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ABSTRACT The prevalent paradigm governing bacterial two-component signaling
systems (TCSs) is specificity, wherein the histidine kinase (HK) of a TCS exclusively
activates its cognate response regulator (RR). Cross talk, where HKs activate noncog-
nate RRs, is considered evolutionarily disadvantageous because it can compromise
adaptive responses by leaking signals. Yet cross talk is observed in several bacteria.
Here, to resolve this paradox, we propose an alternative paradigm where cross talk
can be advantageous. We envisioned programmed environments, wherein signals
appear in predefined sequences. In such environments, cross talk that primes bacte-
ria to upcoming signals may improve adaptive responses and confer evolutionary
benefits. To test this hypothesis, we employed mathematical modeling of TCS signal-
ing networks and stochastic evolutionary dynamics simulations. We considered the
comprehensive set of bacterial phenotypes, comprising thousands of distinct cross
talk patterns competing in varied signaling environments. Our simulations predicted
that in programmed environments phenotypes with cross talk facilitating priming
would outcompete phenotypes without cross talk. In environments where signals
appear randomly, bacteria without cross talk would dominate, explaining the speci-
ficity widely seen. Additionally, a testable prediction was that the phenotypes
selected in programmed environments would display one-way cross talk, ensuring
priming to future signals. Interestingly, the cross talk networks we deduced from
available data on TCSs of Mycobacterium tuberculosis all displayed one-way cross
talk, which was consistent with our predictions. Our study thus identifies potential
evolutionary underpinnings of cross talk in bacterial TCSs, suggests a reconciliation
of specificity and cross talk, makes testable predictions of the nature of cross talk
patterns selected, and has implications for understanding bacterial adaptation and
the response to interventions.

IMPORTANCE Bacteria use two-component signaling systems (TCSs) to sense and
respond to environmental changes. The prevalent paradigm governing TCSs is specific-
ity, where signal flow through TCSs is insulated; leakage to other TCSs is considered
evolutionarily disadvantageous. Yet cross talk between TCSs is observed in many bacte-
ria. Here, we present a potential resolution of this paradox. We envision programmed
environments, wherein stimuli appear in predefined sequences. Cross talk that primes
bacteria to upcoming stimuli could then confer evolutionary benefits. We demonstrate
this benefit using mathematical modeling and evolutionary simulations. Interestingly,
we found signatures of predicted cross talk patterns in Mycobacterium tuberculosis.
Furthermore, specificity was selected in environments where stimuli occurred randomly,
thus reconciling specificity and cross talk. Implications follow for understanding bacterial
evolution and for interventions.
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Bacteria sense and respond to environmental cues predominantly via two-component
signaling systems (TCSs) (1). The first component of a TCS is the transmembrane histi-

dine kinase (HK). The HK detects the stimulus, which typically is a chemical ligand, and gets
autophosphorylated. The phosphorylated HK (HK-P) binds to and transfers its phosphoryl
group to the response regulator (RR), the second component of the TCS. Phosphorylated
RR (RR-P) typically dimerizes and triggers changes in downstream gene expression, mount-
ing a response to the stimulus (1, 2). Cognate HK-RR pairs, which belong to a TCS, are gener-
ally coexpressed under a single promoter in an operon (3) and are often upregulated as
part of the response to the stimulus (1, 2).

Bacteria can have many tens of distinct TCSs, each performing a different function (1).
Evolutionary pressure is thought to have rendered TCSs specific: the HK of a TCS rarely
phosphorylates the RR of another TCS (4). Cross talk between TCSs, defined as phospho-
transfer from the HK of one TCS to the RR of another TCS, is considered disadvantageous
because it dissipates the signal, decreasing the concentration of the cognate RR-P and
thereby weakening the response (4). Moreover, unwanted responses due to gene expres-
sion downstream of noncognate RR-Ps might get triggered. Bacteria typically acquire
novel TCSs through gene duplication (5), which would naturally allow cross talk before
diversification of the TCSs into distinct pathways (6, 7). Several experimental and modeling
studies have argued that despite the extensive homology between TCS proteins, there is
strong evolutionary pressure for these paralogs to be specific (5, 8–13). For instance, cross
talk between TCSs can be abrogated by as few as two mutations, indicative of the evolu-
tionary pressure favoring specificity (8). Further, during the evolution of new TCSs post-
gene duplication, bacteria have been predicted to eliminate cross talk before new TCS
functionalities can arise (9). The sequence space occupied by the paralogs is thought to be
sparse, allowing easy establishment of such specificity (12).

Yet cross talk between bacterial TCSs continues to be observed and, in some bacteria,
in significant measure. Approximately 3% of the 850 interactions between TCS proteins in
Escherichia coli, for instance, were between noncognate HK-RR pairs (14). A substantially
larger fraction, ;50% of the 23 interactions, were between noncognate pairs in
Mycobacterium tuberculosis (15). Given the evolutionary advantages of specificity together
with the relative ease of establishing it, the observed cross talk is puzzling. Indeed, in some
organisms, such as Caulobacter crescentus (16) and Myxococcus xanthus (17), no cross talk
has been observed among hundreds of interactions. The observed cross talk may thus not
be attributable to chance and may instead have evolutionary underpinnings. Unraveling
potential evolutionary advantages of cross talk is expected to have important implications
for our understanding of bacterial adaptation, survival, and response to interventions (1,
15, 18, 19).

Here, we conceived of an evolutionary paradigm in which cross talk could be beneficial.
We hypothesized that in programmed environments, where signals consistently appear in a
predefined sequence, cross talk between TCSs that would prime the bacterium to upcom-
ing signals might confer an evolutionary advantage. To test this hypothesis, we constructed
a mechanistic mathematical model of generalized multi-TCS signaling networks and per-
formed extensive evolutionary dynamics simulations. We challenged model predictions
with available experimental observations and found evidence in support of our hypothesis.
Additionally, we arrived at a plausible synthesis of the seemingly conflicting observations of
specificity and cross talk in bacterial TCS systems.

