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Brain BAs are estimated, modeled, and compared 
as a function of sex and CA at injury using a statis-
tical model selection procedure. On average, the 
brains of older adults age by 15.3 ± 6.9  years after 
mTBI, whereas those of younger adults age only 
by 1.8 ± 5.6  years, a significant difference (Welch’s 
t32 =  − 9.17, p ≃ 9.47 ×  10−11). For an adult aged 
∼ 30 to ∼60, the expected amount of TBI-related 
brain aging is ∼3 years greater than in an individual 
younger by a decade. For an individual over ∼60, the 
respective amount is ∼7 years. Despite no significant 
sex differences in brain aging (Welch’s t108 = 0.78, 
p > 0.78), the statistical test is underpowered. BAs 
estimated at acute baseline versus chronic follow-
up do not differ significantly (t264 = 0.41, p > 0.66, 
power = 80%), suggesting negligible TBI-related 
brain aging during the chronic stage of TBI despite 
accelerated aging during the acute stage. Our results 
indicate that a single mTBI sustained after age ∼ 60 
involves approximately ∼10  years of premature and 
lasting brain aging, which is MRI detectable as early 
as ∼7 days post-injury.

Keywords Magnetic resonance imaging · 
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Abstract Adults aged 60 and over are most vulner-
able to mild traumatic brain injury (mTBI). Never-
theless, the extent to which chronological age (CA) 
at injury affects TBI-related brain aging is unknown. 
This study applies Gaussian process regression to 
T1-weighted magnetic resonance images (MRIs) 
acquired within ∼7  days and again ∼6  months after 
a single mTBI sustained by 133 participants aged 
20–83 (CA � ± �  = 42.6 ± 17  years; 51 females). 
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HC  Healthy control
MRI  Magnetic resonance imaging
mTBI  Mild traumatic brain injury
OA  Older adult
YA  Younger adult

Introduction

The chronological age ( CA ) of an individual increases 
linearly with time. By contrast, biological age ( BA ) 
increases can be nonlinear due to their dependence 
on genetics, environment, and their interaction [1]. In 
typically aging adults of the same CA , the expected 
BA value is approximately equal to CA because the 
average rate of biological aging is about equal to that 
of chronological aging. Thus, the difference between 
an individual’s BA and her/his CA reflects whether 
that individual is aging relatively faster or slower 
compared to typically aging individuals of the same 
CA . If one’s BA is younger than one’s CA , one is bio-
logically younger than expected; conversely, if BA 
exceeds CA , one is biologically older than expected 
[1]. The difference between BA and CA , commonly 
referred to as age gap ( AG , occasionally abbreviated 
as BAG , which stands for brain age gap), reflects the 
extent to which biological senescence, which is asso-
ciated with disease risk and mortality [2], deviates 
from its expected amount [3].

Due to the deleterious effects of mild traumatic 
brain injury (mTBI) upon neural structure and func-
tion, this condition is a risk factor for both accelerated 
brain aging and neurodegenerative diseases [4–6]. 
Because BA reflects excessive structural and physi-
ological aging, brain BA is strongly associated with 
cognitive decline and with risk of death from condi-
tions like Alzheimer’s and Parkinson’s diseases [7–9]. 
Thus, to assist efforts aimed at delaying or mitigating 
neurological disease, it can be useful to early identify 
individuals at high risk for accelerated brain aging.

In the context of TBI, brain BA estimates derived 
from magnetic resonance imaging (MRI) are thought 
to reflect TBI-related neuroanatomic deviations from 
normality [7–9]. This study uses T1-weighted MRIs 
and Gaussian process regression to approximate brain 
BA in 133 mTBI participants imaged both ∼7  days 
and ∼6 months after their first (and only) mTBI. This 
is the first study that leverages MRI to quantify how 
sex and CA at injury affect brain aging after TBI. Our 

findings can assist (A) stratification of TBI patients 
based on their risk for accelerated brain aging and 
cognitive impairment, (B) personalized assessment of 
neurological disease risk after TBI, and (C) identifi-
cation of TBI victims who could benefit from lifestyle 
changes and/or other interventions.

Methods

Participants This study was undertaken in adher-
ence with the US Code of Federal Regulations (45 
CFR 46) and with approval from the institutional 
review boards or similar ethical monitoring bodies 
at the respective institutions where data had been 
acquired. A total of N = 3377 healthy controls (HCs, 
age � ± � = 40.6 ± 21.4  years (y), range: 18–92 y) 
were included in the training set of Cole et al. [7, 10, 
11]. A total of N = 133 mTBI patients (age � ± � = 
42.6 ± 17.0  years (y), range: 20–83 y; 51 females) 
were enrolled. Subjects were recruited with the assis-
tance of board-certified clinicians and/or other health 
professionals who had treated them as outpatients and 
who had referred them for assessment and/or neuro-
imaging. Recruitment bias was reduced by inviting all 
volunteers to participate if they satisfied the study’s 
inclusion/exclusion criteria and if they could pro-
vide written informed consent. To be included, mTBI 
patients had to have (a) MRIs acquired ∼6  months 
post-injury at 3 T, (b) a single mTBI due to a ground-
level fall, (c) no clinical findings on acute T1- or T2-
weighted MRI, (d) an acute Glasgow Coma Scale 
score greater than 12 (μ = 14.4, σ = 0.6) upon initial 
medical evaluation, (e) loss of consciousness of fewer 
than 30 min (μ ≃ 13 min, σ ≃ 5 min), and (f) post-
traumatic amnesia of fewer than 24 h (μ ≃ 5.2 h, σ ≃ 
3.5 h). Exclusion criteria included (a) a documented 
clinical history of pre-traumatic neurological dis-
ease, psychiatric disorder, and/or drug/alcohol abuse 
(including any TBI sustained prior to their last) and 
(b) MRI contraindications.

