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ABSTRACT Gut microbes can modulate almost all aspects of host physiology through-
out life. As a result, specific microbial interventions are attracting considerable attention
as potential therapeutic strategies for treating a variety of conditions. Nonetheless, lit-
tle is known about the mechanisms through which many of these microbes work.
Recently, we and others have found that the commensal bacterium Limosilactobacillus
reuteri (formerly Lactobacillus reuteri) reverses social deficits in several mouse models
(genetic, environmental, and idiopathic) for neurodevelopmental disorders in a vagus
nerve-, oxytocin-, and biopterin-dependent manner. Given that gut microbes can sig-
nal to the brain through the immune system and L. reuteri promotes wound healing
via the adaptive immune response, we sought to determine whether the prosocial
effect mediated by L. reuteri also depends on adaptive immunity. Here, we found that
the effects of L. reuteri on social behavior and related changes in synaptic function are
independent of the mature adaptive immune system. Interestingly, these findings indi-
cate that the same microbe (L. reuteri) can affect different host phenotypes through
distinct mechanisms.

IMPORTANCE Because preclinical animal studies support the idea that gut microbes
could represent novel therapeutics for brain disorders, it is essential to fully understand
the mechanisms by which gut microbes affect their host’s physiology. Previously, we dis-
covered that treatment with Limosilactobacillus reuteri selectively improves social behavior
in different mouse models for autism spectrum disorder through the vagus nerve, oxyto-
cin reward signaling in the brain, and biopterin metabolites (BH4) in the gut. However,
given that (i) the immune system remains a key pathway for host-microbe interactions
and that (ii) L. reuteri has been shown to facilitate wound healing through the adaptive
immune system, we examined here whether the prosocial effects of L. reuteri require
immune signaling. Unexpectedly, we found that the mature adaptive immune system
(i.e., conventional B and T cells) is not required for L. reuteri to reverse social deficits and
related changes in synaptic function. Overall, these findings add new insight into the
mechanism through which L. reuteri modulates brain function and behavior. More impor-
tantly, they highlight that a given bacterial species can modulate different phenotypes
(e.g., wound healing versus social behavior) through separate mechanisms.

KEYWORDS Limosilactobacillus reuteri, oxytocin, social behavior, adaptive immune
system, gut-microbiota-brain axis, Lactobacillus reuteri

Gut microbes are fundamental to nearly every aspect of host physiology and fitness
(1, 2), including brain function and behavior. Indeed, a large body of preclinical lit-

erature has uncovered a bidirectional communication system linking the gut and the
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brain, known as the gut-microbiota-brain axis (3–5). Briefly, foundational studies have
demonstrated that germ-free mice and mice treated with broad-spectrum antibiotics
exhibit behavioral abnormalities, including endophenotypes associated with neurolog-
ical disorders, such as autism spectrum disorder (ASD) (6–11). In addition, using experi-
mental mouse models, we and others have shown that gut microbes can modulate
endophenotypes for complex neurological disorders in a very powerful way (3, 5, 12–14).
In particular, social behavior has emerged as an endophenotype that is strongly regulated
by the gut-microbiota-brain axis across species (9, 13, 15–18).

Humans with specific neurological disorders, such as ASD, often possess a different
gut microbiota composition (19–23) and are often afflicted with gastrointestinal (GI)
symptoms. Furthermore, recent studies have shown that microbiota transfer therapy
and dietary modulation of the gut microbiota alleviates both GI and behavioral symp-
toms in children with certain neurological dysfunction, including ASD (24–26). Thus,
the gut microbiome is emerging as an important modulator of both brain develop-
ment/function and complex behaviors, including social behavior.

Originally, we found that treatment with the bacterial species Limosilactobacillus reu-
teri (formerly Lactobacillus reuteri [27]) selectively improves social behavior, but not other
behavioral abnormalities, in a maternal obesity model (i.e., maternal high-fat diet off-
spring) (13) for ASD. In subsequent studies, we found that L. reuteri promoted social
behavior in genetic (Shank3B2/2 and Cntnap22/2), environmental (valproic acid and
germ-free), and idiopathic (BTBR) mouse models of social deficits (14, 28). Importantly,
and consistent with our results, two independent studies show that L. reuteri reversed
the social deficits in Shank3B2/2 mice (29) and BTBR mice (30). Thus, the finding that L.
reuteri promotes social behavior is strongly supported by numerous, convergent discov-
eries in several animal models and across different levels of analysis and laboratories.

