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Abstract

A variety of image generation methods have emerged in recent years, notably DALL-E 2, Imagen and Stable Diffusion. While they
have been shown to be capable of producing photorealistic images from text prompts facilitated by generative diffusion models con-
ditioned on language input, their capacity for materials design has not yet been explored. Here, we use a trained Stable Diffusion
model and consider it as an experimental system, examining its capacity to generate novel material designs especially in the context
of 3D material architectures. We demonstrate that this approach offers a paradigm to generate diverse material patterns and designs,
using human-readable language as input, allowing us to explore a vast nature-inspired design portfolio for both novel architectured
materials and granular media. We present a series of methods to translate 2D representations into 3D data, including movements
through noise spaces via mixtures of text prompts, and image conditioning. We create physical samples using additive manufactur-
ing and assess material properties of materials designed via a coarse-grained particle simulation approach. We present case studies
using images as starting point for material generation; exemplified in two applications. First, a design for which we use Haeckel’s
classic lithographic print of a diatom, which we amalgamate with a spider web. Second, a design that is based on the image of a
flame, amalgamating it with a hybrid of a spider web and wood structures. These design approaches result in complex materials
forming solids or granular liquid-like media that can ultimately be tuned to meet target demands.
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Introduction
Materials design using a variety of hierarchical architectures, in-
cluding porous materials, has been a subject of intense research
over the past decades [1–7]. While significant progress has been
made, the exploration of novel architectures, and the use of un-
conventional sources as a body of knowledge to derive hierarchi-
cal structural designs, remains a challenge. One source for
material design solutions is the use of biologically inspired para-
digms, where a growing body of knowledge has contributed to
new explorations in materials research [8–15].

Another avenue is the use of cross-cutting intersections of
knowledge bases, integrating insights that incorporate a broad
range of biological, human, cultural and scientific knowledge
[16–18]. Such knowledge, collected across civilizations and eras of
human development, and captured in the large body of knowl-
edge encapsulated in the nexus of language, symbolism, images
and associations between human thinking and physical or con-
ceptual materializations of such, provides an important frontier
in computationally driven design.

To solve such problems, the use of deep learning offers ave-
nues toward fundamental solutions to these challenges.

Recently, a variety of image generation methods have been pro-
posed, notably DALL-E 2 [19], Imagen [20] and Stable Diffusion
[21]. In this article, we focus on a specific aspect, to explore to
what extent these methods can be used for broader sets of
Nature-inspired materials design applications [22–27], realizing
the overall approach summarized in Fig. 1. In earlier research
[28–31], text-to-material translations have already been exam-
ined, including using combinations of CLIP with VQGAN [32].
This enabled not only the translation of text to material designs,
based on comprehensive training data that represent a broad
spectrum of all vision–text pairs created through media collec-
tions like the Internet, but also enabled researchers to direct as-
sembly of custom material building blocks into specific shapes
and patterns, such as done for the case of flame particles [28].

Objectives of this study
A key objective of this study is to explore the cross-pollination of
different fields; and specifically, how information from one mo-
dality of context can be translated into another, through rigorous
categorization [16, 17, 33–35]. Here, we focus on translations
from the corpus of language-image pairings as captured in Stable
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Diffusion, toward 3D material design explorations. We are specif-
ically interested to explore bio-inspired design cues, where we
seek to translate patterns found in natural systems such as spi-
der webs [36–39], wood microstructures [40–42] or protein

patterns [33, 43, 44] into innovative material architectures, build-
ing on earlier bio-inspired design work [8–15].

Here, we build on this work, but use more sophisticated image
generation tools, using diffusion architectures [20, 21, 45–50]

Figure 1. Schematic overview of the method developed and applied here. We start from text prompts, over which we interpolate in some form,
resulting in a stack of images that form a voxel representation of a 3D material. These are then processed (here into black/white form, representing
black ¼ no material, white ¼material) and stacked, forming a voxel representation that is also translated into a 3D mesh. The mesh can be used either
for simulation analysis or for additive manufacturing, followed by experimental assessment.
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(Buehler, unpublished work [51]), and a fundamentally different
approach for text generation where synthesis no longer requires
an iterative examination of latent space through co-operation
with a CLIP classifier, but that facilitates synthesis of images di-
rectly from a seed noise vector. This approach provides numer-
ous advantages, including much higher resolutions and image
fidelity, which as is shown in this article bodes well for material
design applications. Moreover, models like Stable Diffusion or
DALL-E 2 [19, 21, 52] emerge as a representation of a broader col-
lective human corpus of visual–text pairings, which can be a
powerful reservoir for materials design applications. In the spirit
of what is referred to as bio-inspired design, this approach repre-
sents a variation of the concept to translate design ideas across
modalities and physical realizations.