Neuroimaging and cognitive assessments MRIs 
were acquired at two timepoints, i.e., ∼7 days and ∼
6  months after injury (corresponding to the acute 
baseline and chronic follow-up phases of TBI, 
respectively). T1-weighted MRIs were collected 
using a 3D magnetization-prepared rapid acquisi-
tion gradient echo sequence with repetition time 

2510



GeroScience (2022) 44:2509–2525

1 3
Vol.: (0123456789)

(TR) = 1950  ms, echo time (TE) = 2.98  ms, inver-
sion time (TI) = 900  ms, and voxel size = 1.0  mm × 
1.0  mm × 1.0  mm. T2-weighted MRIs were acquired 
with TR = 2500  ms, TE = 360  ms, and voxel size = 
1.0  mm × 1.0  mm × 1.0  mm. Prior to analysis, all 
MRIs were de-identified and de-linked. The aver-
age interval between imaging sessions was μ ± 
σ  = 5.6 ± 0.3  months (range: 0.51 to 6.3  months). 
Cognitive functioning was assessed using the Brief 
Test of Adult Cognition by Telephone (BTACT) [12, 
13], which quantifies episodic verbal memory (EVM; 
immediate recall: EVMI; delayed recall: EVMD) 
of words on a 15-item list, working memory span 
(WMS, evaluated using a backward digit span task), 
inductive reasoning (IR, measured using a num-
ber series completion task), processing speed (PS, 
assessed using a backward counting task), and verbal 
fluency (VF, evaluated using a category fluency task).

BA estimation BA estimates were obtained within 
R software [14] using brainageR version 2.0 [7, 10, 
11], which leverages T1-weighted MRIs for Gaussian 
process regression using kernlab [15], and which was 
instantiated with default parameters [7, 10, 11]. This 
nonparametric statistical approach [16] uses Bayes-
ian inference to constrain the complexity of a statisti-
cal model learned from the training sample of 3377 
HCs described previously. In contrast to regression 
(where the effects of predictors on dependent vari-
ables are studied), brainageR is a machine learning 
approach acting like a black-box, in the sense that 
users are not provided interpretable insights on the 
MRI features being used to estimate BA . Because the 
Gaussian process regression model was trained on a 
reference sample of HCs, this framework provides the 
setting to compare any diseased population’s rate of 
aging against the typical (healthy) rate of aging. In 
our context, the model of Cole et  al. facilitates our 
comparison of mTBI participants against Cole et al.’s 
reference sample of HCs. Our own model proceeds to 
estimate brain BA for subjects in our test sample (TBI 
participants) using the model of Cole et  al., which 
was trained on HCs’ MRI features.

Suppose that the MRI features of a TBI par-
ticipant best resemble those of MRIs acquired from 
HCs who are chronologically older than the TBI 
participant by an amount equal to the AG , defined 
as AG = BA − CA . Then, it follows that the TBI par-
ticipant is biologically older than expected for HC 

individuals of her/his CA , i.e., BA > CA and AG > 0 . 
Conversely, if the TBI participant’s MRI features 
best resemble those of MRIs acquired from HCs who 
are chronologically younger than the participant, 
then BA < CA and AG < 0 . Finally, if the TBI par-
ticipant’s MRI features best resemble those of MRIs 
acquired from HCs who are of about the same CA as 
the participant, then BA ≃ CA and AG ≃ 0. If a TBI 
participant has a positive AG , then her/his brain is 
older than expected for a typical HC of the same CA 
as the TBI participant. Similarly, if a TBI participant 
has a negative AG , then her/his brain is younger than 
expected for a typical HC of the same CA as the TBI 
participant. In summary, AG is the difference between 
observed and expected brain age.

BA bias correction and modelling Estimating BA 
using brainageR involves an inherent bias [11, 17], 
in that BA estimates are poorer and poorer for sub-
jects whose CA s differ more and more from their 
sample mean [17, 18]. This is partly due to the dis-
tributional robustness properties of linear statistical 
estimators, which is closely related to the empiri-
cal influence function of the sample [19]. To correct 
this BA estimation bias, we follow the approach of 
Beheshti et  al. [17], who modeled AGb (the biased 
value of the AG , where b stands for biased) using a 
polynomial function of the form AGb =

∑m

i=0
aiCA

i . 
Here, ai is the coefficient of the i-th power of CA in 
the polynomial describing AGb , and m is the order 
of the model (polynomial), i.e., the highest power 
of CA included in the model. A linear model, which 
is a special case of this formulation, is often most 
appropriate for samples whose brain aging is typical 
[17]. TBI, however, often involves brain BA s that are 
older than expected [11], which may suggest acceler-
ated brain aging after TBI, at least in some cases. If 
this is true, then the relationship between CA , on the 
one hand, and both BA and AGb , on the other hand, 
may be nonlinear. For this reason, a linear relation-
ship between CA and AGb was not assumed here. 
Instead, the most suitable model order (i.e., value of 
m ) was identified using a strategy described in the 
following section. BA s were corrected using the for-
mula BAc = BAb − AGb = BAb −

∑m

i=0
aiCA

i , where 
c stands for corrected. The AGc (bias-corrected AG ) 
is AGc = BAc − CA . Hence forward, unless other-
wise noted, BA and AG are assumed to have been 
bias-corrected, i.e., BA and AG refer to BAc and AGc , 
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respectively. Relatedly, BA can be used to quantify the 
brain’s rate of post-traumatic biological aging as a 
function of CA . Because BA could change nonlinearly 
with time as a function of CA at injury, we model AG 
as a function of CA using a polynomial function and 
determine the most appropriate order of this poly-
nomial as described below. Of note, bias correction 
accounts for an inherent nuisance effect pertaining to 
BA estimation; this correction does not remove the 
dependence of BA on CA . Bias-corrected BA can be 
modeled as a function of age at injury and of sex.

Model selection To identify the most appropriate 
order of the polynomial model for BA bias correction, 
we use the compare function in MATLAB (Math-
Works, Natick, MA) to pairwise-compare polynomial 
models for AGb =

∑m

i=0
aiCA

i that had different val-
ues of m . The compare function calculates the Akaike 
and Bayesian information criteria of two input mod-
els and uses a likelihood ratio test to determine which 
model best explains the underlying data without over-
fitting. Under the null hypothesis H0 , the observed 
likelihood ratio test statistic is Wilks’ � , which has 
an approximate χ2 reference distribution (see chap-
ter 5 in [20]). When comparing two models, compare 
computes the p value for the likelihood ratio test by 
comparing the observed value of � against this χ2 
distribution. To implement the simulated likelihood 
ratio test, compare first generates the reference distri-
bution of � under H0 . Then, it assesses the statistical 
significance of the alternate (higher order) model by 
comparing � against this reference distribution [21, 
22]. The number of degrees of freedom of � is equal 
to df  = |df (H0) − df (H1)| , where df (H0) and df (H1) 
are the degrees of freedom for the models associated 
with the null and alternative hypotheses, respectively. 
In our case, d is the difference between the orders of 
the polynomials used in the models being compared; 
for example, when comparing a fourth-order model 
to a seventh-order model, df  = 7 – 4 = 3. A similar 
procedure was implemented to identify the most suit-
able order of the polynomial function modeling the 
(bias-corrected) AGc as a function of CA . Thus, model 
selection was implemented for two distinct purposes: 
(A) to identify how best to model AGb as a func-
tion of CA and, thereby, to correct BA estimates and 
obtain (bias-corrected) AGc values, and (B) to model 
AGc as a function of CA . The ability of each model 
for bias correction to capture cognitive function was 

evaluated by comparing the correlations between 
cognitive scores and BA , in the scenarios where the 
latter was estimated using first- to fourth-order poly-
nomial models.