However, to fully understand how the gut microbiota modulate brain function and
behavior, it is necessary to dissect the underlying molecular, cellular, and systems
mechanisms. There are several possible ways by which gut microbes can influence the
brain. These include (i) vagus nerve signaling (31), (ii) circulation of microbial metabo-
lites through the blood (32, 33), and (iii) modulation of the immune system (34, 35).
Our initial mechanistic studies revealed that L. reuteri acts in a vagus nerve-dependent
manner and rescues social interaction and social interaction-induced synaptic plasticity
in the ventral tegmental area (VTA) of ASD mice, but not in oxytocin receptor-deficient
mice (14). More recently, we found that L. reuteri acts by promoting biopterin metabo-
lite (BH4) levels in the host’s gut (28).

A previous study showed that L. reuteri facilitates wound healing through the stimu-
lating a subpopulation of T cells as a part of the adaptive immune response (36), a pro-
cess also involving signaling through the vagus nerve and oxytocin (36). While there
appears to be much overlap in the mechanisms through which L. reuteri improves
social behavior and wound healing (i.e., vagus nerve and oxytocin signaling), it is cur-
rently unknown whether the adaptive immune system plays a role in the effects of
L. reuteri on social behavior. Therefore, we sought to test the hypothesis that the
adaptive immune system, namely, conventional adaptive B and T lymphocytes, also
mediates the L. reuteri prosocial effect.

Using genetic, behavioral, molecular, and electrophysiological approaches in this
study, we found that L. reuteri reverses the social deficits in a genetic mouse model for
ASD lacking mature conventional B and T cells. Accordingly, L. reuteri reverses deficits
in oxytocin and synaptic potentiation associated with social reward. Thus, the adaptive
immune system is not a major contributor to the L. reuteri-mediated rescue of social
behavior. Consequently, the mechanisms through which a given bacterial species
modulates different aspects of host physiology are not fully shared.

RESULTS
Shank3B–/– mice exhibit no deficits in adaptive immune system maturation and

L. reuteri treatment does not affect mature lymphocyte levels. The gut microbiota
play an important role in the host’s immune signaling (37). For example, gut microbes can
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modulate immune responses by triggering both proinflammatory (38) and anti-inflamma-
tory responses (39, 40). Interestingly, aberrant immune responses may contribute to some
aspects of ASD symptomatology (41), which often features with gastrointestinal comorbid-
ities and alterations in the gut microbiome (42–44).

Specifically, L. reuteri has been shown to modulate the adaptive immune system
(45–48) and facilitate wound healing (36). However, whether the effect of L. reuteri on
social behavior also requires the adaptive immune response remains unknown. To an-
swer this question, we used Shank3B2/2 mouse model for neurodevelopmental disor-
ders because (i) they exhibit social deficits that are reproduced across laboratories (14,
29, 49); (ii) they have a deficient oxytocinergic system (14), which is known to modulate
social behaviors and is implicated in ASD (50, 51); and (iii) we and others have previ-
ously shown that L. reuteri reverses their social deficits (14, 29).

We first examined whether the maturation of the adaptive immune system is altered in
Shank3B2/2 mice compared to control littermates. To this end, we measured the number
of T (CD31 CD41 and CD31 CD4–) and B (IgM1 and CD43RA1) lymphocytes in control
mice, Shank3B2/2 mice treated with vehicle, and Shank3B2/2 mice treated with L. reuteri
using flow cytometry (Fig. 1A to C). We found that there was no significant difference in
the percentages of mature T and B lymphocytes between WT control and Shank3B2/2

mice (Fig. 1D and E). Moreover, L. reuteri treatment did not alter the percentages of mature
T and B cells in Shank3B2/2 mice (Fig. 1D and E). Hence, Shank3B2/2 mice do not exhibit
deficits in adaptive immune system maturity, and L. reuteri treatment does not affect the
overall number of the mature adaptive immune system cells in Shank3B2/2 mice.