RESULTS
Cross talk can confer a fitness advantage in programmed environments. We

first considered a hypothetical environment involving N = 2 signals, denoted I1 and I2,
recognized by two TCSs of a bacterium, TCS1 and TCS2, made up of the proteins HK1 and
RR1 and HK2 and RR2, respectively. Depending on the nature of interactions between the
TCSs, four phenotypes could exist (Fig. 1a): (i) with no cross talk (phenotype 1), (ii) with
cross talk between HK1 and RR2 (phenotype 2), (iii) with cross talk between HK2 and RR1
(phenotype 3), and (iv) with bidirectional cross talk (phenotype 4). We developed a
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FIG 1 Mathematical model of TCS signaling predicts advantages of cross talk. (a) All possible phenotypes with N = 2 TCSs. Cognate
interactions (black arrows) and cross talk (red arrows) are shown. These interactions are also depicted compactly in the interaction
matrix for each phenotype (Materials and Methods). Orange squares represent cognate interactions and blue squares represent cross
talk. (b) Signal-response behavior and fitness of the phenotypes in a programmed environment. The purple filled rectangles depict

(Continued on next page)
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detailed model of signal transduction in a TCS network, allowing for all possible cross
talk patterns between the TCSs (Materials and Methods). The model builds on previous
models of TCS signaling (9, 15, 20, 21), generalizing them to multi-TCS networks with
cross talk. The novelty of our approach lies in recognizing and incorporating the role of
the environment. We applied our model to each of the four phenotypes. We first consid-
ered the scenario representing a programmed environment. Specifically, we let the sig-
nal I1 be followed by I2. For simplicity, we let the signals be identical except for the time
of their onset (Fig. 1b). We also assumed the signals to be square pulses arriving in quick
succession, mimicking the typical way environments impose stresses (22); we considered
alternative signal types below. Using the model, we predicted the concentrations of RR1-
P and RR2-P over time (Fig. 1b, top panel) as a proxy for the responses of the bacteria to
the two stimuli. Further, we estimated the fitness, f 1 and f 2, of the bacteria associated
with the responses of the two TCSs and the overall fitness, ‹f ›, combining the two
(Fig. 1b, bottom panel). The fitness was determined by the strength of the cognate
responses to the individual stimuli (Materials and Methods).

For phenotype 1, where TCSs are insulated, our model predicted that the responses
to the two signals were, expectedly, identical except for a shift in time (black curves in
Fig. 1b). When I1 arrived, bacterial fitness dropped sharply, indicating a changed environ-
ment to which the bacterium was yet to adapt. The bacterium mounted an adaptive
response, improving its fitness with time. As RR1-P increased, the fitness, f 1, recovered.
The same phenomenon was observed upon the arrival of I2. The absence of cross talk
implied that the responses to I1 and I2 were independent. Although the fitness was nearly
fully restored eventually, the time-averaged overall fitness, ‹f ›, was lower than unity, indic-
ative of the vulnerability of the bacterium during adaptation to the changed environment.

For phenotype 2, with HK1!RR2 cross talk (red curves in Fig. 1b), our model pre-
dicted that before the arrival of I2, signal leakage to TCS2 resulted in lower RR1-P and,
hence, f 1 than for phenotype 1. The signal leakage, however, triggered TCS2. The
resulting RR2-P upregulated HK2 and RR2. When I2 came up, the bacterium responded
faster and better than phenotype 1; RR2-P and f 2 were higher than for phenotype 1.
The overall fitness, ‹f ›, increased beyond that of phenotype 1. Thus, the bacterium
was predicted to be more sensitive and responsive to the upcoming stimulus due to
cross talk, increasing its fitness. This scenario was illustrative of the possible advantage
of cross talk in a programmed environment.

For phenotype 3, with HK2!RR1 cross talk, in our model predictions, the needless sig-
nal dissipation to RR1 following the onset of I2 induced a fitness loss (blue curves in
Fig. 1b). Finally, for phenotype 4, with bidirectional cross talk, RR1-P was like phenotype
2 due to dissipation before the arrival of I2. The subtle difference with phenotype 2 arose
because of the phosphatase activity of HK2. Cross talk implied that HK2 could exert phos-
phatase activity on RR1-P, because of which the level of RR1-P was slightly lower and that
of RR2-P slightly higher for phenotype 4 than phenotype 2. Thus, immediately upon the
arrival of I2, the fitness loss was the least for phenotype 4. However, the advantage of pri-
ming was lost due to the HK2!RR1 cross talk after the arrival of I2, resulting in an overall
fitness loss (green curves in Fig. 1b). The predicted time-averaged fitness loss, 1 – ‹f ›, of
the four phenotypes over the entire signal-response period highlights the advantage of
phenotype 2, which has a cross talk pattern that mirrors the signal sequence, over the
other phenotypes (Fig. 1b, inset).

FIG 1 Legend (Continued)
the presence of the input signals, with the darker shade representing I1 and the lighter shade I2. The signal strength is 104 nM for
both. The top panel shows the concentrations of activated RRs, and the bottom panel shows the associated fitness of the responses.
The phenotypes are color coded, and dark and light curves represent TCS1 and TCS2, respectively. Cross talk strength is g = 0.26. The
inset shows the reduction in time-averaged fitness of the different phenotypes due to the signals. The fitness is 1 in an unperturbed
environment. The fitness of TCS1 when I1 is absent or TCS2 when I2 is absent is thus 1. Note that the fitness curves of all phenotypes
in such scenarios overlap. (c) Selection coefficient in a programmed environment. s as a function of g when I1 is followed by I2. (d)
Optimal cross talk strength. Dependence of s on g for phenotype 2. The inset shows the fitness of the two TCSs contributing to s .
(e) Selection coefficients in a random environment. s as a function of g when I1 and I2 follow no order. Fitness is calculated as the
mean over all possible signal sequences.
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Next, we examined how the fitness advantage would depend on the strength of
cross talk using our model. We defined the selection coefficient, s , for any phenotype
as the difference between the time-averaged fitness of the phenotype and that of phe-
notype 1, the latter without any cross talk. We quantified the strength of cross talk
using g, the ratio of the efficiencies of phosphotransfer to noncognate and cognate
RRs (Materials and Methods). The larger the value of g, the greater was the extent of
cross talk. We found from our predictions that for all the values ofg studied, phenotype
2 had positive s , whereas the other phenotypes had negative s (Fig. 1c), consistent
with the results described above. Further, for phenotype 2, s displayed a maximum at
intermediate g (Fig. 1d), specifically at g = 0.26. Increasing g increased priming and
improved the response to I2, increasing fitness. Beyond a point, however, the advant-
age of priming diminished, but the response to I1 continued to be compromised, low-
ering the overall fitness (Fig. 1d, inset). Thus, according to our model, limited cross talk
offered a fitness advantage to phenotype 2.

Specificity is advantageous in random environments. Using the same pheno-
types as described above, we applied our model to estimate s in a random environ-
ment, where there was no defined sequence of signals (Materials and Methods). Now,
phenotype 1 had the highest estimated fitness; s was negative for all the other pheno-
types (Fig. 1e). Because the upcoming signal was not prespecified, priming conferred
no advantage. The detrimental effects of cross talk then decreased fitness regardless of
the cross talk pattern. Thus, s was equal for phenotypes 2 and 3, which had one cross
talk interaction each, and lower for phenotype 4, which had two cross talk interactions.
Moreover, the greater the value ofg, the lower was the value of s in the random envi-
ronment. Thus, in the absence of a consistent sequence of stimuli, our model predicted
that evolutionary pressure may select for specificity.

