Table 7.
Results of performance metrics-precision, recall, and F1-score for classifiers implemented on TF-IDF and BoW models
| Our dataset | Twitter dataset | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PD-TF-IDF | PD-BOW | PD-TF-IDF | PD-BOW | ||||||||||
| Precision | Recall | F1 | Precision | Recall | F1 | Precision | Recall | F1 | Precision | Recall | F1 | ||
| Classification Algorithms | SVM | 99 | 99 | 99 | 99 | 98 | 98 | 95 | 95 | 95 | 94 | 94 | 94 |
| RF | 88 | 79 | 80 | 88 | 79 | 80 | 90 | 88 | 88 | 90 | 88 | 88 | |
| DT | 96 | 94 | 95 | 97 | 95 | 96 | 94 | 93 | 93 | 94 | 93 | 93 | |
| KNN | 89 | 83 | 84 | 78 | 75 | 75 | 81 | 81 | 81 | 75 | 72 | 72 | |
| MLP | 95 | 95 | 95 | 97 | 96 | 96 | 86 | 86 | 86 | 91 | 91 | 91 | |
| NB | 96 | 97 | 96 | 95 | 95 | 95 | 90 | 90 | 90 | 91 | 91 | 91 | |
| LR | 98 | 97 | 98 | 98 | 98 | 98 | 94 | 94 | 94 | 95 | 95 | 95 | |
Note - (i) Highlighted values show that SVM classifier outperformed the rest of the classification algorithms
(ii) Precision, recall, and F1 values in %