The general mathematical context of these models is that
they produce an image I from a given text input T (and an op-
tional image conditioning, Iinput used during image-to-image
translation), as well as a set of synthesis parameters p :

I ¼ DðT; Iinput; pÞ: (1)

The text prompt is simply provided as string data and p
includes synthesis parameters g (guidance scale in text-to-image
generation or strength parameter within 0. . .1 in image-to-image
generation guided by text), n (number of inference steps), g (be-
tween 0.1, where lower values typically yield better quality,
higher values more diverse results), combined with a random
seed S (implemented via a PyTorch global seed):

p ¼ ðg; n;g; SÞ: (2)

The parameter g delineates how strongly the model follows the
text prompt, as opposed to generating more random solutions.
Altogether, the image generation model can be mathematically sum-
marized to yield images I based on its salient input parameters as

I ¼ DðT; Iinput; g; n;g; SÞ: (3)

The standard resolution of images generated with Stable
Diffusion is 512 � 512, albeit the method can also generate larger-
resolution images (unless otherwise indicated, we use the standard
resolution in image synthesis; Supplementary Fig. S1 shows exam-
ples for images generated at 512� 512 and 1024� 1024 resolution).

A challenge that needs to be overcome is that materials typi-
cally require 3D realizations; quite distinct from 2D image data.
While there has been work on 3D model generation [53], sophisti-
cated text-to-image diffusion models cannot yet generate 3D rep-
resentations. Other methods that have been proposed is to use
neural networks to predict 3D data directly from 2D visuals [54];
however, these tools are relatively early in their development
stages and not generally applicable. Hence, we set forth a simple
but structurally diverse and rich algorithm that enables the di-
rect use of state-of-the-art image generation tools, specifically
Stable Diffusion [21] (but the method could generally be applied
to other methods as well including for novel neural network
architectures that are trained specifically with this downstream
application in mind). We further outline a method to rapidly as-
sess properties of the generated design, realized using a coarse-
grained particle model that offers a means to assess mechanical,
vibrational or other features. While this is beyond the scope of
this initial article, future work could use this pipeline as a way to
conduct a broad search of the design space defined by the nexus
of the lexicon of human language, knowledge and mathemati-
cally or statistically parameterized, or learned, latent space.

Methods
Generative model: interpolating and mixing text
conditioning
The method used here is based on a pre-trained Stable Diffusion
model and using the sd-v1-4.ckpt [55] weights. We create a vari-
ety of functions that change the way by which images are synthe-
sized, enabling multiple text prompts and an iteration between
such text prompts using a weighting function. In the Stable
Diffusion model, a text prompt T is translated into an embedding
tensor E that captures the coding of the particular input provided
in a form that the generative diffusion model understands as a
conditioning to produce a particular image that reflects the text.

Building on this approach, in order to use multiple text prompts,
we first generate embeddings E1 and E2 for two text prompts T1 and
T2 provided, following generally Ei ¼ ftext embðTiÞ. The two embedd-
dings are then mixed according to a weight k (between 0 . . . 1):

E ¼ kE1þð1� kÞE2: (4)

This then results in an expanded generator model that fea-
tures multiple text prompts and the weight parameter k:

I ¼ DðT1;T2; Iinput; g; n;g; S; kÞ: (5)

Before translation to 3D representation, the images I gener-
ated by the diffusion model are processed. In this study, we focus
on processing to convert shades of color or intensity into a binary
representation, primarily because we aim to design and manu-
facture materials with two material types only: void, and mate-
rial present, at each point in 3D.