Using sensitivity analysis, we found that the inferences described above were ro-
bust to variations in parameter values (see Fig. S1 in the supplemental material).
Furthermore, our findings were robust to the fitness construct employed (Text S1;
Fig. S2) and the nature of the signals; we tested both square pulses and exponentially
decaying signals (Fig. S3). Our model also predicted that with decaying signals, the fit-
ness advantage of cross talk ceased when the interval between the signals was either
too small or too large (Fig. S3). When the interval was too small, the second signal
appeared before significant priming could happen, whereas when the interval was too
large, the priming faded away before the second signal could arrive. These latter pre-
dictions were consistent with observations in E. coli (23), where priming conferred a
significant fitness advantage, manifested as enhanced growth rate, only for a range of
time gaps between signals.

Programmed environments favor one-way cross talk. For the minimal case of
N = 2, phenotype 2 alone could anticipate I2 following I1 and thus was predicted to
have the highest fitness in our model. For bacteria with more than two TCSs, the fittest
phenotype is not obvious, as such anticipation is possible with multiple phenotypes.
For instance, the phenotype with the cross talk interactions HK1!RR2 and HK2!RR3 as
well as the phenotype with HK1!RR2 and HK1!RR3 could anticipate the sequence
I1!I2!I3. The number of phenotypes grows exponentially with N. A bacterium with N
TCSs will have N cognate and up to N(N 2 1) noncognate interactions. Depending on
whether each of the latter interactions is realized or not, a total of 2N(N–1) phenotypes
can exist, each representing a distinct cross talk pattern. For N = 3, this would amount
to 26 = 64 phenotypes, and for N = 4, it would amount to 212 = 4,096 phenotypes.
Identifying the fittest phenotype would thus require a comprehensive assessment of
each of these phenotypes. We performed this assessment next.

We considered N = 3. We numbered the phenotypes from 1 to 64, starting with the
phenotype with no cross talk and ending with the phenotype with all cross talk inter-
actions realized (Fig. 2a). We subjected each phenotype to a programmed environment
with the signal sequence I1!I2!I3. We also allowed the signals to have different dura-
tions, more realistically mimicking natural environments. For each scenario, we applied
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our model to predict signal-response characteristics and estimated the resulting
fitness.

When the signals were all of the same duration, our model predicted that the phe-
notype that was the fittest depended on the strength of cross talk,g. Whengwas small,
phenotype 12, which had HK1!RR2, HK2!RR3, and HK1!RR3 interactions, was the fit-
test (Fig. 2b). Its fitness was only slightly higher than that of phenotype 10, which had
HK1!RR2 and HK2!RR3 interactions. Note that both these phenotypes anticipated
upcoming signals and were fitter than phenotype 1, which had no cross talk. Asg increased,
phenotype 10 became fitter than phenotype 12 in our predictions. Interestingly, the fitness
of the latter decreased beyond a thresholdg and eventually dropped below that of pheno-
type 1. Phenotype 10, however, remained fitter than phenotype 1 throughout. We under-
stood these trends as follows. Whengwas low, the cost of signal dissipation was small. Thus,
the gain from cross talk by HK1 with both RR2 and RR3 and by HK2 with RR3 more than com-
pensated for the fitness loss due to leakage. However, as g increased, the latter cost
increased and limiting cross talk became advantageous. Accordingly, our model predicted
that cross talk between HK1 and RR2 and between HK2 and RR3, which ensured the requisite
anticipation of upcoming signals, was retained, resulting in an overall fitness gain, whereas
the redundant cross talk between HK1 and RR3 was eliminated in the fittest phenotype.

We next increased the duration of I2 6-fold (Fig. 2c). Whengwas small, phenotype 2,
which had the HK1!RR2 interaction alone, was the fittest in our predictions. As g
increased, phenotype 10, which had HK1!RR2 and HK2!RR3 interactions, became the

FIG 2 One-way cross talk patterns yielded the fittest phenotypes. (a) One-way cross talk patterns with N = 3 TCSs. Interaction matrices of phenotype 1,
without cross talk, and seven other phenotypes with different one-way cross talk patterns. The signal sequence is I1 ! I2 ! I3. (b to f) The fitness of the
fittest phenotypes and of phenotype 1 as functions of the strength of cross talk, g, when (b) signals were of the same duration (500 s) or when I2 lasted (c)
3,000 s, (d) 250 s, and (e) 100 s and (f) when the signals decayed exponentially. The colored bars at the top of each panel graphically depict the range of g
over which the respective color-coded phenotype has the highest fitness. Cartoons of the signal patterns are at the left in each panel.
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fittest. With weak cross talk, the advantage of priming to I3 through the entire duration
of I2 was not enough to compensate for the loss of response to I2. Phenotype 2, which
did not have the HK2!RR3 interaction, was therefore the fittest. On the other hand,
when cross talk was stronger, the priming from both HK1!RR2 and HK2!RR3 compen-
sated for any signal dissipation, rendering phenotype 10 the fittest in our predictions.

We also considered the effect of shortening the duration of I2 (Fig. 2d and e). When
the duration was shortened by 50%, phenotypes 12 and 10 were predicted to be the
fittest, depending on g, in a manner similar to when the signals were all of the same
duration (Fig. 2b and d). The shortening of the duration by 50% thus did not affect the
cost-benefit analysis substantially. Shortening the duration 5-fold, however, made a
difference, with phenotypes 3 and 11 now the fittest (Fig. 2e). As describe above, when
g was small, phenotype 11, with the cross talk interactions HK1!RR3 and HK2!RR3,
both anticipating the upcoming signal I3, was the fittest in our model. This was
because at low values of g, priming to I3 while I2 was present did not add significantly
to the cost due to signal dissipation, as I2 was present for a short while. However, as g
increased, phenotype 3, which had the single cross talk interaction HK1!RR3, was the
fittest. The cost of dissipation, although I2 was short-lived, was no longer affordable.
The phenotype that let I1 prime the bacterium to the next major signal, I3, was thus the
fittest. Finally, as with the N = 2 scenario, the results were similar when exponentially
decaying signals were used instead of square pulses (Fig. 2f).

In all these cases, an intriguing feature of the fittest phenotypes is directed, one-way
cross talk. If we denote the signal sequence as I1!I2!I3!. . ., then the fittest pheno-
types had cross talk of the type HKi!RRj with j . i. In other words, the cross talk that
enabled priming to upcoming signals was favored. Reverse signal flow, where j , i,
resulted in phenotypes that suffered fitness loss. In the interaction matrices, the fittest
phenotypes all had nonzero entries in the upper triangular portions and never in the
lower triangular portions (Fig. 2a). To test the robustness of this prediction, we adopted
two strategies. We performed extensive evolutionary dynamics simulations to examine
whether the fitness advantage predicted by the calculations described above would
lead to the selection of the corresponding phenotypes with the one-way cross talk pat-
terns. Second, we sought evidence of these predictions in available experimental data.