Statistical analysis Our analysis involves three sta-
tistical factors: age, sex, and time. Age and sex are 
between-subject factors whereas time is a within-sub-
ject factor with two repeated measures (acute baseline 
and chronic follow-up). Let AG(fi) denote the age gap 
for level i of statistical factor f  . For example, AG(t0) 
and AG(t1) are (bias-corrected) AG s measured at 
the baseline and follow-up timepoints, respectively. 
Part I of our analysis seeks to investigate, systemati-
cally, how each factor affects AG (and therefore brain 
aging); part II aims to study AG differences between 
distinct levels of each factor.

In part I, the overall objective is to test null 
hypotheses of the form H0 ∶ �[AG

(
fi
)
] = 0 provided 

that the statistical test has statistical power of at least 
80% (although typical for neuroimaging studies, this 
power threshold is admittedly somewhat arbitrary). 
Student’s t tests are used to infer if there is signifi-
cant TBI-related brain aging within cohort subgroups. 
First, across both sexes, we tested H0 (i.e., the signifi-
cance of TBI-related brain aging) at each timepoint 
within distinct age groupings. The first such grouping 
involves (A) younger adults (YAs) and older adults 
(OAs), results being reported and tabulated sepa-
rately for YAs and OAs. The second group involves 
(B) decadal age groups (i.e., D20 = 20–29 y, D30 = 
30–39 y, …, D60 = 60–69 y, D70+ = 70–83), results 
being reported and tabulated separately for each. This 
analysis was repeated for males (C: YAs and OAs; 
D: decadal groups) and females (E: YAs and OAs; 
F: decadal groups) separately. A table was created 
to list results for A, B, C, D, E, and F above under 
headings labeled accordingly, i.e., in this alphabeti-
cal order. One motivation for focusing carefully and 
systematically on each of these age groups during our 
analysis is the fact that age at injury is a major bio-
logical factor influencing treatment adherence [23]. 
For example, in patients with severe TBI, YAs adhere 
to their caretakers’ advice more strictly than OAs. By 
contrast, after mild-to-moderate TBI, OAs adhere to 
caretakers’ advice more strictly than YAs [23]. Fur-
thermore, age at injury is a major factor influencing 
clinical guidelines and decision making [24].
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Part II involves identifying significant age gap 
differences ΔAG

(
fi,j
)
= AG(fi) − AG(fj) between 

levels i and j ( i ≠ j ) of each factor f  . In this part of 
the analysis, if there is adequate power, factor lev-
els are compared by testing null hypotheses of the 
form H0 ∶ �[ΔAG

(
fi,j
)
] = �[AG

(
fi
)
− AG

(
fj
)
] = 0 . 

Welch’s t tests for samples with unequal variances 
are used to infer if there is any significant difference 
in TBI-related brain aging between timepoints across 
participants of any age or sex (step A), between YAs 
and OAs of either sex at either timepoint (steps B and 
C), between successive decadal age groups (e.g., D20 
vs. D30 , D30 vs. D40 , etc.) comprising participants of 
either sex (step D), between decadal age groups com-
prising participants of each sex (step E), or between 
the sexes for participants of any age in each decadal 
age group (steps F and G). A table was created to list 
results for steps A through G above under headings 
labeled accordingly, i.e., in this alphabetical order.

Results

Correction of BA estimation bias Table 1 summa-
rizes BA correction using polynomials whose orders 
are determined via model selection. Our results 
identify the fourth-order model as most suitable ( � 

= 7.0747, p = 0.0078), under the combined require-
ment of both parsimony (fewer model parameters) 
and higher likelihood to have generated the data. 
The fourth-order model exhibits significantly larger 
likelihood ratios than all lower-order models, and no 
model of order higher than 4 (except the fifth-order 
model) has a likelihood ratio significantly larger than 
that of the fourth-order model. Although the fifth-
order model has a higher likelihood ratio than the 
fourth-order model, the former can be rejected as 
biologically implausible because it yields improbable 
BA values ( � = 125.8 y, � = 160.3 y, range: − 50.4 to 
789.2 y).

For YAs, across the four polynomial orders used 
for bias correction, Spearman’s rank correlation coef-
ficient � between BA and each cognitive measure was 
within a range that differed from their mean by at 
most ∼ 2% (Table 2). By contrast, for OAs, the fourth-
order correction yielded values of � whose magni-
tudes were 18% (EVMD) to 106% (PS) larger than 
those obtained using the first-order correction. The 
second- and third-order corrections typically yielded 
values of � whose magnitudes were larger than those 
of the first-order correction but smaller than those of 
the fourth-order correction.

Descriptive statistics for BA s corrected using a 
fourth-order polynomial are provided in Table  3, 
which indicates that the average amount of 

Table 1  Likelihood ratios and associated p values for the comparisons of bias correction models of order m = 1, …, 6

Each cell specifies the likelihood ratio and p value associated with testing the null hypothesis that the model whose order is indi-
cated by the column header captures more information than the model whose order is specified in the row header. For example, for 
row 3 and column 4, the table indicates that the model of order 4 captures significantly more information in the data than the model 
of order 3 ( p = 0.0078, � = 7.0747). A larger value of the likelihood ratio test statistic � indicates that a higher-order model cap-
tures more information than a lower-order model. For all model comparisons, � has degrees of freedom ( df  ) equal to the difference 
in order of the models (see “Methods” section). For example, for row 3 and column 5, df  = 5 − 3 = 2

m 2 3 4 5 6

1 p 0.0098 0.0002  < 0.0001  < 0.0001  < 0.0001
� 6.6657 16.8480 23.9220 39.5820 41.1050

