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Abstract

The similarity among samples and the discrepancy among clusters are two crucial aspects of 

image clustering. However, current deep clustering methods suffer from inaccurate estimation 

of either feature similarity or semantic discrepancy. In this paper, we present a Semantic Pseudo-

labeling-based Image ClustEring (SPICE) framework, which divides the clustering network into a 

feature model for measuring the instance-level similarity and a clustering head for identifying the 

cluster-level discrepancy. We design two semantics-aware pseudo-labeling algorithms, prototype 

pseudo-labeling and reliable pseudo-labeling, which enable accurate and reliable self-supervision 

over clustering. Without using any ground-truth label, we optimize the clustering network in 

three stages: 1) train the feature model through contrastive learning to measure the instance 

similarity; 2) train the clustering head with the prototype pseudo-labeling algorithm to identify 

cluster semantics; and 3) jointly train the feature model and clustering head with the reliable 

pseudo-labeling algorithm to improve the clustering performance. Extensive experimental results 

demonstrate that SPICE achieves significant improvements (~10%) over existing methods and 

establishes the new state-of-the-art clustering results on six balanced benchmark datasets in terms 

of three popular metrics. Importantly, SPICE significantly reduces the gap between unsupervised 

and fully-supervised classification; e.g. there is only 2% (91.8% vs 93.8%) accuracy difference on 

CIFAR-10. Our code is made publicly available at https://github.com/niuchuangnn/SPICE.
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I. INTRODUCTION

IMAGE clustering aims to group images into different meaningful clusters without human 

annotations, and is an essential task in unsupervised learning with applications in many 

areas. At the core of image clustering are the measurements of the similarity among 

samples (images) and the discrepancy among semantic clusters. Recently, deep learning 

based clustering methods have achieved great progress thanks to the strong representation 

capability of deep neural networks.

Initially, by combining autoencoders with clustering algorithms, some deep clustering 

methods were proposed to learn representation features and perform clustering 

simultaneously and alternatively [2], [3], [4], [5], [6], [7], [8], [9], [10], achieving better 

results than the traditional methods. Due to the overestimation of low-level features, these 

autoencoder-based methods hardly capture discriminative features of complex images. Thus, 

a number of methods were proposed to learn discriminative label features under various 

constraints [11], [12], [13], [14], [14], [15], [16]. However, these methods have limited 

performance when directly using the label features to measure the similarity among samples. 

This is because the category-level features lose too much instance-level information to 

accurately measure the instance similarity. Very recently, Van Gansbeke et al. [1] proposed 

to leverage the embedding features of the unsupervised representation learning model to 

search for similar samples across the whole dataset, and then encourage a clustering model 

to output the same labels for similar instances, which further improved the clustering 

performance. Considering the imperfect embedding features, the local nearest samples in 

the embedding space do not always have the same semantics especially when the samples 

lie around the borderlines between different clusters as shown in Fig. 1(a), which may 

compromise the performance. Essentially, SCAN only utilizes the instance similarity for 

training the clustering model without explicitly exploring the semantic discrepancy between 

clusters, as shown in Fig. 1(b), so that it cannot identify the semantically inconsistent 

samples.

To this end, we propose a Semantic Pseudo-labeling-based Image ClustEring (SPICE) 

framework that synergizes the similarity among instances and semantic discrepancy between 

clusters to generate accurate and reliable self-supervision over clustering. In SPICE, the 

clustering network is divided into two parts: a feature model and a subsequent clustering 

head, which is exactly a traditional classification network. To effectively measure the 

instance similarity and the cluster discrepancy, we split the training process into three stages: 

1) training the feature model; 2) training the clustering head; and 3) jointly training the 

feature model and clustering head. We highlight that there is no any annotations throughout 

the training process. More specifically, in the first stage we adopt the self-supervised 

contrastive learning paradigm to train the feature model, which can accurately measure 

the similarity among instance samples. In the second stage, we propose a prototype 
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pseudo-labeling algorithm to train the clustering head in the expectation-maximization (EM) 

framework with the feature model fixed, which can take into account both the instance 

similarity and the semantic discrepancy for clustering. In the final stage, we propose a 

reliable pseudo-labeling algorithm to jointly optimize the feature model and the clustering 

head, which can boost both the clustering performance and the representation ability.

Compared with the instance similarity based method [1], the proposed prototype pseudo-

labeling algorithm can leverage the predicted cluster labels, obtained from the clustering 

head, to identify cluster prototypes in the feature space, and then assign each prototype label 

to its neighbor samples for training the clustering head alternatively. Thus, the inconsistency 

among borderline samples can be avoided when the prototypes are well captured, as shown 

in Fig. 1(b). On the other hand, given the predicted labels, the reliable pseudo-labeling 

algorithm can identify unreliable samples in the embedding space, as the yellow circles in 

Fig. 1(c), which will be filtered out during joint training. Therefore, the proposed SPICE 

can generate more accurate and reliable supervision by synergizing the similarity and 

discrepancy.

Our contributions are summarized as follows. (1) We propose a novel SPICE framework 

for image clustering, which generates accurate and reliable self-supervision for clustering 

by synergizing the feature similarity among similar samples and the discrepancy between 

clusters. To this end, the clustering network is divided into a feature model for measuring the 

similarity and a clustering head for identifying the discrepancy. (2) We design a prototype 

pseudo-labeling algorithm to identity prototypes for training the clustering head in an EM 

framework, which effectively reduces the semantic inconsistency of the samples around 

borderlines. (3) We design a reliable pseudo-labeling algorithm to select reliable samples for 

jointly training the feature model and the clustering head, which significantly improves the 

clustering performance.

Extensive experimental results demonstrate that SPICE outperforms the state-of-the-art 

clustering methods on common image clustering benchmarks by a large margin (~10%), 

closing the gap between unsupervised and supervised classification (down to ~2% on 

CIFAR10). Being the same as most of the recent studies, we also assume that the image 

dataset is well balanced over different clusters. Nevertheless, the performance of SPICE on 

imbalanced datasets is also evaluated in Subsection IV-G.

II. RELATED WORK

In this section, we first analyze the deep image clustering methods systematically, and 

then briefly review the related unsupervised representation learning and semi-supervised 

classification methods.

A. Deep Clustering

Deep clustering methods have shown significant superiority over traditional clustering 

algorithms, especially in computer vision. In a data-driven fashion, deep clustering can 

effectively utilize the representation ability of deep neural networks. Initially, some methods 

were proposed to combine deep neural networks with traditional clustering algorithms, as 
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shown in Fig. 2(a). Most of these clustering methods combine the stacked auto-encoders 

(SAE) [17] with the traditional clustering algorithms, such as k-means [18], [2], [4], [19], 

[3], Gaussian mixture model [5], [8], [9], spectral clustering [20], subspace clustering [10], 

[6], and relative entropy constraint [7]. However, since the pixel-wise reconstruction loss of 

SAE tends to over-emphasize low-level features, these methods have inferior performance 

in clustering images of complex contents due to the lack of object-level semantics. Instead 

of using SAE, Yang et al. [21] alternately perform the agglomerative clustering [22] and 

train the representation model by enforcing the samples within a selected cluster and its 

nearest cluster having similar features while pushing away the selected cluster from its other 

neighbor clusters. However, the performance of JULE [21] can be compromised by the 

errors accumulated during the alternation, and their successes in online scenarios are limited 

as they need to perform clustering on the entire dataset.