L. reuteri treatment corrects social deficits in Shank3B–/– mice lacking a mature
adaptive immune system. The deletion of Rag2 disrupts the formation of the Rag
complex and halts B cell and T cell development at the pro-B and the pro-T cell stages
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FIG 1 Shank3B2/2 mice do not show changes in the percentages of mature T and B lymphocytes compared to their controls, and
L. reuteri does not influence the number of adaptive immune cells. (A to D) Flow cytometry analysis of CD3, CD4, IgM, and
CD43RA expression in the spleen cells of WT littermate 1 vehicle, Shank3B2/2 1 vehicle, and Shank3B2/2 1 L. reuteri (n = 4 to 5
mice per group). (A) Distribution of CD3, CD4, IgM, and CD43RA signal in WT littermate 1 vehicle. (B) Distribution of CD3, CD4,
IgM, and CD43RA signal in Shank3B2/2 1 vehicle. (C) Distribution of CD3, CD4, IgM, and CD43RA signal in Shank3B2/2 1 L.
reuteri. (D) Percentage of all CD31 cells. (WT littermate versus Shank3B2/2: q = 2.646, P = 0.1929; Shank3B2/2 versus Shank3B2/2 1
L. reuteri: q = 1.576, P = 0.5252; WT littermate versus Shank3B2/2 1 L. reuteri: q = 0.9181, P = 0.7966 [one-way ANOVA with Tukey
post hoc test, P = 0.2131]). (E) Percentage of IgM1 and CD43RA1 cells. (WT littermate versus Shank3B2/2: q = 1.544, P = 0.5382;
Shank3B2/2 versus Shank3B2/2 1 L. reuteri: q = 0.2462, P = 0.9835; WT littermate versus Shank3B2/2 1 L. reuteri: q = 1.210,
P = 0.6779 [one-way ANOVA with Tukey post hoc test, P = 0.5310]). ns, nonsignificant. Bar graphs show means 6 the SEM with
individual data points.

L. reuteri Prosocial Effects Not via Adaptive Immunity mSystems

November/December 2022 Volume 7 Issue 6 10.1128/msystems.00358-22 3

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00358-22


prior to V(D)J recombination of B cell and T cell receptors, thus preventing them from
reaching full maturation (52). Consequently, Rag22/2 mice are a widely used animal
model to study deficiencies in adaptive immunity (53–56). We first sought to deter-
mine whether genetic ablation of the mature adaptive immune system via the deletion
of Rag2 would alter social behavior. To test social behavior, we performed a three-
chamber test for sociability. In this behavioral task (Fig S1A, Fig. 2A), mice can choose
either a nonsocial interaction, with an empty cup (Empty), or a social interaction, with
an unfamiliar mouse (Mouse). As expected, control (wild-type [WT]) mice display nor-
mal social interaction as they spend more time interacting with the mouse instead of
the empty cup (Fig S1B). Rag22/2 mice also interacted more with the mouse than the
cup, indicating that the loss of the Rag2-recombined adaptive immune system does
not lead to impaired social behavior.

To test whether L. reuteri rescues social behavior in the Shank3B2/2 mice through
modulation of mature B and T cells, we crossed Shank3B2/2 mice to Rag22/2 mice to
generate Shank3B2/2 mice lacking mature B and T lymphocytes, here defined as
“Shank3B2/2-Rag22/2” mice. As expected, Shank3B2/2-Rag22/2 mice lack CD31, CD41,
IgM1, and CD43RA1 cells in the spleen, indicating the absence of a mature B and T
cells in the mutant mice (see Fig. S2A to D).

Shank3B2/2 mice treated with vehicle display social deficits (Fig. 2C), consistent with
previous studies (14, 29, 49). Similarly, vehicle-treated Shank3B2/2-Rag22/2 mice also
exhibited social deficits (Fig. 2C). If the prosocial effect of L. reuteri depends on the adaptive
immune system, then L. reuteri would fail to rescue the social deficits in Shank3B2/2-Rag22/2

mice. Interestingly, however, we found that L. reuteri was able to reverse the social deficits in
Shank3B2/2 mice with a deficient adaptive immune system (Shank3B2/2-Rag22/2 mice)
(Fig. 2C). These data demonstrate that L. reuteri rescues social behavior independently of the
adaptive immune system.