2 p 0.0014 0.0002  < 0.0001  < 0.0001
� 10.1820 17.2570 32.9160 34.4390

3 p 0.0078  < 0.0001  < 0.0001
� 7.0747 22.7340 24.2570

4 p  < 0.0001 0.0002
� 15.6600 17.1820

5 p 0.2172
� 1.5229
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TBI-related brain aging sustained by YAs and OAs 
is 1.8 ± 1.5 y and 15.3 ± 14.2 y, respectively, a sig-
nificant difference. Tallying participants by decadal 
age group confirms that the average amount of TBI-
related brain aging is relatively modest in adults 
under ∼60, but quite substantial in older ones.
Brain aging as a function of CA at injury Based 
on the optimal model identified by model selection, 
our results indicate that (bias-corrected) AG s increase 
monotonically with CA at injury. Results also indi-
cate that AG s are better modeled by a second-order 
polynomial than by a first-order one ( � = 21.9, p = 
2.9 ×  10−6, Table  4). For this reason, a second-order 
polynomial is used in this study to model AG s as a 
function of CA . Figure 1 displays, along the horizon-
tal axis, CA at injury, and, along the vertical axis, AG s 
that are uncorrected (1A), linearly corrected (1B), 

and quartically corrected (1C). After linear correc-
tion (Fig.  1B), AG s suggest a biologically implausi-
ble negative trend with CA . This misleading impres-
sion is rectified by the quartic correction, which not 
only achieves parsimony (Table 1), but also obviates 
the nonlinear increase in AG s with CA . Table 3 lists 
(bias-corrected) BA s and their associated AG s for 
each timepoint and every age group. Table  3A con-
tains results for YAs and OAs, whereas (decadal) age 
group results are listed Table 3B. Notably, the mean 
AG s of OAs (who coincide with participants in the 
decadal age groups D60 and D70+ ) reflect the quadratic 
AG increase with CA (Fig. 1). Figure 2 illustrates how 
this trend is paralleled by structural brain changes on 
T1-weighted MRIs in a pair of YAs and in a pair of 
OAs (one TBI participant and HC in each pair). Fig-
ure 2 illustrates how YAs, regardless of diagnosis sta-
tus (YA HC: Fig. 2A; YAs with TBI: 2B), experience 
smaller decreases in brain size and smaller increases 
in lateral ventricle size, over comparable time inter-
vals, than OAs (HC OA: Fig. 2C; OA with TBI: 2D). 
The brain features indicative of post-traumatic atro-
phy in the YAs with TBI (Fig.  2B) are subtler than 
those of the OAs with TBI (Fig.  2D), who exhibit 
greater brain atrophy (e.g., appreciable sulcal widen-
ing, greater lateral ventricle increases than the HC 
OAs; Fig. 2C), in agreement with our findings of sig-
nificantly greater brain aging in OAs.

Table 3  Relationship between BA and CA  at injury by age group

Listed are average bias-corrected BA s for (A) YAs (20–59 y) vs. OAs (60–83 y), as well as for (B) each CA decadal age group 
(20–29 y, 30–39 y, etc.). Also provided are sample sizes ( N ), mean AG s, and their 95% CIs for both the acute and chronic timepoint 
 (TP1 and  TP2, respectively). All results are reported in years and are based on bias-corrected BA estimates
AG age gap,CA chronological age, CI confidence interval, TP timepoint

CA N BA AG CI (AG)

TP1 TP2 TP1 TP2 TP1 TP2

(A) YAs and OAs
  20 – 59 108 38.1 38.3 1.8 1.5 –9.4, 13.4 –10.4, 12.2
  60 – 83 25 84.8 84.1 15.3 14.2 1.6, 28.6 –0.2, 29.3

(B) decadal age groups
  20 – 29 43 23.9 23.1 –0.3 –1.4 –10.6, 8.8 –11.6, 4.5
  30 – 39 25 35.1 35.5 2.3 2.2 –9.7, 13.9 –9.5, 9.8
  40 – 49 17 45.7 44.9 3.8 3.0 –6.9, 13.0 –7.1, 11.2
  50 – 59 23 51.2 52.9 3.5 5.0 –6.9, 16.7 –6.7, 11.6
  60 – 69 14 65.7 66.2 12.8 13.7 –0.1, 25.0 2.3, 21.3
  70 – 83 11 77.2 73.9 18.5 14.9 6.1, 33.0 –3.3, 26.0

Table 4  Like Table 1, for the model selection to identify the 
optimal order of the polynomial describing AG as a function 
of CA

All AG s are bias corrected
AGc corrected age gap, CA chronological age

m 2 3

1 p  < 0.0001  < 0.0001
� 21.9040 22.2000

2 p 0.5859
� 0.2968
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Hypothesis testing In part I of the statistical anal-
ysis, step 1 indicates that, across all ages and both 
sexes, the average amount of significant TBI-related 
brain aging is significant at baseline ( � = 4.3 y, � = 
7.9 y, t132 = 6.3, p = 9.8 ×  10−9, power = 99%) and fol-
low-up ( � = 3.9 y, � = 7.9 y, t132 = 5.7, p = 2.1 ×  10−7, 
power = 99%). Whereas the average amount of TBI-
related brain aging is 4.3 y at baseline vs. 3.9 y at fol-
low-up, this difference is not significant ( t264 = 0.41, 
p = 0.66, power = 80%). Results for step A of part I 
are reported in Table  5A, revealing that the average 
AG of OAs is significantly greater than 0 at both 
timepoints (acute baseline: � = 15.3 y, � = 6.9 y, t24 
= 11.2, p = 5.0 ×  10−11, power = 99%; chronic follow-
up: � = 14.2 y, � = 7.2 y, t24 = 9.8, p = 6.5 ×  10−10, 
power = 99%, see Fig. 3A and B, respectively). Step 
B confirms that, across all decadal age groups that 
include both sexes, only OAs exhibit significant TBI-
related brain aging (Table  5B). In steps C and F of 
part I, although some tests are underpowered, the sex-
specific decadal group tests echo the results in step 
B and their implications, reflecting comparable TBI 
effects across sexes (Table  5C through F). Steps D 
and F of part I reveal that, at each timepoint, males 
and females each have mean AG s significantly greater 
than 0. For males, at baseline, � = 4.5 y and � = 8.1 
y ( t81 = 5.0, p = 5.6 ×  10−6, power = 99%). For males, 
at follow-up, � = 4.3 y and � = 8.0 y ( t81 = 4.9, p 

= 8.9 ×  10−5, power = 99%). For females, at base-
line, � = 4.0 y and � = 7.7 y ( t50 = 3.8, p = 0.0007, 
power = 99%). For females, at follow-up, � = 3.2 y 
and � = 7.8 y ( t50 = 2.9, p = 0.0079, power = 88%).