Evolutionary simulations predict selection of phenotypes with one-way cross
talk patterns mirroring signal sequences. Using the descriptions mentioned above
of the responses of different phenotypes to stimuli, we performed stochastic, discrete
generation, Wright-Fisher evolutionary simulations (24) (Fig. 3a; Materials and Methods)
to determine which phenotypes would get selected in different environments. We now
considered N = 4 TCSs, increasing the complexity to a total of 4,096 phenotypes, making
it even more difficult to predict the fittest phenotypes intuitively. We performed simula-
tions with two types of initial conditions: (ii) the homogeneous condition, where a single
phenotype existed and (ii) the mixed condition, where all the phenotypes were equally
represented. With each initial condition, we considered both random and programmed
environments. With N = 4, we had four types of signals, one for each of the TCSs. We let
each bacterium be stimulated four times. In the random environment, each stimulus was
chosen randomly from the four possible signals. In the programmed environment, the
signals followed a predetermined sequence, where the signals all appeared once and in
a fixed order. We computed the fitness of each of the 4,096 species in each of these envi-
ronments. In each generation, we allowed every bacterium to be selected with a proba-
bility proportional to its fitness. The selected bacteria were duplicated to replace lost
bacteria and ensure a constant bacterial population. The bacteria were then subjected to
mutations. A mutation involved a change in the cross talk network of the bacterium,
resulting in an altered phenotype. Specifically, we allowed each of the N(N 2 1) = 12
potential cross talk interactions within a bacterium to be flipped (from existent to non-
existent and vice versa) with a probability m, the mutation rate, in each generation. The
resulting pool of bacteria formed the substrate for evolution in the next generation. We
repeated this process over 10,000 generations, which ensured fixation of the fittest phe-
notype, and performed 50 realizations, for reliable statistics (Materials and Methods).
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FIG 3 Stochastic evolutionary dynamics simulations show selection of cross talk in programmed environments and specificity in
random environments. (a) Schematic of Wright-Fisher simulations. Simulations proceed in discrete generations and with fixed
populations (n) comprising bacteria of different phenotypes, indicated by their interaction matrices. In each generation, bacteria are
exposed to stimuli. Depending on their response, fitness selection takes place and less fit bacteria are eliminated. Lost bacteria are
replaced with copies of selected ones, chosen randomly. The resulting bacteria mutate, illustrated using green boxes in the
interaction matrices, resulting in altered phenotypes, which form the substrate for selection in the next generation. (b) Evolution in a
random environment. The phenotype without any cross talk (blue) gets fixed whether the initial population is homogeneous (left) or
mixed (middle). The phenotype with all cross talk interactions is also shown for comparison (green). The gray lines are trajectories of

(Continued on next page)
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In the random environment, our simulations predicted that the phenotype without
any cross talk dominated the population (Fig. 3b). For the homogeneous condition, we
initiated simulations with the species containing all cross talk interactions. Gradually,
phenotypes with fewer cross talk interactions emerged. Eventually, the phenotype
with no cross talk emerged and dominated the population. With the mixed condition,
the latter species began to dominate the population from the early stages and was
soon fixed in the population. These observations agree with the prevalent paradigm of
TCS signaling favoring specificity (5, 8, 9, 12). Also, rank-ordering phenotypes by their
fitness values (Fig. 3b, inset) revealed that phenotypes with an increasing number of
cross talk interactions had decreasing fitness. To illustrate this, we present the cross
talk patterns of the top five and bottom five fittest phenotypes (Fig. 3b). The former
have zero or one cross talk interaction and the latter have all or one less cross talk
interactions.

In the programmed environment, which followed the signal sequence I1!I2!I3!I4,
the phenotype with the cross talk pattern mirroring this signal sequence dominated
the population (Fig. 3c). For the homogeneous condition, we used the species without
cross talk to initiate simulations. Gradually, mutants with cross talk emerged and grew,
causing the initial species to decline. Eventually, the phenotype with the cross talk pat-
tern mirroring the signal sequence emerged and dominated the population. For the
mixed condition, the latter phenotype grew from the early stages and was rapidly
fixed. Arranging the fitness values in descending order (Fig. 3c, inset) displays the ben-
efit of priming for upcoming stimuli. The five fittest phenotypes all had cross talk inter-
actions in the upper triangle of their interaction matrices, indicating one-way cross talk
patterns that prime bacteria to upcoming signals (Fig. 3c). The least fit phenotypes had
the lower triangle of the interaction matrices populated, indicating cross talk that had
signal flows opposite to the sequence of stimuli.

These results were not restricted to N = 4 TCSs. With N = 2 (Fig. S4) and N = 3 TCSs
(Fig. S5) as well, the phenotype with no cross talk was selected in random environ-
ments, and the phenotype with the cross talk pattern mirroring the sequence of signals
was selected in programmed environments.

These simulations thus point to environments where cross talk may be evolutionar-
ily favored. It is possible that such programmed environments may have been the rea-
sons for the selection of the cross talk that is observed in some bacteria. Our model
and simulations go beyond offering a plausible explanation of the origins of such cross
talk and predict that the cross talk selected is likely to be one-way. We next sought evi-
dence of one-way cross talk patterns in available experimental data.

Evidence of one-way cross talk in TCSs ofM. tuberculosis. In a recent study, cross
talk between the TCSs of M. tuberculosis has been mapped using in vitro assays of
phosphotransfer from HKs to all cognate and noncognate RRs (15). Significant cross
talk was observed (Fig. 4a), which allowed us to assess signal flows through extended
TCS networks. Using the cross talk interactions, we identified all possible signal flows,
or cascades, in the TCSs of M. tuberculosis as follows. We considered the HK PhoR, for
instance, which showed cross talk with the RR DevR (Fig. 4a). DevS, the cognate HK of
DevR, further showed cross talk with the RR NarL. NarS, the cognate HK of NarL, did
not engage in any cross talk. Thus, when PhoR gets activated, it can transmit a portion
of the signal to DevR. Similarly, cross talk of DevS with NarL would transmit some por-
tion of the signal from DevS-DevR to the NarS-NarL system, at which point the signal
flow would be terminated. Hence, PhoR-PhoP, DevS-DevR, and NarS-NarL form a cascade

FIG 3 Legend (Continued)
the two phenotypes in each of 50 realizations. The thick lines are means. Trajectories of all other phenotypes are not shown. The
cross talk strength was set to g = 0.26. The inset in the left plot is the rank-ordered selection coefficient of all the phenotypes.
The interaction matrices of the five most and five least fit phenotypes are shown (right). (c) Evolution in a programmed environment.
The one-way cross talk phenotype mirroring the signal sequence I1!I2!I3!I4, which has the highest fitness, dominates the
population (red), whether the initial population is homogeneous (left) or mixed (middle). The inset in the left plot is the rank-ordered
selection coefficient of all the phenotypes. The interaction matrices of the five most and five least fit phenotypes are depicted (right).
Simulations used N = 4 TCSs.
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of signal flow via cross talk. In this cascade, the signal is not transmitted either to PhoP
from DevS or NarS or to DevR from NarS, making the flow one-way.