Recently, novel methods emerged that directly learn to map images into label features, 

which are used as the representation features during training and as the one-hot encoded 

cluster indices during testing [23], [11], [24], [13], [12], [25], [14], [1], [15], [26], 

[16], as shown in Fig. 2(b). Actually, these methods aim to train the clustering model 

in the unsupervised setting while using multiple indirect loss functions, such as sample 

relations [11], invariant information [12], [15], mutual information [13], partition confidence 

maximisation [25], attention [14], and entropy [14], [25], [1], [15]. Gupta et al. [27] 

proposed to train an ensemble of deep networks and select the predicted labels that a 

large number of models agree on as the high-quality labels, which are then used to train 

a ladder network [28] in a semi-supervised learning mode. However, the performance of 

these methods may be sub-optimal when using such label features to compute the similarity 

and discrepancy between samples, as the category-level label features can hardly reflect the 

relations of instance-level samples accurately.

To improve the representation learning ability, a two-stage unsupervised clustering method 

(TSUC) [29] was proposed. In the first stage, the unsupervised representation learning 

model was trained for initialization. In the second stage, a mutual information loss [13] 

based on the label features and a contrastive loss based on the embedding features 

were simultaneously optimized for training the whole model, as shown in Fig. 2(c). 

Although better initialization and contrastive loss can help learn representation features, 

the supervision based on the similarity and the discrepancy are computed independently, 

and the end-to-end training without accurate discriminative supervision will even harm the 

representation features as analyzed in Section IV-F2. In contrast, Van Gansbeke et al. [1] 

proposed a method called SCAN to use embedding features of the representation learning 

model for computing the instance similarity, based on which the label features are learned 

by encouraging similar samples to have the same label, as shown in Fig. 2(d). Sharing the 

same idea with SCAN, NNM [30] was proposed to enhance SCAN by searching similar 

samples on both the entire dataset and the sub-dataset. However, since the embedding 

features are not perfect, similar instances do not always have the same semantics especially 

when the samples lie near the borderlines of different clusters. Therefore, only using the 

instance similarity and ignoring the semantic discrepancy between clusters to guide model 

training may limit the clustering performance. Recently, Park et al. [31] proposed an add-on 
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module for improving the off-the-shelf unsupervised clustering method based on the semi-

supervised learning [32] and label smoothing techniques [33], [34].

Based on the comprehensive analysis of existing deep cluttering methods, we present a new 

framework for image clustering, as shown in Fig. 2(e), which can accurately measure the 

similarity among samples and the discrepancy between clusters for the model training, and 

effectively reduce the semantic inconsistency for similar samples. On the other hand, our 

method is also related to the prototype-based traditional clustering algorithms [35], [36] 

and prototype-based learning for robust supervised classification [37]. Different from these 

methods, our proposed prototype pseudo-labeling algorithm alternatively estimates cluster 

labels and optimizes clustering heads to explicitly leverage the feature similarity among 

similar samples and the discrepancy between clusters in an unsupervised learning manner. 

In addition to the image clustering methods mentioned above, there are also promising 

deep learning-based clustering methods focusing on special [38], [39], multi-view clustering 

datasets [40], [41], and segmentation applications [42].

B. Unsupervised Representation Learning

Unsupervised representation learning aims to map samples/images into semantically 

meaningful features without human annotations, which facilitates various downstream 

tasks, such as object detection and classification. Previously, various pretext tasks were 

heuristically designed for this purpose, such as colorization [45], rotation [46], jigsaw [47], 

etc. Recently, contrastive learning methods combined with data augmentation strategies have 

achieved great success, such as SimCLR [48], MOCO [49], and BYOL [43], just to name a 

few. On the other hand, clustering based representation learning methods have also achieved 

great progress. Caron et al. [50] proposed to alternatively perform the k-means clustering 

algorithm on the entire dataset and train the classification network using the cluster labels. 

Without explicitly computing cluster centers, Asano et al. [51] proposed a self-labeling 

approach that directly infers the pseudo-labels from the predicted cluster labels of the full 

dataset based on the Sinkhorn-Knopp algorithm [52], and then uses the pseudo labels to 

train the clustering network. Taking the advantages of contrastive learning, SwAV [53] was 

proposed to simultaneously cluster the data while enforcing different transformations of 

the same image having the same cluster assignment. It is worth emphasizing that, different 

from the unsupervised deep clustering methods in Section II-A, these clustering based 

representation learning methods aim to learn the representation features by clustering a 

much larger number of clusters than the number of ground-truth classes. This is consistent 

with our observation that directly clustering the target number of classes without accurate 

supervision will harm the representation learning due to the over-compression of instance-

level features. Usually, to evaluate the quality of learned features, a linear classifier is 

independently trained with ground truth labels by freezing the parameters of representation 

learning models.

In this work, we aim to achieve unsupervised clustering with the exact number of real 

classes. On the other hand, we not only train the feature model but also the clustering head 

without using any annotations. Actually, any unsupervised representation learning methods 
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can be implemented as our feature model, which can be further improved via the joint 

training in SPICE.

C. Semi-Supervised Classification

Our method is also related to the semi-supervised classification methods as actually we 

reformulate the unsupervised clustering task into a semi-supervised learning paradigm in the 

joint training stage. Semi-supervised classification methods aim to reduce the requirement of 

labeled data for training a classification model by providing a means of leveraging unlabeled 

data. In this category, remarkable results were obtained with consistency regularization [54], 

[55] that constrains the model to output the same prediction for different transformations 

of the same image, pseudo-labeling [56] that uses confident predictions of the model as the 

labels to guide training processes, and entropy minimization [57], [56] that steers the model 

to output high-confidence predictions. MixMatch [32] algorithm combines these principles 

in a unified scheme and achieves an excellent performance, which is further improved 

by ReMixMatch [58] along this direction. Recently, FixMatch [59] proposed a simplified 

framework that uses the confident prediction of a weakly transformed image as the pseudo 

label when the model is fed a strong transformation of the same image, delivering superior 

results.

In this work, we target a more challenging task of training the clustering network without 

using any annotations, sometimes achieving comparable or even better results than the 

state-of-the-art semi-supervised learning methods.

III. METHOD

We aim to cluster a set of N images X = xi i = 1
N  into K classes by training a clustering 

network without using any annotations. The clustering network can be conceptually divided 

into two parts: a feature model that maps images to feature vectors, fi = ℱ xi; θℱ , and a 

clustering head that maps feature vectors to the probabilities over K classes, pi = C fi; θC , 

where θℱ and θC represent the trainable parameters of the feature model ℱ and the 

clustering head C, respectively. Different from the existing deep clustering methods, we 

use the outputs of the feature model to measure the similarity among samples and use 

the clustering head to identify the discrepancy between clusters for pseudo-labeling, as 

shown in Fig. 2. By effectively measuring both the similarity and discrepancy, we design 

two semantics-aware pseudo-labeling algorithms, prototype pseudo-labeling and reliable 

pseudolabeling, to generate accurate and reliable self-supervision.