In part II of the analysis, step A indicates that, 
across participants of all ages and both sexes, there 
is no significant TBI-related brain aging occurring 
between timepoints (baseline: � = 4.3 y, � = 7.9 y; 
follow-up: � = 3.9 y, � = 7.9 y; t264 = 0.41, p > 0.65, 

Fig. 1  (Color online) AG s for the uncorrected model (A), 
linear correction (B), and quartic correction (C). AG s are 
plotted as a function of CA at injury both at the acute and 
chronic timepoints  (TP1 and  TP2, respectively). In (A), (B), 
and (C), second-order polynomials model AG as a function 
of CA for males (M, circles), females (F, crosses) at  TP1 (red 
data points and trendline),  TP2 (blue data points and trend-
line), and across both TPs (black trendline). In other words, 
red and blue dashed lines correspond to quadratic polynomial 
functions whose coefficients were calculated using data from 
the first (acute baseline) and second (chronic follow-up) time-
points, respectively. The black trace is the polynomial func-
tion whose coefficients were calculated using data from both 
timepoints. The horizontal green line corresponds to the null 
hypothesis H0 ∶ AG = 0, from which older adults’ AG s deviate 
significantly. Importantly, the second-order polynomial lines in 
each inset are guides to the eye and are distinct from the poly-
nomials involved for the corrections themselves (see “Meth-
ods” section). Vertical arrows indicate the sign of AG (i.e., the 
direction of the aging effect) and its interpretation in terms of 
aging trajectory (downward arrow: negative AG , i.e., the par-
ticipant is younger than expected; upward arrow: positive AG , 
i.e., the participant is older than expected). AG age gap, CA 
chronological age, F females, M males, TP timepoint

▸
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see Table  6A), although the test is underpowered 
(power = 28%). Steps B and C identify significant 
TBI-related brain aging difference between OAs and 
YAs of either sex at both baseline ( �YA = 1.8 y, �YA 
= 5.6 y; �OA = 15.3 y, �OA = 6.9 y; t32 =  − 9.2, p = 
9.5 ×  10−11, power = 99%) and follow-up ( �YA = 1.5 y, 
�YA = 5.9 y; �OA = 14.2 y, �OA = 7.2 y; t32 =  − 8.2, p 
= 1.2 ×  10−9, power = 99%, see Table 6B and C). For 
steps D and E, all statistical tests are underpowered, 

and no statistical inferences are therefore advisable. 
For steps F and G of part II, no significant sex dif-
ferences in brain aging are found at either timepoint, 
although the test for the baseline is slightly under-
powered (baseline: �M = 4.5 y, �M = 8.1 y; �F = 4.0 
y, �F = 7.7 y; t110 = 0.4, p > 0.64, power = 76%; fol-
low-up: �M = 4.3 y, �M = 8.0 y; �F = 3.2 y, �F = 7.8 
y;  t108 = 0.78, p > 0.78, power = 93%, see Table 6F 
and G).

Fig. 2  (Grayscale) 
Comparison of neuroana-
tomic features across (A) 
a younger HC male ( CA = 
24), (B) a younger male 
participant with TBI ( CA = 
24 y) imaged at the acute 
baseline, (C) an older HC 
female participant ( CA = 
75 y), and (D) an older 
female participant with TBI 
( CA = 75 y) imaged at the 
acute baseline. The first, 
second, and third columns 
correspond to axial, sagittal, 
and coronal views, respec-
tively. Notable features that 
assist subject comparison 
include lateral ventricle 
size and sulcal depth/width. 
Comparison of (A) and (B) 
indicates larger ventricles 
and sulcal enlargement in 
the younger participant 
with TBI (blue arrows show 
the difference in sulcal 
enlargement). Whereas 
comparison of (C) and 
(D) also illustrates greater 
brain atrophy after TBI 
in the OAs, the extent of 
this phenomenon is clearly 
greater than in the YAs (red 
arrows). Comparison of (A) 
and (C) highlights typical 
aging-related brain atrophy, 
whereas comparison of 
(B) and (D) additionally 
illustrates TBI-related 
brain aging, which includes 
injury-related biological 
aging
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Discussion

Estimating BA can be useful for identifying 

individuals at relatively high risk of aging-related 
diseases. For example, accelerated brain aging 
after TBI is a known risk factor for cognitive 

Table 5  Results of one-sample t tests of the null hypothesis AG = 0 y at the acute baseline  (TP1) and chronic follow-up  (TP2)

This null hypothesis is equivalent to the statement that the group in question exhibits no TBI-related brain aging. Listed are sample 
sizes N , the mean � and standard deviation � of AG (in years), the t statistic of the test, −  log10 p values (where p is the p value of 
the test), and statistical power as a percentage. Values of −  log10 p greater than 1.3, 3, and 4 are significant at thresholds ( � ) of 0.05, 
0.001, and 0.0001, respectively. These significance levels are indicated by *, **, and ***, respectively, provided that the power of the 
corresponding statistical test is at least 80%. All AG s are bias corrected
AG age gap, df  degrees of freedom, TP timepoint, y year(s)

CA N AG t df  − log10 p power [%]

� [y] � [y]