Following the procedure described above, we started with each of the TCSs of M.
tuberculosis and traced the resulting cascades. We found 13 such cascades (Fig. 4b).
The longest cascade involved 4 TCSs. There were 5 cascades involving 3 TCSs each and
7 cascades involving 2 TCSs each. (Representative interaction matrices for all these
cases are presented at the bottom of Fig. 4.) Note that all the cascades had one-way
cross talk, with the patterns resembling the fittest phenotypes in our simulations
above.

By superimposing the cascades above, we can obtain additional one-way cross talk
patterns, reflective of the patterns identified in our simulations. Two such patterns are
depicted in Fig. 4c. For instance, the cross talk pattern involving MtrB-MtrA, PhoR-
PhoP, and TcrY-TcrX (Fig. 4c, top panel) was equivalent to phenotype 12 in the N = 3
case discussed above (Fig. 2b). Similarly, the pattern involving KdpD-KdpE, DevS-DevR,
and NarS-NarL (Fig. 4c, bottom panel) was equivalent to phenotype 11 in the N = 3
case discussed above (Fig. 2b). Remarkably, we could not find any cross talk pattern
that was not one-way. This evidence of exclusive one-way cross talk in the TCSs of M.
tuberculosis offered support for the predictions of our model and simulations. To assess
whether the cross talk could have evolutionarily underpinnings, we sought signatures
of evolutionary pressures against diversification post-gene duplication in the sequen-
ces of the TCS proteins using bioinformatics analysis (Text S1). Although the analysis

FIG 4 Cross talk patterns in M. tuberculosis TCSs in vitro were one-way. (a) Complete cross talk
map between TCSs of M. tuberculosis. The HKs (left column) and their cognate RRs (right
column) are connected by green arrows. The cross talk interactions observed (15) are shown as
red dashed arrows. (b) Cross talk cascades. All possible signal flows based on the cross talk
interactions in panel a. (c) Superimposed signal cascades. Examples of cross talk patterns resulting
from superimposition of cascades from panel b.
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could only be conducted on a subset of the TCSs, the results suggested that this evolu-
tionary pressure may have been less for the TCSs involved in cross talk than for the
TCSs that were specific, offering further support to the notion that the observed cross
talk may have been evolutionarily favored (Text S1, Fig. S6 and S7, Table S2).

DISCUSSION

Despite the strong evolutionary arguments favoring specificity in bacterial TCSs (4,
5), cross talk between TCSs has been observed (14, 15). Here, we present an alternative
evolutionary paradigm where cross talk would be advantageous. Using modeling of
TCS signaling networks and extensive evolutionary dynamics simulations, we predicted
that in programmed environments, where stimuli arrive in a predetermined sequence,
cross talk that would prime bacteria to upcoming signals would confer an evolutionary
benefit. Thus, specific cross talk patterns that mirror the sequences of stimuli could get
selected in bacteria living in such environments. Analyzing recent in vitro data (15), we
found that potential cross talk networks involving the TCSs of M. tuberculosis all dis-
played one-way signal flow, consistent with the notion of priming and selection in pro-
grammed environments. This new evolutionary paradigm is not in conflict with the
paradigm underlying specificity. Our modeling and simulations predicted that when
no predetermined sequence of stimuli existed, specificity was evolutionarily favored.
Our study thus offers a conceptual framework that synthesizes specificity and cross
talk in bacterial TCS systems. They appear to be two sides of the same coin; they are
both outcomes of the same evolutionary forces, but in environments that present sig-
nals differently. Programmed environments may be rarer, resulting in the lower preva-
lence of cross talk.

Independent evidence exists of one-way cross talk aiding bacterial adaptation in pro-
grammed environments. In E. coli, evolutionary experiments showed how anticipation,
facilitated by cross talk, is selected for when the environment displays a specified pattern
of carbon source switching (22). Furthermore, the complex structure of environments can
become ingrained in in silico biochemical networks in order to predict environmental
changes preemptively (25). In agreement, this adaptive behavior was evident in E. coli,
where a match between the covariation of transcriptional responses and the sequence of
temperature and oxygen stresses triggering them was observed (25). Evidence also exists
of pathogenic bacteria evolving cross talk to adapt to their hosts. For instance, mutations
in the TCS BfmS-BfmR of Pseudomonas aeruginosa in individuals with cystic fibrosis were
recently found to alter, facilitated via cross talk by the noncognate HK GtrS, regulation of
downstream gene expression in order to promote biofilm formation and chronic infection
(26). Similarly, in Alphaproteobacteria, multiple HKs of the HWE/HisKA-2 family can control
the phosphorylation of the same response regulators in a coordinated manner and tune
downstream gene expression (27).

Based on the signaling cascades we deduced from the in vitro TCS cross talk interac-
tions of M. tuberculosis, it would be interesting to identify corresponding sequences of
stimuli, potentially unveiling information of the environments to which M. tuberculosis
may have adapted. The ligands/stimuli that many of the TCSs sense, however, remain
unknown, precluding such analysis (28). However, specific instances suggesting such
adaption could be identified from the cascades. For example, the TCS PrrB-PrrA is
reported to be involved in the early replication steps of M. tuberculosis inside macro-
phages (29). The TCS MprB-MprA has been argued to be essential for establishing per-
sistent infection (30), a state of slower or halted replication from which the bacterium
can be reactivated to establish active infection (31). Disruption of mprA affected proc-
esses required for survival during the persistence and subsequent infection stages (30).
One could thus argue that cross talk from PrrB-PrrA to MprB-MprA may be favorable
because it would prime the bacterium to activate the processes necessary for establish-
ing persistent infection, a key feature of successful tuberculosis infection (32), once
entry is gained into a macrophage. Indeed, this one-way cross talk was observed in the
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in vitro cascades (15). Future experiments may assess the advantage of such cross talk
in vivo.

Our study has focused on cross talk between HKs and RRs. We recognize that cross
talk could also occur at the level of stimuli, where the same stimulus may activate mul-
tiple HKs. For instance, the HKs NarX and NarQ of E. coli both sense nitrate ions in the
environment (33). The extent of the prevalence of such shared stimulation, however, is
unknown, as stimuli for many TCSs still remain uncharacterized (28, 34, 35). Nonetheless,
although beyond the scope of the present study, our mathematical model can be readily
adapted to analyze cross talk arising at the level of stimuli.