First, we translate the image into a binary B&W representation
using cv2.threshold. We resize the image to the desired output
resolution, and apply cv2.bilateralFilter and cv2.GaussianBlur,
followed by a second cv2.threshold operation. This helps to gen-
erate smooth contours, of white (material) and black (no mate-
rial) distributions. Next, we remove small white areas from each
image to avoid too many small clusters that can be difficult to
manufacture. We achieve this by finding all contours using
cv2.findContour, and then remove areas below a certain thresh-
old by drawing over with the black signal. The approach could
easily be modified to use other transformations, for example, re-
alizing multiple-material outputs depending on color or texture
produced by the generative model.

Within the set of parameters p, we typically use g ¼ 7:5 and
n ¼ 20. Random seeds are utilized to generate images from noise
vectors and controlling the seeds enables us to reproduce results
deterministically.

Generating a voxel representation in 3D and
translation to a mesh model
In order to generate 3D architectures, we introduce a voxel repre-
sentation. As a basic step, each image is translated into one sheet
of voxel as described above. We either use the diffusion model to
generate a series of images and from them, voxel sheets, that are
stacked together to form a 3D representation of material, or use a
small set of voxel sheets and generate interpolations between
them. In the interpolation case, we use scipy.interpn to interpo-
late between two contours, resulting in a smooth transition be-
tween the top and bottom voxel sheets (for a schematic of how
this process works, see example in Fig. 2a, left).

For applications in analysis (coarse-grained modeling) or addi-
tive manufacturing, the voxel data are translated into a 3D mesh
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representation using trimesh. For this step, the voxel stacks are
processed using the trimesh.voxel.ops.matrix_to_marching_
cubes function. As an option, the resulting meshes are smoothed
using trimesh.smoothing.filter_mut_dif_laplacian or used di-
rectly, as predicted.

Coarse-grained model for mechanical
assessment
To illustrate the potential to examine physical properties of the
generated structures, we implement a coarse-grained LAMMPS

model [56]. We consider the mesh file (e.g. loaded as STL file) and
insert a regular face-centered cubic particle structure in the in-
side of the mesh (alternatively, we can work directly with the
voxel data but using mesh data as input enables users to poten-
tially process the mesh files in other code or combine multiple
mesh files into larger assemblies). Each particle interacts accord-
ing to a harmonic inter-particle energy potential, defined as

/ rð Þ ¼ 1
2

kðr� r0Þ2: (6)

Figure 2. Using two prompts as input, and smoothly interpolating between these two designs to generate a larger voxel representation. (a) Left:
Illustration how we interpolate between two source images, generating a number of intermediate layers, resulting in a voxel grid that captures the
initial 3D geometry produced. Right: The two source images generated from the prompts T1 ¼ ‘a small white circle on black background’ and T2 ¼ ‘a
large white hexagon with sharp edges on black background’. Parameters used are p ¼ ðg ¼ 0:8; n ¼ 20; S ¼ 343 613Þ. (b) Resulting 3D geometry viewed
from different angles. (c) Physical samples manufactured using 3D printing, shown from a few angles to visualize the final results.

Figure 3. Interpolation between two text prompts by varying k, resulting in continually varying image output. The left corresponds to T1 ¼ ‘a fracture in
glass with sharp edges’ (left) and the right to T2 ¼ ‘a brittle fracture in a diamond’ (right), with smooth interpolation between. Supplementary Movie M1
shows an animation across all generated 512 frames. Parameters used are p ¼ ðg ¼ 0:75; n ¼ 40; S ¼ 343 613Þ.
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We choose k ¼ 1:5 and r0 ¼ 1:0. Only nearest neighbor par-
ticles interact. Bonds can never break during simulations, as de-
fined by the interparticle energy model in Equation (2).

We implement displacement boundary conditions, where the
top and bottom row of the particle system are fixed and move

according to a prescribed pulling rate to implement mechanical
deformation.

The resulting data are analyzed using Python scripts and vi-
sualized using OVITO [57]. We use mesh representations of the
particle model to visualize the 3D structures, with color codes

Figure 4. Generation of architectured materials from diffusion models. We use two text prompts T1¼ ‘several small white circles on black background’
and T2 ¼ ‘a large triangle in the shape of a spider web on black background’ and interpolate in three steps between them. Parameters used are
p ¼ ðg ¼ 0:8; n ¼ 20; S ¼ 33Þ. (a) Depiction of the three designs generated; however, only the left and center design are used for interpolation. It is seen
that the mixing of the two prompts at k ¼ 0.5 (the center result) yields an interesting design that neither text prompt alone could have generated.
(b) Visualization of the resulting 3D geometry from two angles, from top/bottom to show the distinct features at either end. (c) 3D printing process, here
showing the slicing of the structure and generation of an internal gyroid structure. (d) Final 3D printed sample of the material.
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to indicate the stress level (blue ¼ low stress and red ¼ high
stress).