FIG 2 L. reuteri corrects social deficits in Shank3B2/2-Rag22/2 mice. (A) Schematic of the three-chamber
social behavior test. (B) Schematic of the experimental design. (C) Social interaction in vehicle- and
L. reuteri-treated WT, Shank3B2/2, and Shank3B2/2-Rag22/2 mice in the three-chamber test (n = 8 to 9
per group; WT littermate: t = 2.929, P = 0.0194; Shank3B2/2: t = 0.9491, P . 0.9999; Shank3B2/2 1 L. reuteri:
t = 4.738, P , 0.0001; Shank3B2/2-Rag22/2 1 vehicle: t = 0.4571, P . 0.9999; Shank3B2/2-Rag22/2 1 L.
reuteri: t = 6.247, P , 0.0001 [two-way ANOVA with Bonferroni correction, F(4,68) = 10.34; P , 0.0001]). *,
P , 0.05; ****, P , 0.0001; ns, nonsignificant. Bar graphs show means 6 the SEM with individual data points.
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L. reuteri treatment increases oxytocin levels in the paraventricular nucleus of
Shank3B–/– mice lacking a mature adaptive immune system. Oxytocin (Oxt) is an
evolutionarily conserved neuropeptide critically implicated in social behavior (57).
Accordingly, several animal models with abnormal social behavior, including Shank3B-
deficient animals, feature decreased Oxt levels and Oxt treatment rescues select defi-
cits in behavior and brain development in these mice (13, 14, 28, 58–62). In addition,
Oxt has been shown to be intricately linked to immune system signaling (63, 64).
Interestingly, the effects of L. reuteri on both social behavior and wound healing have
been shown to be dependent on Oxt signaling (13, 28, 36). Indeed, L. reuteri increases
Oxt levels in plasma and in the brain of several mouse models of ASD, including
Shank3B2/2 mice (13, 14, 28, 36).

Given that L. reuteri reversed the social deficits in Shank3B2/2 mice with an impaired
adaptive immune system, we next examined whether disruptions of the adaptive
immune system affect L. reuteri’s ability to boost the host’s oxytocin system. To this
end, we performed immunohistochemistry in paraventricular nucleus (PVN) of the
hypothalamus, where Oxt is primarily produced. Consistent with the behavioral data,
we found that treatment with L. reuteri was able to increase oxytocin levels in
Shank3B2/2-Rag22/2 mice, as determined by an increased number and fluorescence in-
tensity of Oxt-positive neurons in the mutant mice treated with L. reuteri (Fig. 3). Thus,
the adaptive immune system does not affect the L. reuteri-mediated increase in Oxt.

L. reuteri treatment corrects social interaction-induced synaptic potentiation in
the dopaminergic neurons of the ventral tegmental area of Shank3B–/– mice lack-
ing a mature adaptive immune system. Brain regions that process naturally reward-
ing stimuli are crucially required for social behaviors (65, 66). During social interaction,
oxytocin is released from neurons in the PVN and signal to oxytocin receptors on dopa-
minergic (DA) neurons in the ventral tegmental area (VTA), leading to the release of
dopamine and facilitation of a rewarding sensation (67). We and others found that
social interaction leads to an increase in synaptic potentiation in VTA DA neurons of

FIG 3 L. reuteri increases oxytocin levels in the PVN of the hypothalamus in Shank3B2/2 Rag22/2

mice. (A) Oxytocin immunoreactivity in the PVN of Shank3B2/2-Rag22/2 mice treated with either
vehicle or L. reuteri. (B) Oxytocin-positive cell (n = 4 mice per group; Shank3B2/2-Rag22/2 1 vehicle
versus Shank3B2/2-Rag22/2 1 L. reuteri [unpaired t test, t = 2.519, P = 0.0453]). (C) Oxytocin
immunofluorescence intensity (n = 4 mice per group; Shank3B2/2-Rag22/2 1 vehicle versus
Shank3B2/2-Rag22/2 1 L. reuteri [unpaired t test, t = 3.124, P = 0.0205]). *, P , 0.05. Bar graphs show
means 6 the SEM with individual data points.
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both birds and mice (13, 68, 69). Moreover, this evolutionarily conserved process, a
likely cellular model of social reward, is impaired in several mouse models for ASD (13,
14, 28). In humans with ASD, magnetic resonance imaging studies have shown defi-
ciencies in the activity of reward regions after social behavior, further supporting the
notion that reward centers of the brain are a major regulator of social behavior (70–72).
More importantly, we have previously shown that L. reuteri reverses the deficits in synap-
tic potentiation underlying social reward in several mouse models for ASD (13, 14, 28) in
an oxytocin-dependent manner (14). Moreover, we found that the L. reuteri-induced
metabolite, BH4, also corrected changes in social interaction-induced synaptic potentia-
tion (28). However, the role of the adaptive immune system has yet to be explored in
this reward-related process.

