Skip to main content
. 2022 Dec 21;216:119430. doi: 10.1016/j.eswa.2022.119430

Table 3.

Training parameters and evaluation metrics of successful classifiers used for Phase-1.


Phase-1
Accuracy (100*Pi) Total Misclassification Cost Prediction Speed ( obs/sec) Training Time Model Type Feature Selection
Cosine KNN 92.2 107 53 877.97 sec K = 10, Distance weight = Equal 2000 features
Linear Discriminant 92.4 105 1500 75.487 sec Covariance structure = Full 2000 features
Bagged Trees Ensemble 95 69 5200 1092.3 sec Maximum number of splits = 6901, Number of learners = 30 2000 features
Medium Gaussian SVM 97.2 39 250 214.64 sec Kernel scale = 45, Multi class method = One-vs-One 2000 features
SqueezeNet Deep Learning 95.86 59 950 min 20 sec Iteration = 1000, Learning rate = 10-4, Image size = 227*227*3