Specifically, we split the network training into three stages as shown in Fig. 3. First, we 

optimize the feature model ℱ through the instance-level contrastive learning that enforces 

the features from different transformations of the same image being similar and the features 

from different images being discriminative from each other. Second, we optimize the 

clustering head C with the proposed prototype pseudo-labeling algorithm while freezing 

the feature model learned in the first stage. Third, we optimize the feature model and the 

clustering head jointly with the proposed reliable pseudo-labeling algorithm.
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In the following subsections, we introduce each training stage in detail.

A. Feature Model Training with Contrastive Learning

To accurately measure the similarity of instance samples, here we adopt the instance 

discrimination based unsupervised representation learning method [49] for training the 

feature model. As shown in Fig. 3(a), there are two branches taking two random 

transformations of the same image as inputs, and each branch includes a feature model 

and a projection head that is a two-layer multilayer perceptron (MLP). During training, we 

only optimize the lower branch while the upper branch is updated as the moving average 

of the lower branch. As contrastive learning methods benefit from a large training batch, a 

memory bank [60] is used to maintain a queue of encoded negative samples for reducing 

the requirement of GPU memory size, which is denoted as z1−, z2−, …, zNq
− , where Nq is the 

queue size.

Formally, given two transformations x′ and x″ of an image x, the output of the upper branch 

is z+ = P ℱ x′; θ′ℱ ; θ′P , and the output of the lower branch is z = P ℱ x″; θℱ ; θP , 

where P denotes the projection head with the parameters θP, and θ′ℱ and θ′P are the 

moving averaging versions of θℱ and θP. The parameters θℱ and θP are optimized with the 

following loss function:

ℒfea = − log exp zTz+/τ
∑i = 1

Nq exp zTzi−/τ + exp zTz+/τ
, (1)

where the negative sample zi− may be computed from any images other than the current 

image x, and τ is the temperature. Therefore, minimizing Eq. (1) is to make the 

representation features of different transformations from the same instance similar and the 

representation features of different instances dissimilar, which has been demonstrated as an 

effective pretext task to learn visual representations in the self-supervised learning setting 

[48], [49]. Then, the parameters of the upper branch is updated as θ′ℱ μθ′ℱ + (1 − μ)θℱ, 

and θ′P μθ′P + (1 − μ)θP, where μ ∈ [0, 1) is a momentum coefficient. The queue is 

updated by adding z+ to the end and removing the first item. All hyperparameters including 

τ = 0.2 and μ = 0.999 are the same as those in [49]. The finally optimized feature model 

parameters are denoted as θℱ
s , which will be used in the next stage.

Remark. In practice, any unsupervised representation learning methods and network 

architectures can be applied in the SPICE framework.

B. Clustering Head Training with Prototype Pseudo-Labeling

Based on the trained feature model, here we train the clustering head by explicitly exploring 

both the similarity among samples and the discrepancy between clusters. Formally, given 

the image dataset X and the feature model parameters θℱ
s  obtained in Section III-A, we aim 
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to train the clustering head only for predicting the cluster labels yis i = 1
N . The clustering 

head C is a two-layer MLP mapping the features to the probabilities, pi = C fi; θC , where 

fi = ℱ xi; θℱ
s . However, in the unsupervised setting we do not have the ground truth for 

training. To address this issue, we propose a prototype pseudo-labeling algorithm that 

alternatively estimates the pseudo labels of batch-wise samples and optimizes the parameters 

of the clustering head in an EM framework.

Generally, this training stage is to solve two sets of variables, i.e., the parameters of the 

clustering head C, θC, and the cluster labels yis  of X over K clusters. Analogous to 

k-means clustering algorithm [61], we solve two underlying subproblems alternatively in an 

EM framework: the expectation (E) step is solving yis  given θC, and the maximization (M) 

step is solving θC given yis . Taking the advantages of contrastive learning, we clone the 

feature model into three branches as shown in Fig. 3(b):

• The top branch takes original images as inputs and outputs the embedding 

features fi;

• The middle branch takes the weakly transformed images as inputs and estimates 

the probabilities pi over K clusters, which is then combined with fi to generate 

the pseudo labels yis through the proposed prototype pseudo-labeling algorithm;

• The bottom branch takes strongly transformed images as inputs and optimizes θC
with the pseudo-labels.

The EM process for the clustering head training is detailed as follows.

Prototype Pseudo-Labeling (E-step).—The top branch computes the embedding 

features, F = f1, f2, …, fM
T ∈ ℝM × D, of a mini-batch of samples Xb, and the middle 

branch computes the corresponding probabilities, P = p1, p2, …, pM
T ∈ ℝM × K, for the 

weakly transformed samples, α Xb ; here, M is mini-batch size, D is the dimension of the 

feature vector, and α denotes the weak transformation over the input image.

Given P and F, the top confident samples are selected to estimate the prototypes for each 

cluster, and then the indices of the cluster prototypes are assigned to their nearest neighbors 

as the pseudo labels. Formally, the top confident samples for each cluster, taking the k-th 

cluster as an example, are selected as:

Fk = {fi ∣ i ∈ argtopk(P : , k, M
K ), ∀i = 1, 2, …, M}, (2)

where P:,k denotes the k-th column of matrix P and argtopk (P : , k, M
K ) returns the top M

K

confident sample indices from P:,k. Naturally, the cluster centers γk k = 1
K  in the embedding 

space are computed as
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γk = K
M ∑

fi ∈ Fk
fi, ∀k = 1, 2, …, K . (3)

By computing the cosine similarity between embedding features fi and the cluster center 

γk, we select M
K  nearest samples to γk, denoted by Xk, to have the same cluster 

label, yis = k, ∀xi ∈ Xk. Thus, a mini-batch of images with semantic pseudo-labels, Xs, is 

constructed as

Xs = xi, yis ∣ ∀xi ∈ Xk, k = 1, 2, …, K . (4)

A toy example of the prototype pseudo-labeling process is shown in Fig. 4, where there 

is a batch of 10 samples and 3 clusters, 3 confident samples for each cluster are selected 

according to the predicted probabilities to calculate the prototypes in the feature space, 

and 3 nearest samples to each cluster are selected and labeled. Note that there may exist 

overlapped samples between different clusters, so there are two options to handle these 

labels: one is the overlap assignment that one sample may have more than one cluster labels 

as indicated by the blue and red circles in Fig. 4, and the other is the non-overlap assignment 

that all samples have only one cluster label as indicated by the dashed red circle. We found 

that the overlap assignment is better as analyzed in Section IV-F2.

Training Clustering Head (M-step).—Given the labeled samples Xs, the clustering head 

parameters are optimized in a supervised learning manner. Specifically, we compute the 

probabilities of strong transformations β Xs  in the forward pass, where β denotes the strong 

augmentation operator. Then, the clustering head C can be optimized in the backward pass 

by minimizing the following cross-entropy (CE) loss:

ℒclu = 1
M ∑

i = 1

M
ℒce yis, pi′ , (5)

where pi′ = softmax pi  and pi = A ℱ β xi ; θℱ
s ; θA , ℒce is the cross-entropy loss function.