To determine whether the adaptive immune system was involved in social reward
processes, we performed whole-cell patch-clamp recordings and measured the ratio of
currents generated by AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)
and NMDA (N-methyl-D-aspartate) receptors (AMPAR/NMDAR ratio) in dopaminergic
neurons (Fig. 4A). As expected and consistent with previous results (13, 14, 28), social
interaction triggered a significant increase in the AMPAR/NMDAR ratio in WT control mice
(Fig. 4B), but it failed to do so in vehicle-treated Shank3B2/2-Rag22/2 mice. The lack of a sig-
nificant increase in the AMPAR/NMDAR ratio after social interaction indicates impairments
in synaptic transmission associated with social reward. Interestingly, L. reuteri treatment
reverses the deficits in synaptic plasticity in VTA DA neurons from Shank3B2/2-Rag22/2

mice (Fig. 4B).
Taken together these results provide strong evidence that even in the absence of a

mature adaptive immune response, L. reuteri can reverse the deficits in (i) oxytocin pro-
duction in the brain, (ii) social behavior, and (iii) social interaction-induced synaptic
transmission. Thus, the prosocial effects mediated by L. reuteri are independent of the
adaptive immune system.
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DISCUSSION

Gut microbiota are emerging as a potent modulator brain function and behavior.
However, one of the biggest challenges in gut-microbiota-brain axis research remains
the identification of the mechanism(s) by which a given bacterial strain regulates a
selective behavior or disease state. To understand the precise mechanism(s) through
which gut microbes exert their function(s) in the brain can not only help the design of
new clinical trials but could also lead to the development of microbe-based, more per-
sonalized treatments while minimizing off-target effects.

Our previous work shows that L. reuteri improves social behavior in mouse models
for ASD through a mechanism involving biopterin (BH4) signaling in the gut, the vagus
nerve, and the oxytocinergic-dopaminergic reward circuitry in the brain (13, 14, 28).
Here, using genetic, molecular, behavioral, and electrophysiological approaches, we
found that L. reuteri does not require the mature adaptive immune system to improve
social behavior in a mouse model for ASD. Accordingly, L. reuteri was able to increase
oxytocin levels in the brain and promote synaptic plasticity associated with social
reward in the absence of a mature adaptive immune system. These data are unex-
pected since (i) gut microbes are required for proper development and maturation of
the immune system (73); (ii) a majority of immune cells are found in the gut, highlight-
ing the importance of microbe-immune cell interactions (74); and (iii) specifically,
L. reuteri facilitates wound healing via the vagus nerve, oxytocin, and the adaptive
immune system (36).

While our work shows that the Rag2-mediated mature adaptive immune system is
not involved in the L. reuteri-mediated rescue of social deficits, it remains unknown
whether other components of the immune system, such as the innate immune
response, could be involved. Indeed, gut microbes and microbial products are known
to interact with other immune cells types such as macrophages (75, 76), dendritic cells
(77, 78), and innate-like T cells such as mucosal associated invariant T cells (79, 80).
These cells could act upstream of oxytocin, vagus nerve, or BH4 signaling and play a
role in the rescue of social behavior. However, this has proven challenging to study
thus far given limitations in the genetic tools available to specifically ablate these cells
in vivo.

It is also possible that L. reuteri improves social behavior independently of immune
cells. For example, L. reuteri, or a metabolite produced by L. reuteri, could interact with
epithelial cells in the gastrointestinal tract to either induce production of BH4 or prevent
its degradation. Indeed, gut microbes and their metabolites interact with intestinal epi-
thelial cells (81), which express the enzymes required for BH4 synthesis (82). In addition,
specific subtypes of epithelial cells, such as enteroendocrine cells, have been shown to
stimulate the vagus nerve (83). Interestingly, BH4 has been shown to stimulate the vagus
nerve independent of its role as a cofactor for neurotransmitter synthesis (84). Moreover,
BH4 has been shown to increase oxytocin release in neurons (85, 86).

In addition, metabolites produced by L. reuteri could directly interact with either en-
teric nerves or vagal afferent nerves which innervate the intestines (87). For instance,
L. reuteri has been shown to produceg-aminobutyrate (GABA) which is one of the nerv-
ous system’s main signaling molecules (88). Future work will aim to understand
whether potential interactions between the L. reuteri and/or its metabolites and the
innate immune system, intestinal epithelial cells, and/or peripheral nerves affect vari-
ous phenotypes such as social behavior.

