/j.aca.2018.05.031
https://doi.org/10.1038/nbt.3597
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00710-22


75. Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C, Edison A, Fiehn O,
Higashi R, Nair KS, Sumner S, Subramaniam S. 2016. Metabolomics Work-
bench: an international repository for metabolomics data and metadata,
metabolite standards, protocols, tutorials and training, and analysis tools.
Nucleic Acids Res 44:D463–D470. https://doi.org/10.1093/nar/gkv1042.

76. Haug K, Salek RM, Conesa P, Hastings J, De Matos P, Rijnbeek M,
Mahendraker T, Williams M, Neumann S, Rocca-Serra P, Maguire E,
González-Beltrán A, Sansone SA, Griffin JL, Steinbeck C. 2013. Metabo-
Lights: an open-access general-purpose repository for metabolomics
studies and associated meta-data. Nucleic Acids Res 41:781–786.

77. Scalbert A, Brennan L, Manach C, Andres-Lacueva C, Dragsted LO,
Draper J, Rappaport SM, Van Der Hooft JJJ, Wishart DS. 2014. The food
metabolome: a window over dietary exposure. Am J Clin Nutr 99:
1286–1308. https://doi.org/10.3945/ajcn.113.076133.

78. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H,
Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van
Sinderen D, O’Connor M, Harnedy N, O’Connor K, Henry C, O’Mahony D,
Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O’Toole PW. 2011.
Composition, variability, and temporal stability of the intestinal micro-
biota of the elderly. Proc Natl Acad Sci U S A 108:4586–4591. https://doi
.org/10.1073/pnas.1000097107.

79. McCall LI, Tripathi A, Vargas F, Knight R, Dorrestein PC, Siqueira-Neto JL.
2018. Experimental Chagas disease-induced perturbations of the fecal
microbiome and metabolome. PLoS Negl Trop Dis 12:e0006344-15.
https://doi.org/10.1371/journal.pntd.0006344.

80. Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS,
Shockcor J, Loftus N, Holmes E, Nicholson JK. 2013. Global metabolic
profiling of animal and human tissues via UPLC-MS. Nat Protoc 8:17–32.
https://doi.org/10.1038/nprot.2012.135.

81. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann
S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N,
Shulman N, Frewen B, Baker TA, Brusniak M-Y, Paulse C, Creasy D,
Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B,
Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A,
Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz
RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P. 2012. A cross-plat-
form toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:
918–920. https://doi.org/10.1038/nbt.2377.

82. Nothias LF, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A,
Protsyuk I, Ernst M, Tsugawa H, Fleischauer M, Aicheler F, Aksenov A,
Alka O, Allard P-M, Barsch A, Cachet X, Caraballo M, Da Silva RR, Dang T,
Garg N, Gauglitz JM, Gurevich A, Isaac G, Jarmusch AK, Kameník Z, Kang
KB, Kessler N, Koester I, Korf A, Le Gouellec A, Ludwig M, Christian MH,
McCall LI, McSayles J, Meyer SW, Mohimani H, Morsy M, Moyne O,
Neumann S, Neuweger H, Nguyen NH, Nothias-Esposito M, Paolini J,
Phelan VV, Pluskal T, Quinn RA, Rogers S, Shrestha B, Tripathi A, van der
Hooft JJJ, et al. 2019. Feature-based molecular networking in the GNPS
analysis environment. bioRxiv. https://doi.org/10.1101/812404.

83. Pluskal T, Castillo S, Villar-Briones A, Oreši�c M. 2010. MZmine 2: modular
framework for processing, visualizing, and analyzing mass spectrometry-
based molecular profile data. BMC Bioinformatics 11:395. https://doi
.org/10.1186/1471-2105-11-395.

84. Bunn A, Korpela M. 2018. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. https://
www.R-project.org/.

85. Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J,
Kelley K, Hamrick J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C.
2016. Jupyter Notebooks: a publishing format for reproducible computa-
tional workflows, p 87–90. In Loizides F, Schmidt B (ed) Positioning and
power in academic publishing: players, agents and agendas. IOS Press, Am-
sterdam, The Netherlands. https://doi.org/10.3233/978-1-61499-649-1-87.

86. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,
Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for
integrated models. Genome Res 13:2498–2504. https://doi.org/10.1101/
gr.1239303.

87. Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G,
Fahy E, Steinbeck C, Subramanian S, Bolton E, Greiner R, Wishart DS.
2016. ClassyFire: automated chemical classification with a comprehen-
sive, computable taxonomy. J Cheminform 8:61. https://doi.org/10
.1186/s13321-016-0174-y.

88. Ernst M, Kang K, Bin AM, Caraballo-Rodríguez L-F, Nothias J, Wandy C,
Chen M, Wang S, Rogers MH, Medema PC, Dorrestein JJ, van der Hooft J.
2019. MolNetEnhancer: enhanced molecular networks by integrating

metabolome mining and annotation tools. Metabolites 9:144. https://doi
.org/10.3390/metabo9070144.

89. Schubert M, Lindgreen S, Orlando L. 2016. AdapterRemoval v2: rapid
adapter trimming, identification, and read merging. BMC Res Notes 9:88.
https://doi.org/10.1186/s13104-016-1900-2.

90. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD,
Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley
ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD,
Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J,
Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-
throughput community sequencing data. Nat Methods 7:335–336.
https://doi.org/10.1038/nmeth.f.303.

91. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW. 2007. EzTaxon: a
web-based tool for the identification of prokaryotes based on 16S ribo-
somal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261.
https://doi.org/10.1099/ijs.0.64915-0.

92. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber
T, Dalevi D, Hu P, Andersen GL. 2006. Greengenes, a chimera-checked
16S rRNA gene database and workbench compatible with ARB. Appl En-
viron Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05.

93. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA,
Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger
K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez
AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM,
Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J,
Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J,
Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S,
Jarmusch AK, Jiang L, Kaehler BD, Kang K, Bin Keefe CR, Keim P, Kelley
ST, Knights D, et al. 2019. Reproducible, interactive, scalable and extensi-
ble microbiome data science using QIIME 2. Nat Biotechnol 37:852–857.
https://doi.org/10.1038/s41587-019-0209-9.

94. Weiner J. 2020. pca3d: three dimensional PCA plots. CRAN. https://cran.r
-project.org/web/packages/pca3d/index.html.

95. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. 2013. EMPeror: a tool
for visualizing high-throughput microbial community data. Gigascience
2:16. https://doi.org/10.1186/2047-217X-2-16.

96. Wickham H. 2016. Ggplot2: elegant graphics for data analysis. Springer,
New York, NY.

97. South A. 2011. rworldmap: a new R package for mapping global data. R J
3:35–43. https://doi.org/10.32614/RJ-2011-006.

98. Ben-Shachar M, Makowski D, Lüdecke D. 2020. Compute and interpret
indices of effect size. CRAN. https://cran.r-project.org/web/packages/
effectsize/index.html.

99. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. 2014. UpSet: visual-
ization of intersecting sets. IEEE Trans Vis Comput Graph 20:1983–1992.
https://doi.org/10.1109/TVCG.2014.2346248.

100. van Rossum G, Drake FL. 2009. Python 3 reference manual. https://docs
.python.org/3/reference/.

101. McKinney W. 2011. pandas: a foundational Python library for data analy-
sis and statistics. Python High Perform Sci Comput 14:1–9.

102. Nothman J. 2018. UpSetPlot documentation. https://upsetplot.readthedocs
.io/en/stable/.

103. Hunter JD. 2007. Matplotlib: a 2D graphics environment. Comput Sci
Eng 9:90–95. https://doi.org/10.1109/MCSE.2007.55.

104. Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M,
Dorrestein PC, Rousu J, Böcker S. 2019. SIRIUS 4: a rapid tool for turning
tandem mass spectra into metabolite structure information. Nat Meth-
ods 16:299–302. https://doi.org/10.1038/s41592-019-0344-8.

105. Dührkop K, Nothias L-F, Fleischauer M, Ludwig M, Hoffmann MA, Rousu
J, Dorrestein PC, Böcker S. 2020. Classes for the masses: systematic classi-
fication of unknowns using fragmentation spectra. bioRxiv. https://doi
.org/10.1101/2020.04.17.046672.

106. Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M,
Bousilmani A, Petras D, Gauglitz JM, Sikora N, Vargas F, van der Hooft JJJ,
Ernst M, Bin Kang K, Aceves CM, Mauricio C-RA, Koester I, Weldon KC,
Bertrand S, Roullier C, Sun K, Tehan RM, Boya CA, Martin HC, Gutierrez
M, Ulloa AM, Mora JAT, Mojica-Flores R, Lakey-Beitia J, Vasquez-Chaves
V, Zhang Y, Calderon AI, Tayler N, Keyzers RA, Tugizimana F, Ndlovu N,
Aksenov AA, Jarmusch A, Schmid R, Truman AW, Bandeira N, Wang M,
Dorrestein PC. 2019. Reproducible molecular networking of untargeted
mass spectrometry data using GNPS. ChemRxiv https://doi.org/10
.26434/chemrxiv.9333212.v1.

The Shared Human Fecal Metabolome mSystems

November/December 2022 Volume 7 Issue 6 10.1128/msystems.00710-22 19

https://doi.org/10.1093/nar/gkv1042
https://doi.org/10.3945/ajcn.113.076133
https://doi.org/10.1073/pnas.1000097107
https://doi.org/10.1073/pnas.1000097107
https://doi.org/10.1371/journal.pntd.0006344
https://doi.org/10.1038/nprot.2012.135
https://doi.org/10.1038/nbt.2377
https://doi.org/10.1101/812404
https://doi.org/10.1186/1471-2105-11-395
https://doi.org/10.1186/1471-2105-11-395
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1186/s13321-016-0174-y
https://doi.org/10.1186/s13321-016-0174-y
https://doi.org/10.3390/metabo9070144
https://doi.org/10.3390/metabo9070144
https://doi.org/10.1186/s13104-016-1900-2
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1099/ijs.0.64915-0
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1038/s41587-019-0209-9
https://cran.r-project.org/web/packages/pca3d/index.html
https://cran.r-project.org/web/packages/pca3d/index.html
https://doi.org/10.1186/2047-217X-2-16
https://doi.org/10.32614/RJ-2011-006
https://cran.r-project.org/web/packages/effectsize/index.html
https://cran.r-project.org/web/packages/effectsize/index.html
https://doi.org/10.1109/TVCG.2014.2346248
https://docs.python.org/3/reference/
https://docs.python.org/3/reference/
https://upsetplot.readthedocs.io/en/stable/
https://upsetplot.readthedocs.io/en/stable/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41592-019-0344-8
https://doi.org/10.1101/2020.04.17.046672
https://doi.org/10.1101/2020.04.17.046672
https://doi.org/10.26434/chemrxiv.9333212.v1
https://doi.org/10.26434/chemrxiv.9333212.v1
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00710-22

	RESULTS AND DISCUSSION
	MATERIALS AND METHODS
	Project design.
	Populations.
	Sample collection.
	Ethics approval and informed consent.
	LC-MS/MS fecal sample preparation.
	LC-MS/MS analysis.
	Data analysis and processing.
	Mmvec and statistical analyses.
	Data availability.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