In Eq. (5), we use double softmax functions before computing CE loss, as pi is already 

the output of a softmax function. Considering that the pseudo-labels are not as accurate 

as the ground truth labels, the basic idea behind the double softmax implementation is to 

reduce the learning speed especially when the predictions are of low probabilities, which can 

benefit the dynamically clustering process during training (please see Appendix A for the 

detailed analysis of the double softmax implementation). The above process for training the 

clustering head is summarized in Algorithm 1.
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Remark. In this stage, we fix the parameters of feature models from the representation 

learning, and only optimize the lightweight clustering head. Thus, the computational burden 

is significantly reduced so that we can train multiple clustering heads simultaneously and 

independently. By doing so, the instability of clustering from the initialization can be 

effectively alleviated through selecting the best clustering head. Specifically, the best head 

with the parameters θC
s  can be selected for the minimum loss value of ℒclu over the whole 

dataset; i.e., we set M = N and follow E-step and M-step in Algorithm 1 to compute the 

loss value. During testing, the best clustering head is used to cluster the input images into 

different clusters.

C. Joint Training with Reliable Pseudo-Labeling

The feature model and the clustering head are optimized separately so far, which tends 

to be a sub-optimal solution. On the one hand, the imperfect feature model may lead to 

some similar features corresponding to really different clusters; thus, assigning neighbor 

samples with the same pseudo-label is not always reliable. On the other hand, the imperfect 

clustering head may assign really dissimilar samples with the same cluster label, such that 

only using the predicted labels for fine-tuning is also not always reliable. To overcome these 

problems, we design a reliable pseudo-labeling algorithm to train the feature model and 

clustering head jointly for further improving the clustering performance.

Reliable Pseudo-Labeling.—Given the embedding features and the predicted labels 

xi, fi, yis i = 1
N  obtained in Section III-B, we select Ns nearest samples for each sample xi 

according to the cosine similarity between embedding features. The corresponding labels of 

these nearest samples are denoted by Li. Then, the semantically consistent ratio ri of the 

sample xi is defined as

ri = 1
Ns

∑
y ∈ Li

1 y = yis . (6)
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Given a predefined threshold λ, if ri > λ, the sample xi, yis  is identified as the reliably 

labeled for joint training, and otherwise the corresponding label is ignored. Through the 

reliable pseudo-labeling, a subset of reliable samples Xr are selected as:

Xr = xi, yis ∣ ri > λ, ∀i = 1, 2, …, N . (7)

Joint Training.—Given the above partially labeled samples, the clustering problem can be 

converted into a semi-supervised learning paradigm to train the clustering network jointly. 

Here we adapt a simple semi-supervised learning method [59]. During training, the subset 

of reliably labeled samples keep fixed. On the other hand, all training samples should be 

consistently clustered, i.e., different transformations of the same image are constrained to 

have the consistent prediction. To this end, as shown in Fig. 3(c), the confidently predicted 

label of weak transformations is used as the pseudo-label for strong transformations of the 

same image. Formally, the consistency pseudo label yju of the sample xj is calculated as in 

Eq. (8):

yju =
arg max(pj) if max(pj) ≥ η
−1 otherwise

, (8)

where pj = C(ℱ(α(xj); θℱ); θC)), and η is the confidence threshold.

Then, the whole network parameters θℱ and θC are optimized with the following loss 

function:

ℒjoint = 1
L ∑

i = 1

L
ℒce yis, C ℱ α xi ; θℱ ; θC

partial samples with reliable pseudo−labels

+ 1
U ∑

j = 1

U
1(yju ≥ 0)ℒce(yju, C(ℱ(β(xj); θℱ); θC))

all samples with consistency pseudo−labels

,
(9)

where the first term is computed with reliably labeled samples (xi, yis) drawn from Xr, and 

the second term is computed with pseudo-labeled samples (xi, yiu) drawn from the whole 

dataset X, which is dynamically labeled by thresholding the confident predictions as in Eq. 

(8). L and U denote the numbers of labeled and unlabeled images in a mini-batch.

Remark. Although we adapt the FixMatch [59] semi-supervised classification method for 

image clustering in this work, we highlight that other semi-supervised algorithms can also 

be used here with reliable samples generated by the proposed reliable pseudo-labeling 

algorithm.

Note that SPICE sheds light on the importance of utilizing both instance-level similarity and 

semantic-level discrepancy for clustering. With this key idea in mind, this study focuses on 

developing the semantic pseudo-labeling algorithms that can actually estimate the instance 
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similarity and semantic discrepancy for better clustering results. Actually, SPICE presents 

a general unsupervised clustering framework that gradually trains the feature model, 

clustering head, and whole model end-to-end. This framework is able to organically unify 

advanced unsupervised representation learning and semi-supervised learning methods for 

clustering through the proposed semantic pseudo-labeling method.

IV. EXPERIMENTS AND RESULTS

A. Benchmark Datasets and Evaluation Metrics

We evaluated the performance of SPICE on six commonly used image clustering datasets, 

including STL10, CIFAR-10, CIFAR-100-20, ImageNet-10, ImageNet-Dog, and Tiny-

ImageNet. The key details of each dataset are summarized in Table I, where the datasets 

reflect a diversity of image sizes, the number of images, and the number of clusters. 

Different existing methods used different image sizes for training and testing; for example, 

CC [15] resizes all images of these six datasets into 224 × 224, and GATCluster [14] studies 

the effectiveness of different image sizes on ImageNet-10 and ImageNet-Dog, showing that 

too large or too small may harm the clustering performance. In this work, we naturally use 

the original size of images without resizing to a larger size of images. For the ImageNet, we 

adopt the commonly used image size of 224 × 224.

Three popular metrics are used to evaluate clustering results, including Adjusted Rand Index 

(ARI) [62], Normalized Mutual Information (NMI) [63], and clustering Accuracy (ACC) 

[64].

B. Implementation Details

For a fair comparison, we mainly adopted two backbone networks, i.e. ResNet18 and 

ResNet34 [73], for representation learning. The clustering head in SPICE consists of two 

fully-connected layers, where the dimensions of the input and intermediate layer are the 

same and denoted as D, and the dimension of the output is the number of clusters and 

denoted as K. Specifically, D = 512 for both ResNet18 and ResNet34 backbone networks, 

and the cluster number K is predefined as the number of classes on the target dataset as 

shown in Table I. To show how the joint training (third stage) improves the clustering 

performance, we refer to SPICE without joint training as SPICEs, where the subscript s 

indicates the separate training.

For representation learning, we use MoCo-v2 [49] in all our experiments, which was also 

used in SCAN [1]. For weak augmentation, a standard flip-and-shift augmentation strategy 

is implemented as in FixMatch [59]. For strong augmentation, we adopt the same strategies 

used in SCAN [1]. Specifically, the images were strongly augmented by composing Cutout 

[74] and four randomly selected transformations from RandAugment [75].

In the first training stage, we duplicated the optimization settings in [49] that the stochastic 

gradient descent (SGD) optimizer was used with weight decay of 0.0001, momentum of 0.9 

and the cosine learning rate schedule, batch size was set to 128, and the initial learning rate 

to 0.015. Note that the memory bank size in [49] was set to 65,536 by default. However, 

the datasets CIFAR-10, CIFAR-100-20, ImageNet-10, and ImageNet-Dog contain less than 
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65,536 images, and thus the memory back size for these datasets was empirically set 

to 10,240. In the second training stage, the Adam optimizer was used with the constant 

learning rate of 0.005, and the batch size M was set to 1,000. Here 10 clustering heads were 

simultaneously trained, and the best head with the minimum loss was selected as the final 

head in each trial. In the third training stage, we used the same optimization settings in [59] 

that the SGD optimizer was used with weight decay of 0.0005, momentum of 0.9 and the 

cosine learning rate schedule, batch size was set to 128 (16 reliable labeled samples and 112 

unlabeled samples), the initial learning rate to 0.03, and the threshold η to 0.95. To select the 

reliably labeled images for SPICE through reliable pseudo-labeling, we empirically selected 

Ns = 100 and λ = 0.95.