Cross talk is not limited to bacterial TCSs. Examples of cross talk exist in human
growth factor signaling networks (36), mitogen-activated protein kinase (MAPK) net-
works of yeast (37), and between TOR and CIP pathways in Schizosaccharomyces pombe
(38). The evolutionary underpinnings of these cross talk interactions may be more diffi-
cult to unravel because of the more involved regulatory structures in these organisms
than in the simpler bacterial TCS systems. Yet controlled evolutionary experiments sug-
gest selection of cross-regulation patterns in broad agreement with our predictions.
For instance, the yeast Saccharomyces cerevisiae, which is commonly used in the fer-
mentation industry, is subjected to heat, ethanolic stress, and oxidative stress, in that
order, in the industrial process (22). The related regulatory networks were observed to
have the following cross talk interactions: heat ! ethanolic stress, heat ! oxidative
stress, and ethanolic stress ! oxidative stress (22). This is similar to the phenotype 12
in the N = 3 case in our model (Fig. 2a). Furthermore, when the organism was artificially
exposed to these stresses in the reverse order, the cross talk interactions switched their
directions (22). These scenarios, together with our proposed paradigm, point to the
possible evolutionary advantages of cross talk.

Our findings have implications for the design of signaling systems in synthetic biol-
ogy. Bacterial TCSs offer promising routes to engineering signaling systems in synthetic
biology constructs (39). For instance, they have been used to engineer E. coli to sense
light (40). Synthetic biology constructs are being designed to sense and integrate mul-
tiple stimuli (39). The different TCSs used for such designs are typically assumed to be
insulated. However, if the constructs are to be employed in environments that see pro-
grammed sequences of the stimuli, then with time, phenotypes that favor cross talk
between the TCSs may be selected, potentially affecting the robustness of the con-
structs. Conversely, where integration of well-defined sequences of stimuli is sought,
accounting for the potential selection of phenotypes with cross talk may lead to more
robust signaling system designs.

Because of its evolutionary advantages, cross talk may be a potential target of inter-
vention. With pathogenic bacteria, cross talk may sharpen the already sophisticated
strategies to evade host immune responses and promote virulence (28, 41). Bacterial
HKs offer promising targets of intervention (1, 18). Where cross talk may aid bacterial
survival and adaptation, as suggested, for instance, with M. tuberculosis (15), targeting
HKs engaged in cross talk could prove a more potent strategy than targeting specific
HKs. It would not only block the cognate response of the targeted HK, but also com-
promise the responses of the TCSs that would otherwise have been primed by the tar-
geted HK via cross talk.

MATERIALS ANDMETHODS
Mathematical model of TCS signaling with cross talk. We developed a mathematical model to

describe bacterial signal transduction via TCSs. We considered the scenario in which a bacterium con-
tains N distinct TCSs, which can be engaged in cross talk (Fig. 5a). We built the model by envisioning the
set of events associated with the ith TCS engaged in cross talk with the jth TCS (i; j 2 f1; 2; . . . ;Ng), listed
below as reactions.

HKiÐ
kf ;basal

kb;basal
HK�

i (1)
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Ii1HKiÐ
kf ;input

kb;input
IiHKi (2)

Ii1HK�
i Ð
kf ;actv;input

kb;actv;input
IiHK�

i (3)

IiHKiÐ
kf ;actv

kb;actv
IiHK�

i (4)

HK�
i 1RRjÐ

kf ;ij;phtrf

kb;ij;phtrf
HK�

i RRj ���!kphtrf
HKi1RR�

j (5)

IiHK�
i 1RRjÐ

kf ;ij;phtrf

kb;ij;phtrf
IiHK�

i RRj ���!kphtrf
IiHKi1RR�

j (6)

HKi1RR�
j Ð
kf ;ij;phtse

kb;ij;phtse
HKiRR

�
j ���!kphtse

HKi1RRj (7)

IiHKi1RR�
j Ð
kf ;ij;phtse

kb;ij;phtse
IiHKiRR

�
j ���!kphtse

IiHKi1RRj (8)

Ii1HKiRR
�
j Ð

kf ;input

kb;input
IiHKiRR

�
j ���!kphtse

IiHKi1RRj (9)

Ii1HK�
i RRj Ð

kf ;actv;input

kb;actv;input
IiHK�

i RRj ���!kphtrf
IiHKi1RR�

j (10)

2RR�
j 1PjÐ

kp;bind

kp;unbind
ðRR�

j Þ2Pj (11)

Pj ���!kbtpn
Pj1mj (12)

ðRR�
j Þ2Pj ���!ktpn ðRR�

j Þ2Pj1mj (13)

mj ���!ktrn mj1l �HKj1RRj (14)

FIG 5 Schematic of the mathematical model of TCS signaling with cross talk. (a) Architecture of the generalized
mathematical model. The input Ii is detected by HKi, which gets phosphorylated (HKi with a yellow dot) and then
transfers the phosphoryl group either to the cognate response regulator, RRi (blue), or to the noncognate response
regulator (RRj,j 6¼ i[green]). Activated RRs trigger downstream gene expression via promoter Pi. Inactive HKs can act
as phosphatases, which dephosphorylate active RRs. (b) Sample interaction matrix for N = 4. The diagonal positions
represent cognate interactions, and the nondiagonal positions represent noncognate interactions. Zeros in the
nondiagonal cells represent the absence of the corresponding cross talk interactions. The ratio of the efficiencies of
phosphotransfer to noncognate and cognate interactions is g. 2N(N–1) such interaction matrices are possible depending
on whether each nondiagonal entry is zero or not.
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Ii ���!kdeg;input
w (15)

Here, the subscript i refers to the ith TCS. We recognize that HKi can be activated reversibly at some basal
level, i.e., in the absence of any input signal, to its active form, HK�i (equation 1) (42). The input, Ii, can bind reversi-
bly to HKi or HK

�
i to yield the complexes IiHKi or IiHK

�
i , respectively (equations 2 and 3). IiHKi can lead to the acti-

vated complex IiHK�i at a rate higher than the basal rate above (equation 4). HK�i can bind RRj and activate it via
phosphotransfer, yielding HKi and RR�j (equation 5). An analogous reaction occurs with IiHK�i binding to RRj
(equation 6). Note that in these reactions, j = i would imply cognate interactions. HKi can bind to RR�j and exert
phosphatase activity (equation 7), consistent with the bifunctional nature of typical HKs, which act as both kinases
and phosphatases (1, 9, 43). The latter activity can also be triggered by IiHKi (equation 8). The reversible binding
of Ii to the intermediate HK-RR complexes is also possible (equations 9 and 10). Thus, we assumed that RR bind-
ing to HK does not influence ligand binding to HK. The difference between the efficiencies of activation of cog-
nate and noncognate RRs by a given HK could come from differences in the association rates, dissociation rates,
and/or phosphotransfer rates involved. These latter differences are all rarely quantified, although binding affinities
and phosphotransfer rates in some select cases have recently been reported (44, 45). Here, for simplicity, we sub-
sumed the differences into the difference in the association rate constants of the HKs with the cognate and non-
cognate RRs. Specifically, recognizing that the activation rates of noncognate RRs are lower than those of their
cognate counterparts, we let the binding rate constants of noncognate partners (kf,ij,phtrf and kf,ij,phtse) be lower
than those of the cognate partners (kf,ii,phtrf and kf,ii,phtse), with the difference quantified by the attenuation factor
g¼ kf ;ij;phtrf

kf ;ii;phtrf
¼ kf ;ij;phtse

kf ;ii;phtse
,1. RR�j dimerizes and binds to the corresponding promoter Pj (equation 11). This binding

enhances transcription compared to its basal level (equations 12 and 13), i.e., ktpn . kbtpn, where kbtpn and ktpn cor-
respond to basal and activated transcription rate constants, respectively. Transcription produces mRNA, denoted
bym, which is then translated with the rate constant ktrn, with the HK and RR translated in the ratio l :1 (equation
14). Here, we recognize that the response also typically upregulates the corresponding TCS proteins (2, 46). Input
signals degrade with rate constant kdeg,input (equation 15). All the other entities present in the network are
assumed to degrade with a rate constant kdeg (not written explicitly for convenience).