Additive manufacturing
We use a Ultimaker S3 fused deposition modeling (FDM) 3D
printer with white polylactic acid (PLA) filament to produce the
physical samples. The granular media are produced using a QIDI
PRO 3D printer with wood-based PLA filament, hence the wood-
like color visible in the photographs. Supplementary Movie M6
shows a video of the additive manufacturing process for this and
some of other samples reported in this article.

Results
The purpose of this article is to report the general methodology
and to implement a first demonstration of the proposed concept.
We cover both, generation of 3D architectures from various text
prompts, as well as generating a new form of granular media by
generating a large ensemble of text generated particles.

First, we demonstrate the use of the mixed text embeddings in
generating continuously varying images, as shown in Fig. 3. We use

T1 ¼ ‘a fracture in glass with sharp edges’

T2 ¼ ‘a brittle fracture in a diamond’

Figure 5. Various designs from simple original input, assembled in different organizations. The original generation results in four distinct designs I3, I1,
I3 and I4 (since I3 � I4, we only use the first three in the design process). We use two text prompts T1 ¼ ‘a white circle on black background’ and T2 ¼ ‘one
large white square centered on black background’ and interpolate in four steps between them. Parameters used are p ¼ ðg ¼ 0:75; n ¼ 30; S ¼ 3433Þ.
(a) Original image results Ii before processing. (b) Various permutations of the elemental designs and resulting 3D structures. (c) Results of 3D printed
samples, for two of the designs.
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Figure 6. Generation of granular media using the approach, for different design cues. (a) Text prompts T1 ¼ ‘a white circle on black background’ and T2

¼ ‘a white oval on black background’. Parameters used are p ¼ ðg ¼ 7:5; n ¼ 40; S ¼ 3431Þ, with a resolution of 1024 � 1024. This generation task results
in a single particle; it is replicated N times and then 3D printed, forming the granular material shown on the right. (b) The design is generated using a
single text prompt, T ¼ ‘white bright stars in the shape of a spiral on black background’ and then made into a 3D design by extrusion in 3D paint.
Parameters used are p ¼ ðg ¼ 5:5; n ¼ 60; S ¼ 34 353 531Þ, with a resolution of 1024 � 1024. We generate two sets of these star-shaped granules with
different height (3.3 mm and 10.5 mm). (c) Simple manual shaking experiment conducted to demonstrate the liquid-like mechanical behavior of the
resulting material. Supplementary Movies M2–M4 show additional experiments, recorded in slow-motion.
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and vary k from 0 . . . 1 in 512 steps, generating 512 frames that
are then rendered as a movie (Supplementary Movie M1).

This example already shows an interesting transition between
the two prompts; in early stages, the generated image reflects
that of prompt T1 whereas at the end, it approaches the solution
of T2. The transition between the two is not ‘linear’ but rather
induces more sudden transitions in the type of generated images.
We use this example as motivation to generate complex, more
abstract designs by mixing individual prompts.

Figure 3 depicts results for two distinct prompts as input, and
smoothly interpolating between them to generate a larger voxel
representation of a 3D engineering design. Going into details of
the process, Fig. 3a shows the two source images generated from
the prompts T1 ¼ ‘a small white circle on black background’ and
T2 ¼ ‘a large white hexagon with sharp edges on black back-
ground’. Figure 3b shows the resulting 3D geometry viewed from
different angles. Finally, Fig. 3c shows physical samples manu-
factured using 3D printing.

Next, we explore the potential to use a mixing of text prompts
as a way to yield interesting designs, using k. Figure 4 depicts the
results of generation of architectured materials [58] through in-
terpolation, by varying the k parameter in Equation (5). We use
two text prompts T1¼‘several small white circles on black back-
ground’, and T2 ¼ ‘a large triangle in the shape of a spider web on
black background’ and interpolate in three steps between them.
Figure 4a shows a depiction of the three designs generated. We
find that the left and center design—where the center design
reflects a particularly interesting outcome, achieved by mixing
the two prompts at k ¼ 0.5. Figure 4b shows a visualization of the

resulting 3D geometry from two angles, from top/bottom to show
the distinct features at either end. To illustrate the process by
which the design is manufactured, Fig. 4c shows details of the
slicing in the 3D printing process (we use an internal gyroid struc-
ture). Figure 4d then depicts the final 3D printed sample of the
material.