In all our experiments, feature model training and joint training were distributed across 4 

GPUs, and clustering heads were trained on a single GPU. The training time depends on 

various factors, such as the number of images, image size, model size, training epochs, etc. 

By default, we set the number of training epochs for the feature model and the clustering 

head to 1000 and 100 epochs respectively in our experiments, which are the same as those 

used for training the competing models [1], and the number of training iterations for joint 

learning to 1,048,576, the same as that in [59]. As an example, clustering STL10 images 

with SPICE took about 18 hours (800 epochs for feature learning, 30 epochs for training 

clustering heads, and 500,000 iterations for joint learning) to achieve state-of-the-art results.

C. Clustering Performance Comparison

The existing methods can be divided into two groups according to their training and testing 

settings. One is to train and test the clustering model on the whole dataset combining the 

train and test splits as one. The other is to train and test the clustering model on the separate 

train and test datasets. For a fair comparison, the proposed SPICE is evaluated under both 

two settings and compared with the existing methods accordingly.

Table II shows the comparison results of clustering on the whole dataset. The results 

obtained using classic clustering algorithms (i.e., k-means, spectral clustering, agglomerative 

clustering, NMF) and the unsupervised deep feature models (i.e., AE, SDAE, DCGAN, 

DeCNN, VAE) were originally reported in [11], [25]. In reference to the recently developed 

methods [12], [14], [15], the same backbone, i.e. ResNet34, was used during learning 

the feature model and clustering head. Duplicating the original settings in FixMatch 

[59], we used WideResNet-28-2 for CIFAR-10, WideResNet-28-8 for CIFAR-100-20, 

and WideResNet-37-2 for STL-10. For ImageNet-10, ImageNet-Dog, and Tiny-ImageNet 

datasets that were not used in FixMatch, we simply used the same ResNet34 during joint 

learning. The results show that SPICE improves ACC, NMI, and ARI by 8.8%, 12.6%, 

and 14.4% respectively over the previous best results that were recently reported by CC 

[15] on STL10. On average, our proposed method also improves ACC, NMI, and ARI by 

about 10% on ImageNet-Dog-15, CIFAR-10, CIFAR-100-20, and Tiny-ImageNet-200. It is 

worth emphasizing that, without the joint training stage, SPICEs still performs better than 

the existing deep clustering methods using the same network architecture on most of the 

datasets. These results convincingly show the superior performance of the proposed method 
using exactly the same backbone networks and datasets. The final joint training results 
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are obviously better than those from the separate training on all datasets, especially on 

CIFAR-10 (improved by 8.8% for ACC) and CIFAR-100-20 (improved by 7.0% for ACC). 

In clustering the images on Tiny-ImageNet-200, our results are significantly better than the 

existing results. These results are, however, still relatively low. This is mainly due to the 

class hierarchies, i.e., some classes share the same supper class, as analyzed in [1]. Due to 

this issue, some clusters cannot be reliably labeled based on the reliable pseudo-labeling 

algorithm so that end-to-end training cannot further boost clustering performance when 

directly using the produced labels in the second stage. Thus, it is still an open problem for 

clustering images which form a large number of hierarchical clusters.

Table III shows the comparison results of clustering on the split train and test datasets. 

For a fair comparison, we reimplement SCAN with MoCo [49] for representation learning, 

denoted as SCANMoCo. It can be seen that the results of SCANMoCo on SLT10 are obviously 

better than SCAN, while the performance on CIFAR-10 and CIFAR-100-20 drops slightly. 

Compared with the baseline method SCANMoCo, SPICE improves ACC, NMI, and ARI 

by 6.5%, 9.4%, and 11.5% on STL10, by 4.4%, 6.4%, and 8.0% on CIFAR-10, and by 

8.0%, 9.3%, and 9.4% on CIFAR-100-20, under the exactly the same setting. Without joint 

learning, SPICEs already performs better than SCANMoCo that contains the pretraining, 

clustering, and finetuning stages on STL10 and CIFAR100-20. Moreover, we evaluate the 

SPICE using larger backbone networks as used in the whole dataset setting, the results on 

STL10 and CIFAR-10 are very similar while the results on CIFAR-100-20 are significantly 

improved. Remarkably, SPICE significantly reduces the gap between unsupervised and 

supervised classification. On the STL10 that includes both labeled and unlabeled images, 

the results of unsupervised methods are better than the supervised as the unsupervised 

methods can leverage the unlabeled images for representation learning while the supervised 

cannot. On CIFAR-10 and CIFAR-100-20, all methods used the same images for training 

and the proposed SPICE further reduces the performance gap compared with the supervised 

counterpart, particularly, only 2% for ACC gap on CIFAR-10.

Table IV provides more detailed comparison results on STL10, where all these three 

methods use MoCo [49] for representation learning and were conducted five times for 

computing the mean and standard deviation of the results. Compared with SCANMoCo*

that explores the instance similarity only without fine-tuning, SPICEs explicitly leverages 

both the instance similarity and semantic discrepancy for learning clusters. On the other 

hand, different from k-means that infers the cluster labels with cluster centers, SPICEs 

uses the nonlinear clustering head to predict the cluster labels. It can be seen that SPICEs 

is significantly better than MoCo+k-means and SCANMoCo*  in terms of both the mean 

and standard deviation metrics, demonstrating the superiority of the proposed prototype 

pseudo-labeling algorithm. The final results of SPICE is significantly better than those of 

SCANMoCo in terms of mean performance and the stability.

Overall, our comparative results systematically demonstrate the superiority of the proposed 

SPICE method on both the whole and split dataset settings.
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D. Semi-Supervised Classification Comparison

In this subsection, we further compare SPICE with the recently proposed semi-supervised 

learning methods including II-Model [28], Pseudo-Labeling [77], Mean Teacher [78] Mix-

Match [32], UDA [79], ReMinMatch [58], and FixMatch [59], as shown in Table V. 

Here the semi-supervised learning methods use 250 and 1,000 samples with ground truth 

labels on CIFAR-10 and STL10, respectively. Here the semi-supervised learning results 

on the commonly used CIFAR-10 and STL10 datasets are from [59]. SPICE used the 

same backbone network in FixMatch for a fair comparison and was conducted five times 

for reporting the mean and standard deviation results. It is found in our experiments that 

SPICE is comparable to and even better than these state-of-the-art semi-supervised learning 

methods. Actually, these results demonstrate that SPICEs with the reliable pseudo-labeling 

algorithm can accurately label a set of images without human interaction.