Next, we estimated the rate of synthesis of HK and RR proteins by assuming that the DNA binding
reactions are fast compared to transcription and translation reactions (15, 20). Let PT be the total concen-
tration of promoter binding sites present on the bacterial genome, with fb and ff the fractions of pro-
moter sites in the bound and free states, respectively. We assumed pseudoequilibrium between DNA
binding reactions, yielding

kp;bindðff PTÞðRR�
j Þ2 ¼ kp;unbindfbPT (16)

If K1 ¼ kp;unbind=kp;bind is the equilibrium dissociation constant for equation 11, we get

ff
fb
¼ K1

ðRR�
j Þ2

(17)

Because fb 1 fb = 1, it follows that

ff ¼ 1

11
ðRR�

j Þ2
K1

(18)

and

fb ¼ 1

11 K1

ðRR�
j Þ2

(19)

We now have the concentration of promoters in the basal and active states. Equations 11 to 13 esti-
mate the rate of upregulation of the corresponding TCS as follows. From equations 12 and 13, the
change of mRNA concentration would be

dmj

dt
¼ kbtpnff PT 1 ktpnfbPT 2 kdegmj (20)

Applying the pseudoequilibrium approximation to mRNA dynamics, i.e., dmj

dt � 0, gives

mj ¼ kbtpnPT
kdeg

ff1
ktpn
kbtpn

fb

� �
(21)

By substituting equations 18 and 19 into equation 21, we obtain

mj ¼ kbtpnPT
kdeg

11 ktpn
kbtpn

ðRR�
j Þ2

K1

� �

11
ðRR�

j Þ2
K1

(22)

These mRNA molecules translate at the rate ktrn to produce HKj and RRj molecules in the ratio l :1.
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dHKj

dt
¼ lktrnmj (23)

dRRj

dt
¼ ktrnmj (24)

Substituting ktpn
kbtpn

¼ a and ktrnkbtpn
kdeg

¼ b , we get the synthesis rates of HK and RR by mRNA translation
as

dHKj

dt
¼ lbPT � 11a � RR�

jð Þ2
K1

11
RR�

jð Þ2
K1

0
B@

1
CA (25)

dRRj

dt
¼ bPT � 11a � RR�

jð Þ2
K1

11
RR�

jð Þ2
K1

0
B@

1
CA (26)

The rate equations for equations 1 to 15 can be written following standard mass action terms and
by utilizing equations 25 and 26 as follows.

dHKi

dt
¼ 2ðkf ;bas �HKi1kf ;input � Ii �HKi1

X
j

kf ;ij;phtse �HKi � RR�
j Þ

1ðkb;bas �HK�
i 1kb;input � IiHKi1

X
j

kphtrf �HK�
i RRj1

X
j

kb;ij;phtse �HKiRR�
j Þ

1lb PT �
11a � RR�

j
� �2
K1

11
RR�

j
� �2
K1

0
BBBB@

1
CCCCA2kdeg �HKi

(27)

dHK�
i

dt
¼ 2ðkb;bas �HK�

i 1kf ;actv;input � Ii �HK�
i 1

X
j

kf ;ij;phtrfHK�
i RRjÞ

1ðkf ;bas �HKi1kb;actv;input � IiHK�
i 1

X
j

kb;ij;phtrf �HK�
i RRjÞ2kdeg �HK�

i

(28)

dIiHKi

dt
¼ 2ðkb;input � IiHKi1kf ;actv � IiHKi1

X
j

kf ;ij;phtse � IiHKi � RR�
j Þ

1ðkf ;input � Ii �HKi1kb;actv � IiHK�
i 1

X
j

kphtrf � IiHK�
i RRj

1
X
j

kb;ij;phtse � IiHKiRR�
j 1

X
j

kphtse � IiHKiRR�
j Þ2kdeg � IiHKi

(29)

dIiHK�
i

dt
¼ 2ðkb;actv;input � IiHK�

i 1kb;actv � IiHK�
i 1

X
j

kb;ij;phtrf � IiHK�
i � RR�

j Þ
1ðkf ;actv;input � Ii �HK�

i 1kf ;actv � IiHKi1
X
j

kb;ij;phtrf � IiHK�
i RRjÞ2kdeg � IiHK�

i

(30)

dRRj

dt
¼ 2ðX

i

kf ;ij;phtrf �HK�
i � RRj1

X
i

kf ;ij;phtse � IiHK�
i � RRjÞ

1ðX
i

kb;ij;phtrf �HK�
i RRj1

X
i

kb;ij;phtrf � IiHK�
i RRj1

X
i

kphtse �HKiRR�
j

1
X
i

kphtse � IiHKiRR�
j Þ1bPT �

11a � RR�
j

� �2
K1

11
RR�

j
� �2
K1

0
BBBB@

1
CCCCA2kdeg � RRj

(31)

dRR�
j

dt
¼ 2ðX

i

kf ;ij;phtse � RR�
j � HKi1IiHKið Þ1kp;bind � RR�

j

� �2 � PjÞ
1ðX

i

kphtrf � HK�
i RRj1IiHK�

i RRj
� �

1kp;unbind � RR�
j

� �2Pj

1
X
i

kb;ij;phtse � HKiRR�
j 1IiHKiRR�

j
� �Þ2kdeg � RR�

j

(32)
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dHK�
i RRj

dt
¼ 2ð kf ;actv;input � Ii1kb;ij;phtrf1kphtrf

� ��HK�
i RRjÞ

1ðkb;actv;input � IiHK�
i RRj1kf ;ij;phtrf �HK�

i � RRjÞ2kdeg �HK�
i RRj

(33)

dHKiRR�
j

dt
¼ 2ð kf ;input � Ii1kphtse1kb;ij;phtse

� ��HKiRR
�
j Þ

1ðkb;input � IiHKiRR�
j 1kf ;ij;phtse �HKi � RR�

j Þ2kdeg �HKiRR�
j

(34)