The image generation model with its various parameters de-
lineated in Equation (5) can be used to define a set of building
blocks that can be arbitrarily combined to yield interesting com-
binatorial options. Figure 5 realizes this idea and presents designs
from simple original input, assembled in different organizations.
The original generation results in four distinct designs I3, I1, I3

and I4 (since I3 � I4, we only use the first three in the design pro-
cess). As input we use two simple text prompts T1 ¼ ‘a white cir-
cle on black background’ and T2 ¼ ‘one large white square
centered on black background’ and interpolate in four steps be-
tween them. Figure 5a shows the original Image results Ii before
processing. Figure 5b then shows various permutations of the ele-
mental designs and resulting 3D structures. Figure 5c displays
photographs of 3D printed samples, for two of the designs.

The method cannot just be used to make singular architec-
tural materials. Using additive manufacturing, we can easily gen-
erate hundreds of copies of particles, each of which is designed
using the diffusion approach described here. Figure 6 demon-
strates this granular media generation approach, for different de-
sign cues. In the design used in Fig. 6a, we trigger synthesis using
text prompts T1 ¼ ‘a white circle on black background’ and T2 ¼
‘a white oval on black background’. As can be seen, this genera-
tion task results in a single particle. The singular particle is then

Figure 7. Mechanical assessment of one of the designs shown in Fig. 5. We limit the exploration to a simple tensile test (a), resulting in stress–strain
curves (b), a depiction of the Von Mises stress (c), and a stress field in the 3D domain (d) and a cross-section (e). All stresses and displacements are
plotted in non-dimensional units, normalized by the largest stress/displacement in the numerical experiment.
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replicated a larger number of times and then 3D printed, forming
the granular material shown on the right. Figure 6b shows how
many variations of a design can be generated using a single text
prompt, T ¼ ‘white bright stars in the shape of a spiral on black
background’. Since this prompt results in many particles at the
same time, we can directly produce a granular material from the
resulting image. We generate two sets of these star-shaped gran-
ules with different height using a simple extrusion approach.
Figure 6c shows the result of a simple shaking experiment con-
ducted to demonstrate the liquid-like mechanical behavior of the
resulting material. Supplementary Movies M2–M4 show addi-
tional shaking experiments, recorded in slow-motion, to demon-
strate the characteristic of the produced material as a fluid-like
substance.

While we limit ourselves largely to exploring the generation
process and how various parameters affect the result, future
work should focus on characterizing the designs to meet certain
objective demands. For this scenario, either experimental or com-
putational assessment methods are needed. Figure 7 shows a
simple method to offer a rigorous mechanical assessment of one
of the designs shown in Fig. 5. We limit the exploration to a sim-
ple tensile test (Fig. 7a), resulting in stress–strain curves (Fig. 7b),
a depiction of the Von Mises stress (Fig. 7c), and a stress field in
the 3D domain (Fig. 7d) and a visualization of the internal
stresses via a cross-sectional view (Fig. 7e). The results depicted
here are based on a coarse-grained model that captures, via a
shape-based mesoscale model, elementary structure–function
relationship. Developed directly based on the geometry file

Figure 8. Systematic variations of parameters inference steps n and guidance scale g. Text prompt T ¼ ‘several small white circles on black
background’. Other constant parameters p ¼ ðS ¼ 33Þ.
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produced by the generative method (from an STL file), the simu-
lation approach allows us to explore various mechanical bound-
ary conditions, including a tensile test as done here. The data
produced by such a method can easily be integrated with a
Bayesian optimization algorithm, and parameters in Equation (5)
could be tuned to meet certain design demands.

We now show a couple of systematic explorations of key
parameters in Equation (5) and examine how they affect the pro-
duced images, and by extension, how they affect the design cues
we can utilize for 3D material construction. Figure 8 displays the
results of systematic variations of inference steps n and guidance
scale g. Similarly, Fig. 9 shows results of a systematic variation of
inference steps n and guidance scale g, but this time for two text
prompts T1 ¼ ‘several small white circles on black background’

and T2 ¼ ‘a large triangle in the shape of a spider web on black
background’ mixed with k ¼ 0:5.