E. Unsupervised Representation Learning

Here we aim to study the effects of the reliable pseudolabeling-based joint training in 

SPICE on representation features. As in all unsupervised representation learning methods 

[49], the quality of representation features is evaluated by training a linear classifier while 

freezing the learned feature model using the ground-truth labels. The results in Table 

VI show that the quality of representation features on CIFAR-10 and STL10 is clearly 

improved after joint training, while keeping similar performance on CIAFR-100-20. The 

interpretation is that the feature improvement with joint learning requires very accurate 

pseudo-labels (the ACC of reliable labels on STL10 and CIFAR-10 are 97.7% and 96.5%), 

so that the improvement is not observed on CIFAR-100-20 (the ACC of reliable labels on 

CIFAR-100-20 is 67.7%). In comparison with SCAN, SPICE also achieved better results 

in the unsupervised representation learning. Thus, given more prior of the target dataset, 

e.g., the number of different semantic clusters with a roughly balanced distribution, the 

proposed framework has the potential to improve the unsupervised representation learning 

by generating accurate and reliable pseudo-labels.

F. Empirical Analysis

In this subsection, we empirically analyze the effectiveness of different components and 

options in the proposed SPICE framework.

1) Visualization of cluster semantics: We visualize the semantic clusters learned by 

SPICEs in terms of the prototype samples and the discriminative regions, as shown in Fig. 5. 

Specifically, Fig. 5(a) shows the top three nearest samples of the cluster centers representing 

the cluster prototypes, and in Fig. 5(b), each cluster includes three samples and each sample 

is visualized with an original image and an attention map to highlight the discriminative 

regions. The attention maps of each cluster is computed by computing the cosine similarity 

between the cluster center (with Eqs. (2) and (3)) of the whole dataset and the convolutional 

feature maps of individual images, and then resized and normalized into [0, 1]. It shows that 

the prototype samples exactly match the human annotations, and the discriminative regions 

focus on the semantic objects. For example, the cluster with label ‘1’ captures the ‘dog’ 

class, and its most discriminative regions exactly capture the dogs at different locations, 
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and similar results can be observed for all other clusters. The visual results indicate that 

semantically meaningful clusters are learned, and the cluster center vectors can extract the 

discriminative features.

2) Ablation study: We evaluate the effectiveness of different components of SPICEs in 

an ablation study, as shown in Table VII. In each experiment, we replaced one component of 

SPICEs with another option, and five trials were conducted to report the mean and standard 

deviation for each metric.

We first evaluated the effectiveness of the overlap assignment and non-overlap assignment 

as described in Section III-B and Fig. 4. The results show that the overlap assignment is 

preferred over the non-overlap assignment, which may be explained by the fact that the 

non-overlap assignment may introduce extra local inconsistency when assigning the label to 

a sample far away from the cluster center, as shown in Fig. 4 (dashed red circle).

During training SPICEs, we only optimize the clustering head while freezing the parameters 

of the feature model. To demonstrate the effectiveness of this separate training strategy, 

we compared it with two variants, i.e., jointly training the feature model and a single 

clustering head (Joint-SH) and jointly training the feature model and multiple clustering 

heads (Joint-MH). Note that the feature model in the first branch in Fig. 3(b) is still fixed 

for accurately measuring the similarity. The results show that the clustering performance for 

these two variants became significantly worse. on the one hand, the quality of pseudo labels 

not only depends on the similarity measurement but also the predictions of the clustering 

head. On the other hand, the performance of the clustering head is also determined by the 

quality of representation features. When tuning all parameters during training, the feature 

model tends to be degraded without accurate labels and the clustering head tends to output 

incorrect predictions in the initial stage, which will harm the pseudo-labeling quality and get 

trapped in a bad cycle.

Usually, maximizing the entropy over different clusters is the necessary to avoid assign 

all samples into a single or a few clusters, as demonstrated in GATCluster [14]. Thus, we 

added another entropy loss during training, and the results were not changed. It indicates 

that our pseudo-labeling process with balance assignment has the ability to prevent trivial 

solutions. However, when clustering a large number of hierarchical clusters, e.g. 200 clusters 

in Tiny-ImageNet, the entropy loss was found necessary to avoid the empty clusters.

To evaluate the effectiveness of applying double softmax before CE, we replaced it with 

the plain CE or the CE with a temperature parameter (TCE) [80]. For TCE, we evaluated 

different temperature values including 0.01, 0.05, 0.07, 0.1, 0.2, 0.5, 0.8, 2, and found 0.2 

achieve the best results that were included for comparison. The results show that TCE is 

better than CE, which is consistent with the literature [49]. On the other hand, the results 

of TCE are inferior to that with the double softmax CE. These experimental results are 

consistent with the detailed analysis in terms of the derivatives in Appendix A.

3) Clustering head selection: In unsupervised learning, the training process is hard 

to converge to the best state without the ground truth supervision, such that usually there 
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is a large standard deviation among different trials. Thus, how to estimate the performance 

of models in the unsupervised training process to select the potential best model is very 

important. As introduced in Subsection III-B, we use the clustering loss defined in Eq. 

(5) on the whole test dataset to approximate the clustering performance; i.e., the smaller 

loss, the better clustering performance. The model selection process is shown in Fig. 6, it 

can be seen that the performance of the selected clustering head is very close to that of 

the ground truth selection, proving the effectiveness of this loss metric. In this way, the 

bad performance clustering heads can be filtered out. The results in Table IV show that 

SPICE has a lower standard deviation compared with the competing methods. Importantly, 

the lightweight clustering heads can be independently and simultaneously trained without 

affecting each other and without extra training time.

4) Effect of reliable labeling: In Section III-C, we introduced a reliable pseudo-

labeling algorithm to select the reliably labeled images. Here we show the effectiveness 

of this algorithm in Fig. 7, where t-SNE was used to map the representation features of 

images in CIFAR-10 to 2D vectors for visualization. In Fig. 7(a), some obvious semantically 

inconsistent samples are evident, and the predicted ACC of SPICEs on all samples is 83.8%. 

Using these samples directly for joint training, the ACC is not boosted. Fig. 7(b) shows 

the selected reliable samples, where the ratio of local inconsistency samples is significantly 

decreased, and the ACC is increased to 95.9% correspondingly. Using the reliable samples 

for joint training, the ACC of SPICE after joint training is significantly boosted (92.6% v.s. 

83.8%) compared with that of SPICEs.

5) Effect of data augmentation: We evaluated the effects of different data 

augmentations on SPICEs, as shown in Table VIII, where Aug1 and Aug2 correspond to 

data augmentations of the second and the third branches in Fig. 3(b). The results show 

that when the second branch used the weak augmentation and the third branch used 

the strong augmentation, the model achieved the best performance. Moreover, the model 

had relatively worse performance when the second branch in labeling process uses the 

strong augmentation, which is due to that the labeling process aims to generate reliable 

pseudo labels that will be compromised by the strong augmentation. The model performs 

better when the third branch used the strong augmentation, as it will drive the model to 

output consistent predictions of different transformations. Overall, the data augmentation 

has a small impact on the results, because the pre-trained feature model had been already 

equipped with the transformation invariance ability.

G. Performance on Imbalanced Dataset—This study assumes that the target image 

dataset can be clustered into a set of balanced groups, and thus the pseudo-labels in Eq. 