TP1 TP2 TP1 TP2 TP1 TP2 TP1 TP2 TP1 TP2

(A) Both sexes, YAs and OAs
  20–59 108 1.8 1.5 5.6 5.9 3.3 2.6 107 2.64* 1.87 95 83
  60–83 25 15.3 14.2 6.9 7.2 11.2 9.8 24 10.30*** 9.19*** 99 99
(B) Both sexes, by decadal age group
  20–29 43  − 0.3  − 1.4 5.2 5.1  − 0.3  − 1.8 42 0.43 1.07 10 54
  30–39 25 2.3 2.2 6.0 5.9 1.9 1.9 24 1.17 1.15 58 57
  40–49 17 3.8 3.0 5.4 5.0 2.9 2.5 16 2.00* 1.58 88 76
  50–59 23 3.5 5.0 5.2 5.8 3.2 4.1 22 2.33* 3.24** 93 99
  60–69 14 12.8 13.7 6.4 5.7 7.4 9.0 13 5.46*** 6.44*** 99 99
  70–83 11 18.5 14.9 6.2 9.1 9.9 5.4 10 6.10*** 3.70** 99 99
All 133 4.3 3.9 7.9 7.9 6.3 5.7 132 8.01*** 6.67*** 99 99
(C) Males only, YAs and OAs
  20–59 67 2.0 2.3 6.2 6.3 2.7 2.9 66 1.92* 2.16* 85 89
  60–83 15 15.5 13.6 6.3 8.2 9.5 6.5 14 6.92*** 4.90*** 99 99
(D) Males only, by decadal age group
  20–29 21 -0.7 -2.0 5.7 5.4 -0.6 -1.7 20 0.49 1.01 14 50
  30–39 22 2.4 2.7 6.2 6.0 1.8 2.1 21 1.11 1.29 55 64
  40–49 9 5.1 4.8 5.9 4.1 2.6 3.5 8 1.59 2.22* 76 94
  50–59 14 3.5 6.1 5.9 6.1 2.2 3.7 13 1.40 2.63* 71 98
  60–69 7 12.8 13.7 5.2 5.9 6.6 6.1 6 3.62** 3.42** 99 99
  70–83 8 17.8 13.6 6.6 10.2 7.6 3.8 7 4.27*** 2.34* 99 96
All 82 4.5 4.3 8.1 8.0 5.0 4.9 81 5.25*** 5.05*** 99 99
(E) Females only, YAs and OAs
  20–59 41 1.3 0.3 4.6 5.0 1.9 0.3 40 1.14 0.43 57 55
  60–83 10 15.1 15.0 7.9 5.7 6.1 8.3 9 3.94** 5.08*** 99 99
(F) Females only, by decadal age group
  20–29 22 0.2  − 0.8 4.7 4.9 0.2  − 0.8 21 0.41 0.54 7 18
  30–39 3 1.3  − 1.1 5.2 3.5 0.4  − 0.5 2 0.51 0.54 9 10
  40–49 8 2.4 0.9 4.6 5.4 1.5 0.5 7 0.88 0.47 38 11
  50–59 9 3.5 3.0 4.1 5.2 2.6 1.7 8 1.58 1.03 70 43
  60–69 7 12.9 13.6 8.0 5.9 4.3 6.2 6 2.54* 3.44** 98 99
  70–83 3 20.4 18.3 5.5 4.8 6.5 6.6 2 2.46* 2.49* 99 99
All 51 4.0 3.2 7.7 7.8 3.8 2.9 50 3.17** 2.10* 98 88
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decline, cognitive impairment, and neurodegen-
erative diseases, including Alzheimer’s and Par-
kinson’s diseases [8, 9, 25–27]. Thus, MRI-based 
BA estimates can help to identify individuals who 
may need to prioritize lifestyle changes or who 
could benefit most from clinical interventions, 
potentially to include patient-tailored treatments 
[28–30]. Conversely, BA estimation can facili-
tate identification of individuals resilient to TBI-
related brain senescence, which may be useful 
because such individuals’ genotypic, phenotypic, 
and endophenotypic profiles could help to identify 
biological factors that are neuroprotective against 
TBI [31–33].

Modeling and validation Prior studies have dem-
onstrated (A) the feasibility of accurate BA estimation 
from structural and/or diffusion neuroimaging [1, 11], 
(B) the within- and between-scanner reliability of 
BA estimation procedures [10], and (C) the ability to 
predict mortality from BA estimates [7]. Most exist-
ing models for BA estimation assume that CA is lin-
early associated with both BA and AG , which is often 
true in typical aging [17, 18]. It is unclear, however, 
whether this assumption holds for neurological con-
ditions like TBI, where accelerated cognitive decline 
and brain atrophy have been documented [34–38]. 
Because such accelerated processes may be indicative 
of nonlinear trends in brain aging as a function of CA 
at injury, it is reasonable to hypothesize that nonlin-
ear models can be useful for BA bias correction in the 
presence of such nonlinearities.

The results of our model selection procedure sug-
gest that, compared to linear models, adequately 
selected polynomial functions modeling the relation-
ship between CA and AG can capture significantly 
more information than linear models without overfit-
ting. This statement is supported by the results of our 
analysis to compare the Spearman rank correlations 
between bias-corrected BA s and cognitive measures. 
This analysis highlights how fourth-order bias cor-
rections result in (A) stronger correlations between 
BA s and cognitive scores for OAs, and in (B) corre-
lations for YAs that are comparable across bias cor-
rection models. Thus, higher-order corrections like 
ours could be most beneficial when assessing the BA s 
of OAs, whose brain aging accelerates considerably 
after TBI compared to those of YAs. Future studies 
should further evaluate the utility of nonlinear models 

using independent approaches for BA estimation other 
than cognitive measures. Such approaches could 
include methylation clocks or other strategies that do 
not rely on imaging alone to estimate BA [39–43].

Interpretation and implications This study quan-
tifies, in years, the vulnerability of OAs to injury-
related aging that is observed above and beyond typi-
cal aging. The study also identifies the CA at injury 
when injury accelerates the rate of brain aging. 
According to this study, the average amount of post-
traumatic brain aging increases substantially and non-
linearly with CA after CA ≃ 60 y. This suggests that 
the transition from middle to old (chronological) age 
is accompanied by substantial changes in the brain’s 
vulnerability to TBI. By contrast, single mTBIs sus-
tained before age ∼ 60 do not seem to result in signifi-
cant brain BA increases in individuals with no history 
of neurological or psychiatric disease. It is conceiv-
able, however, that YAs do undergo significant brain 
aging after mTBI, although samples larger than ours 
may be needed to detect it. In a large cohort of mTBI 
participants with the same CA , the expected AG at 
the time just before injury is 0 y because BA s are 
normally distributed around their mean. In the limit 
of large N , this expected value of BA is equal to the 
CA . This property of Gaussianity reflects the fact that 
models like brainageR are trained so that AG = 0 y 
for typically aging (i.e., uninjured) brains. There-
fore, our findings suggest that the post-injury aging is 
mTBI related, but only on average over our cohort of 
participants.