Thus far, all image generation tasks were conducted solely
based on text prompts (either a single one or mixed prompts to en-
hance design diversity). Now, we use also an input image to condi-
tion the generation, in addition to one or more text prompts. As
will be shown, this offers a tremendous range of controllability and
expressiveness in terms of inducing highly complex design con-
cepts that cross or amalgamate cues provided. Figure 10 shows the
results of these computational experiments, depicting generation
of a variety of images based on a starting image as an additional
input. In this case, we use a diatom structure as input image
(Fig. 10a) for variations of parameters inference strength g and n.
The diatom image is extracted from Haeckel’s lithographic print of

Figure 9. Systematic variations of parameters inference steps n and guidance scale g. Text prompts are T1 ¼ ‘several small white circles on black
background’ and T2 ¼ ‘a large triangle in the shape of a spider web on black background’. Other constant parameters p ¼ ðS ¼ 33; k ¼ 0:5Þ.
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Figure 10. Generation of a variety of images, based on a starting image Iinput—a diatom structure (a), based on Haeckel’s lithographic print of a diatom
[59]—for variations of parameters inference strength g and n. The text prompt is T1 ¼ ‘a spider web with thick white lines on black background’. Other
constant parameters p ¼ ðS ¼ 33Þ, resulting in the images summarized in (b).
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a diatom from Kunstformen der Natur (English: Art Forms in Nature),
as reported in Ref. [59]. The text prompt is T¼ ‘a spider web with
thick white lines on black background’. Results are shown in
Fig. 10b. The palette of designs can then serve as a starting point
for further exploration or can be combined into a set of material
building blocks akin to what was presented in Fig. 5. By playing
with the text prompt, one can achieve very distinct material design
outputs. Figure 11 shows a variation of g and strength g (all while
using the same image prompt as input as shown in Fig. 10a). The
text prompt used here is T ¼ ‘several small white circles on black
background’. Another example for different parameter variations
is shown in Supplementary Fig. S2. These broad variations in de-
sign can be turned into 3D architecture materials, as shown in
Fig. 12 for a few examples.

By controlling the input image, we can expand the space of
resulting nature-inspired designs. For instance, Supplementary Fig.
S3 shows a candle-based design, where text prompts are T1 ¼ ‘a
spider web with thick lines on black background’ and T2 ¼ ‘the in-
ternal details of wood microstructure’, with k ¼ 0:25: Figure 13
presents the entire workflow from design to modeling to
manufacturing, for a design based on the intersection of a flame
image with such a complex text prompt, for one of the designs
generated (see red mark in Supplementary Fig. S3 for the one
picked). Supplementary Movie M5 shows a movie of the tensile de-
formation simulation of the material. The results reveal that inter-
esting material designs can be generated from a rich repertoire of
design ideas, accessed directly via a combination of human
language input, nature-based design ideas and mathematical

Figure 11. Variation of g and strength g. The text prompt is T1 ¼ ‘several small white circles on black background’. Other constant parameters
p ¼ ðS ¼ 33Þ.
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parameterization. The resulting architecture material combines
features from all of these foundational cues and amalgamates
them into an intricate structural design. The mechanical assess-
ment, following a similar approach as done earlier for the results
in Fig. 7, provides us with a quantitative mechanism to better un-
derstand the design, score key performance measures and opti-
mize the resulting designs to meet a set of demands.

Discussion and conclusion
In this article, we used a pre-trained Stable Diffusion model and
consider it as an experimental system—reflecting a broad corpus
of human knowledge—to examine its capacity to generate novel
material designs specifically in the context of 3D material archi-
tectures. Such materials design may find many applications
ranging from optical to mechanical [60, 61] or multifunctional
and integrated responsive material systems [62, 63].

We demonstrated that this approach offers a useful paradigm
to generate a variety of novel material designs, using human lan-
guage as a reservoir for cultural and civilization-spanning knowl-
edge as design input, and exploring a vast nature-inspired

portfolio of architectures and patterns. We present a series of
methods to translate 2D representations into 3D data, including
movements through noise spaces, mixtures of text prompts and
interpolations. We manufactured several samples using additive
manufacturing [15, 64, 65], and presented a method to assess the
mechanical features (including stability) and other structural
material properties of materials designed in that way, based on a
coarse-grained shape-based particle simulation.

