Skip to main content
. 2022 Dec 21;216:119430. doi: 10.1016/j.eswa.2022.119430

Table 5.

Classification performance metrics of the proposed method.

Specificity (%) Precision (%) Recall (%) F1 Score (%) AUC MCC
Phase-1 Cosine KNN 95.35 90.09 85.93 87.96 0.9064 0.8230
Linear Discriminant 94.70 89.06 87.69 88.37 0.9120 0.8272
Bagged Trees Ensemble 97.19 94.06 90.55 92.27 0.9387 0.8861
SqueezeNet Deep Learning 99.67 99.25 88.13 93.36 0.9390 0.9072
Medium Gaussian SVM 98.16 96.22 95.16 95.69 0.9666 0.9359
Majority Voting-1 99.98 99.83 99.07 99.51 0.9974 0.9855
Phase-2 Logistic Regression 88.12 87.94 86.79 87.36 0.8746 0.7492
Linear Discriminant 91.14 90.82 87.88 89.33 0.8951 0.7907
Bagged Trees Ensemble 91.57 91.39 89.61 90.49 0.9059 0.8120
Cosine KNN 97.19 96.83 86.14 91.18 0.9167 0.8386
Medium Gaussian SVM 96.33 96.08 90.26 93.08 0.9329 0.8675
Majority Voting-2 99.73 99.69 98.63 99.23 0.9928 0.9518
Overall Majority Voting 99.88 99.78 98.90 99.40 0.9956 0.9720