(2) are generated in a balanced manner. Here we aim to evaluate the performance and 

robustness of SPICE on imbalanced datasets. To this end, we simulated imbalanced datasets 

from the training set of CIFAR10. Specifically, we randomly selected a subset of images 

for each class k according to a predefined ratio ζk. Then a set of ratios for different classes 

are calculated in a linear way; i.e., ζk = ζ + k × (1 – ζ)/K, where k = 1, 2, …, K, the 

number of clusters K = 10 on the CIFAR10 dataset, and the minimum ratio ζ defines 

the imbalanced level. We generated five levels of imbalanced datasets with ζ = 1.0, 0.8, 
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0.6, 0.4, 0.2 respectively, where 1.0 means a balanced dataset and the smaller ζ the more 

imbalanced. The cluster distributions for ζ = 0.4 and 0.2 are shown in Fig. 8. Both SPICE 

and SCAN methods using MoCo representations were evaluated and the results are reported 

in Table IX. Similar to the results on balanced datasets, SPICE achieved consistently better 

performance on different levels of imbalanced datasets than SCAN. Although using a 

balanced assignment, SPICE performs relatively well for ζ ≥ 0.4 and shows robustness 

to some degree. However, the clustering performance is degraded on the highly imbalanced 

dataset ζ = 0.2. The clustering distributions shown in Fig. 8 further illustrate the numerical 

results. Therefore, SPICE still needs to be improved further in the case of the imbalanced 

dataset.

V. DISCUSSIONS

In this study, the SPICE network significantly improves the image clustering performance 

over the competing methods and reduces the performance gap between unsupervised and 

fully-supervised classification. However, there are opportunities for further refinements. 

First, existing deep clustering methods assume the clustering number K is known. In real 

applications, we do not always have such a prior. Therefore, how to automatically determine 

the number of semantically meaningful clusters is an open problem for deep clustering 

research. Second, to avoid trivial solutions, almost all existing clustering methods assume 

that the target dataset contains a similar number of samples in each and every cluster, which 

may or may not be the case in a real-world application. usually, there are at least two 

constraints that can be applied to implement this prior, including maximizing the entropy 

[14] and balancing assignment [77] (and SPICE) that is an optimal solution for maximizing 

entropy. On the other hand, if we do have a prior distribution of samples as a function 

of the cluster index, the constraints for these methods can be adapted from the uniform 

distribution to a specific one. The ideal clustering method should work well when neither 

the number of clusters nor the prior distribution of samples per cluster is known, which 

is a holy grail in this field. Finally, although the SPICE method achieved the superior 

results over the existing methods, the progressive training process through the three stages is 

computationally complicated based on multiple algorithmic ingredients. We recognize new 

opportunities to reduce the complexity and improve the performance of SPICE in a unified 

framework. For example, we could simultaneously train the feature model and clustering 

head in a single stage by combining the proposed semantic pseudo-labeling and the recently 

proposed representation learning methods [44] [81] that do not require any specific network 

architecture or particular optimization algorithm, being compatible with the current pseudo-

labeling algorithm. Also, the single prototype pseudolabeling could be extended to multiple 

prototypes as studied in [36], [37] for further improvement. Nevertheless, our method is 

both effective and efficient, and easy to optimize and apply, because each training stage only 

has a single cross-entropy function and is fairly straightforward. Importantly, SPICE is an 

exemplary workflow to synergize both the instance similarity and semantic discrepancy for 

superior image clustering.
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VI. CONCLUSION

We have presented a semantic pseudo-labeling framework for image clustering, with the 

acronym “SPICE”. To accurately measure both the similarity among samples and the 

discrepancy between clusters for clustering, we divide the clustering network into a feature 

model and a clustering head, which are first trained separately with the unsupervised 

representation learning algorithm and the prototype pseudo-labeling algorithm, and then 

jointly trained with the reliable pseudolabeling algorithm. Extensive experiments have 

demonstrated the superiority of SPICE over the competing methods on balanced close-set 

benchmarks with an average performance boost of 10% in terms of adjusted rand index, 

normalized mutual information, and clustering accuracy. The SPICE is comparable to or 

even better than the state-of-the-art semi-supervised learning methods and has the ability 

to improve the representation features. Remarkably, SPICE significantly reduces the gap 

between unsupervised and fully-supervised classification; e.g., only 2% gap on CIFAR-10. 

We believe the basic idea behind SPICE has the potential to help cluster other domain 

datasets, and apply to other learning tasks.
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Fig. 1. 
Semantic relevance in the feature space. (a) Neighboring samples of different semantics, 

where the first image is the query image and the other images are the nearest images with 

the closest features provided by SCAN [1]. (b) Instance similarity without semantics, where 

each point denotes a sample in the feature space, and white lines link a sample to its 

four nearest similar samples measured by cosine similarity. (c) Semantics-aware similarity, 

where different colors denote different semantics/classes that can be estimated through 

pseudo-labeling, stars denote cluster centers, the points within large black circles are similar 

to the cluster centers, and the points within yellow circles are semantically inconsistent 

to neighbor samples. By synergizing instance similarity and semantic discrepancy, more 

accurate and reliable supervision can be generated for deep clustering.
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Fig. 2. 
Training framework of different deep clustering methods. (a) The initial deep clustering 

methods that combine traditional clustering algorithms with the deep neural networks, 

most of them combine with the autoencoders and some combine with an encoder only. 

(b) The label feature based methods that directly map images to cluster labels, where 

self-supervision is calculated based on the label features only. (c) A two-stage unsupervised 

clustering method that first trains the feature model and then trains the whole clustering 

work with a label feature based self-supervision and an embedding feature based contrastive 

loss simultaneously and separately. (d) The SCAN learning framework that constrains the 

similar samples in the embedding space having the same cluster label. (e) The proposed 

SPICE framework that synergizes both the similarity among samples and the discrepancy 

between clusters for training a clustering network through semantics-aware pseudo-labeling. 

Note that the indirect losses here refer to measuring the similarity or distance between 

samples, the entropy over clusters, etc., while the cross-entropy (CE) loss directly computes 

the difference between predicted cluster labels and pseudo labels.
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Fig. 3. 
Illustration of the SPICE framework. (a) Train the feature model with contrastive learning 

based unsupervised representation learning. In this study, MoCo was implemented for 

representation learning. Note that the memory bank for storing negative samples is 

not shown, and other methods [43], [44] without requiring negative samples could be 

implemented here for better performance. (b) Train the clustering head via the prototype 

pseudo-labeling algorithm in an EM framework. (c) Jointly train the feature model and the 

clustering head through the reliable pseudo-labeling algorithm.
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Fig. 4. 
A toy example for prototype pseudo-labeling. First, given the predicted probabilities of 

10 samples over 3 clusters, top 3 confident samples are selected for each cluster, marked 

as green, blue, and red colors respectively. Then, the selected samples are mapped into 

the corresponding features (denoted by dots) to estimate the prototypes (denoted by stars) 

for each cluster, where stars are estimated with connected dots. Finally, the top 3 nearest 

samples to each cluster prototype (the dots within the same ellipse) are selected and assigned 

with the index of the corresponding prototype. Other unselected samples are signed with −1 

and will not be used for training. The dashed ellipse denotes the non-overlap assignment.
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Fig. 5. 
Visualization of learned semantic clusters on STL10. (a) The top three nearest samples to the 

cluster centers. (b) The attention maps of cluster center on individual images.
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Fig. 6. 
Clustering head selection. Each curve represents the changing process of ACC v.s. epoch of 

a specific clustering head. The blue squares mark the selected best clustering head for each 

epoch, and the red stars represent the corresponding best head evaluated with the ground 

truth. The blue circle denotes the finally selected head. The red circle is the ground truth best 

head.
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Fig. 7. 
Visualization of reliable labels on CIFAR-10 dataset. Each point denotes a sample in the 

embedding space, different colors are rendered by the ground-truth labels. (a) The ACC 

of all samples is 0.838 and the ACC of the jointly trained model using all pseudo-labeled 

samples is also 0.838. (b) The ACC of the selected reliable labels is 0.959 and the ACC of 

the jointly trained model using the reliable samples is 0.926.
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Fig. 8. 
Cluster distributions on imbalanced datasets. From the first to third columns are the cluster 

distributions of ground-truth labels, SCAN predicted labels, and SPICE predicted labels on 

the most two imbalanced datasets (ζ=0.4 and 0.2). In each sub-figure, axes x and y represent 

the cluster index and the number of samples respectively.
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TABLE I

SPECIFICATIONS AND PARTITIONS OF SELECTED DATASETS.