In conclusion, our data presented in this study indicate that L. reuteri improves
social behavior independently of the mature adaptive immune system and that the
bacteria modulate disparate host phenotypes (wound healing and social behaviors)
and organs (skin and brain) through different mechanisms.

MATERIALS ANDMETHODS
Animals. C57BL/6J (stock no. 000664), Shank3B1/– (stock no. 017688) (49), and Rag22/2 (stock no.

008449) (52) mice were obtained from Jackson Laboratories (Bar Harbor, ME). Shank3B2/2 mice were
generated from Shank3B1/– � Shank3B1/– breeding, and littermates were cohoused according to sex.
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Shank3B2/2-Rag22/2 mice were generated by crossing Shank3B2/2 mice to Rag22/2 mice to yield
Shank3B1/–-Rag21/– mice, which were then crossed together to yield double-knockout mice and WT con-
trols. Littermates were cohoused by sex. All mice were kept on a 12-h light/dark cycle and had access to
food and water ad libitum. Only male mice were included in the study, since we previously found that
female Shank3B2/2 mice display normal social behavior (data not shown). All mice used in these experi-
ments were 7 to 12 weeks of age. Animal care and experimental procedures were approved by Baylor
College of Medicine’s Institutional Animal Care and Use Committee in accordance with all guidelines set
forth by the U.S. National Institutes of Health.

Culture and treatment with L. reuteri. Limosilactobacillus reuteri 6475 was cultured anaerobically in
MRS broth at 37°C in a 90% N2/5% CO2/5% H2 environment as previously described (13, 28). Cultures
were centrifuged, washed, resuspended in phosphate-buffered saline (PBS), and frozen at 280°C until
use. PBS (vehicle) or L. reuteri (;1 � 108 CFU/mouse/day) was added to the drinking water daily. Mice
consumed the treated water ad libitum for the duration of the treatment period. Behavioral assays, tissue
collection, and electrophysiological recordings were initiated 4 weeks after treatment began.

Three-chamber test for social behavior. The three-chamber test for social behavior was assayed
on 7- to 10-week-old male mice, as previously described (13, 89). Briefly, mice were first habituated for
10 min an empty 60 � 40 � 23-cm Plexiglass arena divided into three interconnected chambers.
Sociability was evaluated during a second 10-min period. The subject could interact either with an
empty wire cup (Empty) or a wire cup containing a genotype, age, sex, and treatment-matched stranger
conspecific (Mouse). The interaction time was determined by measuring the time the subject mouse
spent sniffing or climbing upon either the empty cup or the cup containing the stranger mouse. The
empty cup/stranger mouse’s position in the left or right chamber during the sociability period was coun-
terbalanced between trials to avoid bias. The time spent interacting with the empty cup or the mouse
was recorded and measured using the automated AnyMaze software by trained, independent observers.
The human observer was blind to treatment and genotype during the experiment. Preference for social
novelty, which is often measured during the three-chamber test, was not performed since we previously
found that Shank3B2/2 mice show a normal preference for social novelty (14).

Flow cytometry. Single cell suspensions were prepared using a GentleMACs dissociator (Miltenyi).
Spleens were placed whole into C tubes (Miltenyi) containing 3 mL of digestion buffer and RPMI 1640
(Gibco) containing 100 mg/mL DNase I (Sigma) and 500 mg/mL collagenase IV (Sigma). Organs were
ground on the dissociator, incubated 15 min at 25°C, ground again, incubated an additional 15 min, and
ground one final time. The homogenates were chilled on ice and enzymes deactivated using 10 mM
EDTA. The suspensions were filtered through a 40-mm cell strainer for staining, followed by red blood
cell (RBC) lysis using eBioscience RBC lysis solution (Thermo Fisher) for 5 min on ice. The homogenates
(1/16 of each spleen) were then Fc-blocked using 4 mg/mL anti-CD16/CD32 antibodies (BD Bioscience
Biosciences) on ice for 15 min. Antibody staining was performed for 30 min at 4°C. The following fluores-
cent anti-mouse antibodies were used: CD3 (BV421, dilution 1/100), CD41FITC (dilution 1/800), IgM
(APC, dilution 1/50), and CD45RA (PE, dilution 1/200). DAPI (49,69-diamidino-2-phenylindole; 50 mL/3 mL)
staining was used to discriminate between living and dead cells.