Because brain BA is proportional to neurodegener-
ative disease risk [44–46], TBI-related brain aging in 
older adults could reflect increases in such risk. The 
finding that CA at injury is a stronger determinant of 
brain aging than sex requires further study and inter-
pretation through mechanistic research on how CA 
at injury and sex affect brain aging. We investigated 
participants with relatively recent single TBIs of mild 
severity (i.e., concussions) and with no prior history 
of other TBIs. Thus, our findings may not be readily 
generalizable to remote injuries, to injury severities 
greater than mild, or to individuals with a history of 
more than one TBI. Because TBI chronicity, sever-
ity, and count affect neurodegenerative disease risk in 
complex ways [47], researchers should aim to clarify 
how these factors affect brain aging after injury.
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The apparent lack of significant brain BA differ-
ences between timepoints suggests that, according 
to our modeling and results, most MRI-detectable 
brain aging occurred within the first ∼7  days after 
injury. For this reason, the lack of significant brain 

BA differences between timepoints should not be 
construed to imply that mTBI does not result in 
excessive brain aging. Instead, our study suggests 
that TBI-related brain aging does not increase signif-
icantly in samples like ours either during or beyond 
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the first ∼6  months post-trauma. Thus, in victims 
of a single mTBI, it is possible that acute injury 
effects on brain structure affect TBI-related brain 
aging more strongly than chronic injury effects. A 
complementary hypothesis consistent with this sce-
nario is that acute injury effects on brain structure 
persist after the first ∼6 months post TBI. This may 
cause the apparent lack of mean AG changes across 
timepoints, as reported here. Testing this hypothesis 
requires data from additional timepoints, and our 
observational study introduces a strategy for screen-
ing mTBI patients in view of therapeutic interven-
tion at the discretion of clinicians, rather than spe-
cifically for treating them. Thus, our inferences 
highlight the importance of such screening to facili-
tate early interventions that could prevent or allevi-
ate biological aging. They also raise questions about 
the extent to which subacute or chronic pathophysi-
ological processes can lead to structural brain altera-
tions reflective of brain aging on MRI. It is unknown 
whether neuroprotective interventions undertaken 
during the subacute or chronic stages of TBI could 
help to decelerate or forestall such processes. It is 
also unknown whether their effect on brain aging 
would be adequately captured on MRIs. Thus, sub-
stantial additional research is required to understand 
how TBI can lead to brain aging, how well MRI 
can capture this phenomenon, and what the optimal 
window is for interventions to alleviate it. Future 
work to develop post-TBI therapeutic interventions 
relying on BA estimation-informed approaches can 

reveal the utility of this measure for identifying, 
monitoring, attenuating, and perhaps even reversing 
structural brain changes that BA estimates epitomize. 
This can also help address the heterogeneous aging 
vulnerability to aging-related degeneration by iden-
tifying those most seriously affected.

Comparison with other studies Our findings 
are supported by research indicating that older TBI 
patients’ differential activity pertaining to immune 
regulation and neural recovery contribute to a lower 
probability of MRI evidence for post-traumatic recov-
ery [48]. Cole et  al. [11] studied 99 participants 
with TBIs of all severities (17% mild, 83% moder-
ate or severe) who had been scanned, on average, ∼
2.4 y post-injury. These authors found average AG s 
of 4.7 ± 10.8 y for gray matter, and 6.0 ± 11.2 y for 
white matter, as well as significant AG increases with 
time since injury. In our study, such increases were 
not found, possibly because (A) our follow-up period 
was considerably shorter ( ∼0.5 y vs. ∼2.4 y, on aver-
age), (B) our sample did not include participants with 
moderate or severe TBIs (whose brains probably 
age faster), and (C) our participants sustained recent 
TBIs, whereas the sample of Cole et al. was consid-
erably more heterogeneous with respect to injury 
chronicity. Despite such methodological differences, 
our results are consistent with the conclusion of Cole 
et  al. that TBI accelerates the rate of brain atrophy. 
This is because, according to our findings, the older 
the CA at injury, the greater the average amount of 
TBI-related brain aging. Our finding of no significant 
TBI-related brain aging between baseline and follow-
up replicates that of Gan et al. [49], whose neuroim-
age analysis approach is similar to ours with the nota-
ble exception that these authors used a linear model 
to describe AG as a function of CA at injury. In a sam-
ple smaller than ours, these authors also found that 
OAs experience significantly more brain aging than 
YAs after mTBI (OAs: 6.7 ± 5.6 y; YAs: 1.3 ± 5.5 y).

Limitations Our findings may partly be confounded 
by comorbidities unrelated to TBI. In one study of 
hospital patients with geriatric TBI [50], 11% had 
pre-existing dementia, 22% had pre-existing hyper-
tension, and 99% had at least one pre-existing condi-
tion. Another study [51] suggests that ∼73% of older 
TBI patients have a medical condition before injury, 
compared to only ∼28% of younger patients. Finally, 

Fig. 3  (Color online) Boxplots of AG s for each decadal age 
group in the age range from 20 to 83 for (A)  TP1, (B)  TP2, 
and (C) both TPs partitioned into two columns with the left 
column containing the decadal groupings and the right col-
umn containing YA vs. OA. Horizontal red lines indicate the 
median AG of the respective group. The width of each boxplot 
notch indicates median AG variability within the respective 
age group and is computed such that non-overlapping notches 
between groups indicate significantly different medians at � = 
5%. Horizontal blue lines marking the bottom and top edges of 
each box designate the 25th and 75th percentiles, respectively, 
of AG within the respective age group. Whiskers extend to val-
ues within 1.5  × IQR above or below each box. Red crosses 
indicate outliers outside 1.5 × IQR. All AG s are bias corrected. 
Vertical arrows indicate the sign of AG (i.e., the direction of 
the aging effect) and its interpretation in terms of aging tra-
jectory (downward arrow: negative AG , i.e., the participant is 
younger than expected; upward arrow: positive AG , i.e., the 
participant is older than expected). AG age gap, IQR interquar-
tile range, TP timepoint

◂
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∼80% of all adults over the age of 65 have at least one 
chronic condition and 50% have at least two such con-
ditions [52], e.g., hypertension [53]. These and other 
comorbidities of OAs experiencing mTBIs may, in 
ways unknown to us, affect our estimates of excessive 
brain aging observed approximately one  week after 
injury. For example, persons who are already vulnera-
ble to accelerated senescence before injury may go on 
to experience accelerated aging after injury, but this 
aging may be related partly to their mTBI and partly 
to unrelated processes that accelerate aging. However, 
our estimated AGs reflect the sum of accelerated post-
traumatic aging processes regardless of whether they 
are causally related to mTBI, and our models cannot 
establish such causality with certainty. We are only 
able to extract the additional aging in OAs on aver-
age. Ideally, mTBI patients should be studied in the 
absence of unrelated comorbidities, particularly those 
of a vascular nature. However, this can be very chal-
lenging due to the high prevalence of vascular disease 
among older adults. In addition, findings from nor-
motensive older patients with TBI but without vascu-
lar disease can be of limited relevance because only 
a modest fraction of older individuals lack either the 
symptoms or the post-mortem pathology of vascular 
disease.