Dataset Image size # Training # Testing # Classes (K)

STL10 96 × 96 5,000 8,000 10

CIFAR-10 32 × 32 50,000 10,000 10

CIFAR-100-20 32 × 32 50,000 10,000 20

ImageNet-10 224 × 224 13,000 N/A 10

ImageNet-Dog 224 × 224 19,500 N/A 15

Tiny-ImageNet 64 × 64 100,000 10,000 200
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TABLE III

COMPARISON WITH COMPETING METHODS ON SPLIT DATASETS (TRAINING AND TESTING IMAGES ARE MUTUALLY EXCLUSIVE). 

FOR A FAIR COMPARISON, BOTH SCANMoCo AND SPICE USED MOCO FOR FEATURE LEARNING, AND RESNET18 AS 

BACKBONE IN ALL TRAINING STAGES. HERE THE BEST RESULTS FOR ALL METHODS WERE USED FOR COMPARISON. SPICERES34 

USED THE RESNET34 AS BACKBONE. THE BEST TWO UNSUPERVISED RESULTS ARE HIGHLIGHTED IN BOLD.

Method
STL10 CIFAR-10 CIFAR-100-20

ACC NMI ARI ACC NMI ARI ACC NMI ARI

ADC [76] 0.530 N/A N/A 0.325 N/A N/A 0.160 N/A N/A

TSUC [29] 0.665 N/A N/A 0.810 N/A N/A 0.353 N/A N/A

NNM [30] 0.808 0.694 0.650 0.843 0.748 0.709 0.477 0.484 0.316

SCAN [1] 0.809 0.698 0.646 0.883 0.797 0.772 0.507 0.486 0.333

RUCSCAN [31] 0.867 N/A N/A 0.903 N/A N/A 0.533 N/A N/A

SCANMoCo [1] 0.855 0.758 0.721 0.874 0.786 0.756 0.455 0.472 0.310

SPICEs 0.862 0.756 0.732 0.845 0.739 0.709 0.468 0.457 0.321

SPICE 0.920 0.852 0.836 0.918 0.850 0.836 0.535 0.565 0.404

SPICE Res34 0.929 0.860 0.853 0.917 0.858 0.836 0.584 0.583 0.422

Supervised 0.806 0.659 0.631 0.938 0.862 0.870 0.800 0.680 0.632
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TABLE IV

MORE DETAILED COMPARISON RESULTS ON STL10. HERE ALL METHODS WERE TRAINED AND TESTED ON THE SPLIT TRAIN AND 

TEST DATASETS RESPECTIVELY. BOTH THE MEAN AND STANDARD DEVIATION RESULTS WERE REPORTED. EACH METHOD WAS 

CONDUCTED FIVE TIMES. HERE ALL METHODS USED THE RESNET18 BACKBONE, SCANMoCo AND SPICE USED MoCo FOR 

FEATURE LEARNING WITH STL10 IMAGES ONLY. SCANMoCo*  MEANS NO SELF-LABELING.

Method ACC NMI ARI

Supervised 0.806 0.659 0.631

MoCo+k-means 0.797±0.046 0.768±0.021 0.624±0.041

SCANMoCo* 0.787±0.036 0.697±0.026 0.639±0.041

SCANMoCo 0.797±0.034 0.701±0.032 0.649±0.044

SPICEs 0.852±0.011 0.749±0.008 0.719±0.015

SPICE 0.918±0.002 0.849±0.003 0.836±0.002
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TABLE VI

FEATURE QUALITY BEFORE AND AFTER JOINT TRAINING. THE FORMAT OF RESULTS FOR BEFORE JOINT TRAINING MEANS THE 

ACC OF supervised / unsupervised / reliable labels, FOR AFTER JOINT TRAINING MEANS THE ACC OF supervised / 
unsupervised. THE SUPERVISED RESULTS WERE OBTAINED BY TRAINING A LINEAR CLASSIFIER WHILE FIXING THE FEATURE 

MODEL.

Method STL-10 CIFAR-10 CIFAR-100-20

Before 0.908/0.862/0.977 0.893/0.845/0.965 0.729/0.468/0.677

After (SPICE) 0.938/0.920 0.922/0.918 0.723/0.535

After (SCAN) 0.877/0.855 0.901/0.874 0.693/0.455
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TABLE VII

ABLATION STUDIES OF SPICEs ON THE WHOLE STL10 DATASET.

Variants acc NMI ARI

Non-overlap 0.885±0.002 0.788±0.003 0.771±0.003

Joint-SH 0.622±0.061 0.513±0.037 0.437±0.053

Joint-MH 0.687±0.037 0.577±0.029 0.512±0.033

Entropy 0.907±0.001 0.817±0.003 0.810±0.003

CE 0.875±0.031 0.784±0.017 0.764±0.033

TCE 0.895±0.005 0.794±0.010 0.787±0.010

SPICEs 0.908±0.001 0.817±0.002 0.812±0.002
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TABLE VIII

RESULTS OF SPICEs WITH DIFFERENT DATA AUGMENTATION STRATEGIES ON THE WHOLE STL10 DATASET, WHERE RESNET34 

WAS USED AS BACKBONE, AND EACH VARIANT WAS CONDUCTED FIVE TIMES.

Aug1 Aug2 ACC NMI ARI

Weak Weak 0.905±0.002 0.815±0.003 0.808±0.003

Strong Weak 0.883±0.029 0.799±0.019 0.781±0.031

Strong Strong 0.902±0.008 0.812±0.009 0.803±0.013

Weak Strong 0.908±0.001 0.817±0.002 0.812±0.002
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TABLE IX

CLUSTERING PERFORMANCE ON IMBALANCED DATASETS. ζ REPRESENTS THE IMBALANCE LEVEL, THE SMALLER ζ THE MORE 

IMBALANCED.

Method Metric ζ=1.0 ζ=0.8 ζ=0.6 ζ=0.4 ζ=0.2

SCANMoCo

ACC 0.882 0.887 0.864 0.758 0.702

NMI 0.800 0.807 0.775 0.716 0.677

ARI 0.772 0.707 0.738 0.601 0.542

SPICE

ACC 0.923 0.922 0.920 0.905 0.850

NMI 0.863 0.859 0.847 0.832 0.639

ARI 0.847 0.842 0.835 0.810 0.778
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