The flow cytometric data were then analyzed using FlowJo software (BD Bioscience), including the
FlowAI plugin. First, FlowAI (2.0) was run to exclude signal acquisition and dynamic range anomalies
using the default settings. Second, debris were excluded based on forward scatter (FSC) and side scatter
(SSC). Third and fourth, singlets were isolated using FSC-A versus FSC-H, followed by SSC-W versus SSC-
H. Fifth, dead cells were exclude based on the DAPI signal. The various immune cell populations were
then isolated by using the various immune markers. In particular, the number of mature T lymphocytes
was assessed by measuring CD31 CD41 cells and CD31 CD4– cells, and the number of mature B lympho-
cytes was analyzed based on IgM and CD43RA1 expression.

Immunofluorescence. Immunofluorescence was performed as we previously described (13). Briefly,
mice were deeply anesthetized by inhalation of isoflurane and perfused through the ascending aorta
with 10 mL of 0.9% PBS, followed by 30 mL of 4% paraformaldehyde in 0.1 M phosphate buffer (PB).
Brains were removed, immersed in the same fixative overnight at 4°C, and subsequently cryoprotected
in 30% sucrose (in 0.1 M PB) over 3 days. Coronal sections were cut at 30 mm with a cryostat (Leica
Biosystem) and then collected in ice-cold PBS. Slices were rinsed in 0.1 M PB, blocked with 5% normal
goat serum plus 0.3% Triton X-100 0.1 M PB (PBTgs) for 1 h of rocking at room temperature, and then
incubated for 24 h at 4°C in a mixture of primary antibodies diluted in PBTgs. Sections were then washed
(three times with 0.3% Triton X-100 0.1 M PB), incubated in a mixture of secondary antibodies coupled
to a fluorochrome, and diluted in PBTgs for 1.5 to 2 h in the dark at room temperature. Sections were
rewashed (three times with PBTgs, 0.1 M PB, and 0.05 M PB, respectively, for 5 min each). Slices were
mounted onto 2% gelatin-coated slides (Sigma-Aldrich), air-dried, and cover-slipped with a mounting
medium (Fluorescence Vectashield H-1200 with DAPI [Vector Labs]). The primary antibodies used were
rabbit anti-oxytocin (ImmunoStar, 1:2,000 dilution), while the secondary antibodies were goat anti-rabbit
Alexa Fluor 488 (Thermo Fisher Scientific).

Fluorescent imaging and data acquisition were performed on a Zeiss AxioImager Z2 microscope
(Carl Zeiss MicroImaging) mounted with an AxioCam digital camera (Carl Zeiss MicroImaging). Images
were captured using AxioVision acquisition software (Carl Zeiss MicroImaging). All images within the
same set of experiments were acquired at identical exposure times for every channel used to compare
fluorescence intensity. Hypothalamic oxytocin-expressing neurons and NeuN-expressing cell numbers
were assessed in the well-defined PVN region using the automatic cell counter plugin in ImageJ, as pre-
viously described (14), using the following operational sequence: open image file, 16-bit conversion,
subtract background, adjust threshold, watershed, and analyze particles. Automatic identification of cell
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boundaries was validated against the source image. Fluorescence intensity was measured in ImageJ by
selecting regions of interest (i.e., oxytocin-positive hypothalamic cell bodies, 30 cells per mouse) using
the following operational sequence: open image file, 16-bit conversion, set measurement, ROI manager,
and measure. Contrast and brightness were linearly adjusted using Photoshop (Adobe) or ImageJ (NIH)
uniformly across all images within the data set.