dIiHK�
i RRj

dt
¼ 2ð kb;actv;input1kb;ij;phtrf1kphtrf

� �� IiHK�
i RRjÞ

1ðkf ;actv;input � Ii �HK�
i RRj1kf ;ij;phtrf � IiHK�

i � RRjÞ2kdeg � IiHK�
i RRj

(35)

dIiHKiRR�
j

dt
¼ 2ð kb;input1kb;ij;phtse1kphtse

� �� IiHKiRR
�
j Þ

1ðkf ;input � Ii �HKiRR�
j 1kf ;ij;phtrf � IiHKi � RR�

j Þ2kdeg � IiHKiRR�
j

(36)

dPj
dt

¼ 2kp;bind � RR�
j

� �2 � Pj1kp;unbind � RR�
j

� �2
Pj1kdeg � RR�

j

� �2
Pj (37)

d RR�
j

� �2Pj

dt
¼ 2kp;unbind � RR�

j

� �2
Pj1kp;bind � RR�

j

� �2 � Pj1kdeg � RR�
j

� �2
Pj (38)

dIi
dt

¼ 2kdeg;input � Ii (39)

The rate constants involved were obtained from the literature (9, 20, 47) (Table S1). The rate equa-
tions were integrated in MATLAB using the routine ode15s and with chosen initial conditions (Table S1).
In all our simulations, the above-described equations were first solved in the absence of stimuli for a suf-
ficiently long time so that the basal autophosphorylation reactions balanced the degradation reactions
and all the proteins reached a steady state. Using the latter as the prestimulus state of the bacterium,
the above-described equations were solved in the presence of stimuli. The solution depended on the
phenotype, described next.

Interaction matrix. For a bacterium with N TCSs, different phenotypes are possible depending on
the presence or absence of specific cross talk interactions. An interaction matrix defines the identity of
each phenotype (Fig. 5b). The ijth element in the matrix represents the strength of the cross-interaction
between HKi and RRj relative to the cognate interaction. The cognate interactions are all assumed to be
equally strong and occupy the diagonal entries. The cross-interactions are also assumed to be of the
same relative intensity, g, whenever they exist. The nondiagonal entities are thus either 0 or g. Since
there are N(N – 1) nondiagonal elements present, with 2 state values possible for each of them, we get
2N(N–1) different phenotypes.

Fitness formulation.We constructed a fitness variable based on the response of a TCS to a time-de-
pendent input. We defined the fitness corresponding to the ith TCS as

f iðtÞ ¼ exp 2
IiðtÞ
Im

ð12fbÞ
� �

(40)

where fb ¼ 1
11 K1

ðRR�
i
Þ2
follows from equation 19 above. The term 2Ii(t)/Im reflects the inverse relationship

between the fitness and input intensity. Im is taken as the maximum (or peak) input value. Thus, as Ii
increases, it reflects an increasing change in the environment, inducing a more significant fitness loss
until the bacterium responds and adapts. The recovery of fitness following the response is determined
by the second entity in the fitness variable, 1 2 fb, where fb denotes the fraction of promoters bound by

RR*. (We recall that K1 is the dissociation constant of ðRR�j Þ2Pj .) As this fraction increases, the magnitude

of the response also rises, leading to greater fitness given the signal. This formulation of fitness makes
sure that f i lies between 0 and 1. TCSs are assumed to contribute independently to fitness. Thus, for a
bacterium with N TCSs, the total instantaneous fitness is the product of individual fitness values:

f ðtÞ ¼
YN
i¼1

f iðtÞ (41)

In the absence of any signal, f = 1. Similarly, with a perfect response, i.e., with fb = 1, f is again 1. We
also considered an alternative fitness formulation and found no qualitative differences in our results (Text S1).

Stochastic evolutionary simulations. We performed Wright-Fisher simulations to describe the
competition between different phenotypes in random and programmed environments. Such simula-
tions have been used widely to study evolutionary dynamics, including to describe viral diversification
and the development of drug resistance (48, 49) and the development of antibody responses following
vaccination (50, 51). We considered discrete generations with a fixed population of bacteria. Our simula-
tions had these steps:
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1. We initialized the population in one of two ways:

a. Homogeneous population, comprising a colony of a single, chosen phenotype
b. Mixed population, comprising equal numbers of all possible phenotypes

2. We computed the fitness of bacteria as follows:

a. In a programmed environment, we employed the sequence of stimuli I1!I2!. . .!IN. The
fitness of each phenotype was the time-average of the fitness f (t) when all the N signals
were elicited once:

hf i ¼ 1
T

ðT
0

f ðtÞdt (42)

Here, T was chosen to be the time when the last signal faded away.
b. In a random environment, the signals were elicited in a random sequence. Thus, NN signal

sequences were possible, allowing the signals to repeat. The fitness of each phenotype was
then the mean of its time-averaged fitness estimated separately for each of the NN possible
sequences:

hf isequence ¼
1
T

ðT
0

f ðtÞdt (43)

hf i ¼ hhf isequencei (44)

3. We next estimated control fitness, measuring the fitness in the absence of any response, using:

f control ¼
1
T

ðT
0

dt
Y
i

exp 2
IiðtÞ
Im

� �
(45)

This has the same expression as f i, but without the fb term.
4. Fitness selection happens on the bacteria in a generation. For each bacterium, we examined

whether the fitness ‹f › was larger than f control 1 (1 2 f control) � r, where r 2 ½0; 1� was a
random number from a uniform distribution. The latter choice accounted for any stochastic
variations in environmental factors and associated selection forces. If ‹f › was larger, the
bacterium survived. Otherwise, it was removed. This formalism ensured that bacteria that
mounted no responses were not selected and that the rest survived with probabilities
proportional to their fitness.

5. From the survivors, we randomly selected, using a uniform random distribution, some bacteria
and duplicated them to replace lost bacteria and maintain the population constant. This process
assumes that surviving bacteria all have the same ability to multiply.

6. We mutated the resulting bacteria. In our simulations, a mutation toggled a potential cross talk
interaction between on and off. For instance, for a bacterium with cross talk between HKi and RRj,
mutation would turn the corresponding kf,ij,phtrf and kf,ij,phtse from g � 1023 nM21 s21 to 0. Every
bacterium was checked for the possibility of mutation with probability m at each of the
2N(N–1) cross talk interactions possible.

7. We repeated the above procedure from step 4.

One generation in our simulation time frame was typically T = N � 500 s, with N signals elicited in each
generation. This made sure that all the TCSs could be triggered in principle. We performed simulations
over 10,000 generations and over 50 realizations for each parameter setting, which ensured reliable
statistics.

Data availability. The MATLAB codes used to estimate the fitness values and perform Wright-Fisher
simulations and the codon and amino acid sequence files, domain information, alignment files, and raw
data for the resulting phylogenetic trees employed for evolution analyses are available at the GitHub re-
pository (https://github.com/narendradixit/TCS_crosstalk_evolution).
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