Our categorization of participants as younger or 
older than 40 is, admittedly, somewhat arbitrary. We 
selected this age threshold between groups for two 
reasons. First, it resulted in a relatively balanced 

statistical design with about equal numbers of par-
ticipants in each of the two groups. Second, recent 
research suggests that contrasting young and early 
middle-aged adults against old and late middle-aged 
adults can provide insight into disease mechanisms 
that are initiated early in the aging process, as in the 
undulating senescence model [54]. Indeed, our Fig. 1 
suggests a noticeable difference in mTBI effects upon 
brain age in adults older versus younger than 40, the 
former being considerably more resilient than the lat-
ter (as reflected by their much smaller age gaps). Sim-
ilarly, splitting our sample by decade is also some-
what arbitrary, and other divisions (e.g., 5-year bins, 
etc.) can also be justified. Given our sample size, how-
ever, splitting the sample by decade is more appropri-
ate due to the need of preserving adequate statistical 
power for hypothesis tests. Furthermore, quantifying 
TBI-related brain acceleration by decade is useful 
because many clinical guidelines are formulated for 
decadal groups [23]. Furthermore, it is important to 
note that our treatment of age effects is not limited to 
the setting where participants are grouped according 
to their ages. Specifically, our study synergizes dec-
adal analysis with the analysis of age as a continuous 
variable, viz. Figure 1. Admittedly, treatment of age, 
sex, and their interaction within linear (mixed effects) 
regression models is appealing. However, whereas 
such models provide insight on the significances 
of age and sex as statistical random variables, treat-
ing age as a continuous variable within these models 

Table 6  Results of statistical tests to infer if there is any significant difference in TBI-related brain aging between levels of each sta-
tistical factor in the analysis (age, sex, or time)

The statistical comparisons are as follows: (A) the acute baseline timepoint  (TP1) vs. the chronic timepoint  (TP2) across participants 
of all ages and both sexes (analysis part II, step 1); (B) YAs vs. OAs at  TP1 across both sexes (analysis part II, step 2); (C) YAs vs. 
OAs at  TP2 across both sexes (analysis part II, step 2); (D) males vs. females at the acute timepoint  (TP1) across all ages (analysis 
part II, step 5); (E) males vs. females at the chronic follow-up timepoint  (TP2) across all ages (analysis part II, step 5). Columns 2–4 
indicate the composition of the samples compared in each statistical test. For example, test A compares timepoint 1 (acute baseline) 
to timepoint 2 (chronic follow-up) across all ages and both sexes. Similarly, test B compares YAs to OAs at timepoint 1 across both 
sexes, and test D compares males to females at timepoint 1 across all ages. Listed in columns 5–10, respectively, are the sample sizes 
( N1 and N2 ) of the groups compared, Welch’s t  statistic, the degrees of freedom, −  log10 p (where p is the p value of the test), and 
statistical power. Values of −  log10 p greater than 4 are significant at � = 0.0001, indicated by * if the power of the test is at least 80%
F females, M males, OA older adult, TP timepoint, YA younger adult

Test Sex(es) TP(s) Age(s) N1 N2 t df  −  log10 p Power (%)

A Both 1 vs. 2 All ages 133 133 0.4129 264 10.1805 28
B Both 1 YAs vs. OAs 108 25  − 9.1680 32 10.0238* 99
C Both 2 YAs vs. OAs 108 25  − 8.2048 32 18.9330* 99
D M vs. F 1 All ages 81 52 0.3569 110 10.1944 99
E M vs. F 2 All ages 81 52 0.7830 108 10.1066 21

2522



GeroScience (2022) 44:2509–2525

1 3
Vol.: (0123456789)

does not accommodate the task of comparing persons 
within certain age groups (e.g., 30s vs. 40s, etc.) as 
easily as in our adopted approach.

A strength of Gaussian process regression is its 
ability to predict BA using a comprehensive set of 
MRI features whose utility can otherwise be dif-
ficult to leverage. On the other hand, such features 
can be challenging to interpret neuroanatomically. 
Thus, a notable weakness of this study is that our BA 
estimation approach does not indicate which TBI-
related changes in brain structure are associated with 
excessive brain aging after injury. Furthermore, a 
larger sample is needed to test, with adequate power, 
whether TBI effects upon brain BA differ significantly 
by sex. We could not infer confidently whether the 
interaction between sex and CA at injury affects brain 
aging significantly after TBI. This could be due either 
to the nature of our statistical design or/and to our 
limited sample size. Finally, our inferences are based 
exclusively on macroscale neuroimage analysis, and 
involves no analysis of microscale findings, like in 
histopathology studies. This precludes our identifica-
tion of neurobiological mechanisms solely by means 
of our approach. Thus, no independent model valida-
tion or confirmation of our results could be obtained 
other than from cognitive assessments. Validation 
based on strategies that require invasive sampling to 
calculate brain BA (e.g., DNA methylation clocks of 
brain cells) should be explored by future studies, as 
should validation based on phenotypic age, physio-
logical age, functional aging index, and frailty index.

Conclusion

This study identifies CA at injury—but not sex—as 
a significant risk factor for appreciable brain aging 
after mTBI. Our results highlight the importance of 
model selection to identify nonlinear models that 
best capture the relationship between brain BA and 
CA , which may not always be linear. Thus, the rela-
tionship between BA and CA should be modeled and 
interpreted carefully and rigorously by future stud-
ies. Importantly, it should be modeled across a fol-
low-up interval longer than ours. Our results suggest 
mTBI-related changes in the brain’s biological aging 
trajectory that are not reversed within our 6-month 

follow-up period. However, our findings do not rule 
out recovery processes that become manifest beyond 
this early follow-up period, and future studies should 
quantify these. Researchers should also attempt to 
replicate our findings using methods that estimate BA 
from neuroimage features that are better understood 
and more interpretable (e.g., regional volumes, sur-
face areas, connectivity properties, etc.). Importantly, 
open access to the learned model parameters used 
by various software for BA estimation would help 
researchers to understand and interpret their outputs 
and to ensure reproducibility across software imple-
mentations and imaging datasets.
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