Electrophysiology. Recordings were performed as previously described (13, 90), with minor modifi-
cations. Briefly, animals were anesthetized with isoflurane and then decapitated. The brain was rapidly
removed from the skull and fixed on a vibroslicer stage (VT 1000S; Leica Microsystems, Buffalo Grove, IL)
with cyano-acrylic glue. Acute 220- to 300-mm-thick coronal slices were cut in ice-cold (2 to 3°C) cutting
solution containing the following: 87 mM NaCl, 25 mM NaHCO3, 25 mM glucose, 75 mM sucrose, 2.5 mM
KCl, 1.25 mM NaH2PO4, 0.5 mM CaCl2, and 7 mM MgCl2 (equilibrated with a 95% O2/5% CO2) gas mixture
(pH 7.3 to 7.5). Slices were incubated for 20 min at 32°C and then stored at room temperature in a hold-
ing bath containing oxygenated standard artificial cerebrospinal fluid (ACSF) containing 125 mM NaCl,
25 mM NaHCO3, 25 mM glucose, 2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, and 1 mM MgCl2 (equili-
brated with 95% O2/5% CO2) for at least 40 min before being transferred to a recording chamber
mounted on the stage of an upright microscope (Examiner D1; Carl Zeiss, Oberkochen, Germany). The
slices were perfused with oxygenated ACSF (2 mL/min) containing the GABAA receptor antagonist picro-
toxin (100 mM; Sigma-Aldrich, USA) and maintained at 32°C with a Peltier feedback device (TC-324B;
Warner Instrument). Whole-cell recordings were performed using conventional patch-clamp techniques.
Patch pipettes were pulled from borosilicate glass capillaries (World Precision Instruments, Inc., FL) and
filled with the following intracellular solution: 117 mM CsMeSO3, 0.4 mM EGTA, 20 mM HEPES, 2.8 mM
NaCl, 2.5 mM Mg-ATP, and 0.25 mM Na-GTP. Then, 5 mM Tetraethylammonium Chloride (TEA Cl) was
added, the pH was adjusted to 7.3, and the osmolarity was adjusted to 290 mOsm using a Vapro5600
vapor pressure osmometer (ELITechGroup Wescor, South Logan, UT). When filled with the intracellular
solution, patch pipettes had a resistance of 2.0 to 3.0 MX before seal formation.

Recordings were performed with Multiclamp 700B (Molecular Devices), sampled at 20 kHz with
Digidata 1440A (Molecular Devices) interface, filtered online at 3 kHz with a Bessel low-pass filter, and
analyzed offline with pClamp10 software (Molecular Devices). The ventral tegmental area (VTA) was visu-
ally identified by infrared differential interference contrast video microscopy, and the lateral VTA was
determined considering the medial lemniscus and the medial terminal nucleus of the accessory optic
tract as anatomical landmarks. Dopaminergic (DA) neurons in this area were identified evaluating the
following features: (i) cells firing at a frequency of 1 to 5 Hz and a spike width of.1 ms in a cell-attached
configuration, (ii) a membrane capacitance (Cm) of .28 pF, and (iii) the presence of an Ih current and a
leak current of .150 pA, when hyperpolarized from 240 mV to 2120 in 10-mV steps (91, 92). Passive
electrode-cell parameters were monitored throughout the experiments, analyzing passive current relaxa-
tions induced by 10-mV hyperpolarizing steps applied at the beginning of every trace. A variation of series
resistance (Rs) of .20% led to the rejection of the experiment. AMPAR/NMDAR ratios were calculated as
previously described (13, 90). Briefly, neurons were slowly voltage-clamped at 140 mV until the holding
current stabilized (at 200 pA). Monosynaptic excitatory postsynaptic currents (EPSC) were evoked at
0.05 Hz with a bipolar stimulating electrode placed 50 to 150 mm rostral to the lateral VTA. After recording
the dual-component EPSC, DL-AP5 (100 mM) was bath applied for 10 min to isolate the AMPAR current,
blocking the NMDAR. The NMDAR component was then obtained by offline subtraction of the AMPAR
component from the original EPSC. The peak amplitudes of the isolated components were used to calcu-
late the AMPAR/NMDAR ratios.

Statistical analysis. Statistical analysis was performed as previously described (14, 28). Data are pre-
sented as means 6 the standard errors of the mean (SEM). Statistical analyses performed include the
unpaired Student t test and one- or two-way analysis of variance (ANOVA) with either Tukey’s or
Bonferroni test to correct for multiple comparisons as indicated in the figure legends, unless otherwise
indicated. P, t, q, and F values are presented in the figure legends. P , 0.05 was considered statistically
significant (*, P , 0.05; **, P , 0.01; ***, P , 0.001; ****, P , 0.0001). Prism 9 software (GraphPad, La
Jolla, CA) was used to perform statistical analyses and generate graphical data representations.

Data availability. All data supporting the findings of this study are available within this article and
its supplemental material.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, EPS file, 1.9 MB.
FIG S2, EPS file, 2.6 MB.
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