Specific objective functions that score material designs for al-
ternative target properties, beyond mechanical stability, could be
developed, based on existing literature. For instance, optimiza-
tion work to design photonic crystal structures has been reported
[66, 67], which could be enriched with the tools described here.
Within this context, materials that meet multiple design
demands could be constructed, such as waveguide filters.

A challenge in the use of the pre-trained model as conducted
here is that some designs may not yield continuous solutions in
3D, which may affect mechanical stability or manufacturability.
In the examples reported here, we focused specially on relatively
simple cases where we achieve a continuous material design;
however, variations of such scenarios can easily be constructed

Figure 12. Translation of the hybrid diatom-spider web structures (shown in Figs 10 and 11, and Supplementary Fig. S2) into a 3D architecture, for three
different examples shown in panels (a), (b) and (c). For these examples, we use the pixel color intensity to map to depth of the resulting 3D structure;
bright/white ¼maximum height, dark/black ¼ no material. This method is applied symmetrically in both out-of-plane directions (forward and
backward) to yield a 3D material architecture.
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Figure 13. Entire workflow from design to modeling to manufacturing, for a design based on the intersection of a flame image with a complex text
prompt featuring are T1 ¼ ‘a spider web with thick lines on black background’ and T2 ¼ ‘the internal details of wood microstructure’. Other constant
parameters p ¼ ðS ¼ 33; k ¼ 0:25Þ. (a) Overview of the design steps from raw image to symmetrically extruded 3D material with a box added at the
exterior as shown in (b) (we follow the same process of symmetrically extruding the image based on pixel intensity as explained in Fig. 12). Panel (c)
shows a simple mechanical assessment under tensile deformation and (d) shows the resulting stress–strain results and stress field statistics for the
Von Mises stress. (e) Photographs of the final manufactured material using FDM 3D printing. Supplementary Movie M4 depicts the stress field as the
sample is deformed. Supplementary Movie M6 shows a recording of the additive manufacturing process for this and some of other samples reported in
this article.
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that fail to produce proper mechanical designs. The mechanical
analysis, as depicted in Figs 7 and 13, is critical to provide a rigor-
ous assessment of stability. In an unsupervised algorithm that
explores vast spaces of designs, a rapid assessment of the me-
chanical properties could help to identify solutions that meet cer-
tain design demands, including mechanical stability.

The pre-trained model offers a very vast space of design solu-
tions, far exceeding the samples considered here. Especially by
combining the diffusion model with initial image cues (see Figs 10–
12) provides a structurally diverse and rich platform to work from.
If the existing platform is not sufficient, or if specific target designs
are desirable, the model can easily be fine-tuned or retrained based
on new or expanded data. This can offer not only a mechanism to
use 2D image data as reported in this article but could possibly also
offer a pathway to directly construct 3D data from text cues, as
long as datasets exist that map conditioning constraints with
resulting structural designs. This could also address inherent
biases included in datasets that yield models such as Stable
Diffusion, and any limitations that stem from sourcing of the data
from particular sources (e.g. Internet-based text-image pairings
versus more broadly researched culturally richer relationships that
exist beyond the Internet). Generally, though, the framework used
here can capture such richer, more diverse and larger datasets and
provide ample room for improvements in a variety of forms.

The use of deep learning, and especially generative methods,
opens important frontiers in materials design. The use of condi-
tional diffusion models as used here can be expanded, or altered,
to reflect materials-specific training sets. Thereby, future appli-
cations of the technology presented here can focus on models
trained specifically to capture hierarchical materials, or a specific
subset of bio-based material designs.

The general concepts introduced here offer many opportunities
for future work, such as targeted optimization for specific material
properties including mechanical deformation and fracture [68–70].
It will also be interested to further examine the image generation
method and explore, systematically, the effect of variations in text
prompts on the final design. Another target of study could be the
exploration of variability, especially in light of recent findings that
natural variability in designs seen in Nature often yield superior
material performance [71–73]. Using the source of such natural
variability, as predicted in the designs using Stable Diffusion, could
be an interesting topic of future research.
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