Skip to main content
. 2022 Dec 7;10:1059597. doi: 10.3389/fcell.2022.1059597

TABLE 4.

Prediction performance of machine learning approaches for predicting early death among bone metastatic breast cancer patients.

Measure Approach
Logistic regression Gradient boosting tree Decision tree Random forest
Mean predicted 0.176 0.176 0.176 0.175
Brier score 0.112 0.109 0.117 0.111
Intercept 0.06 0.06 0.05 0.07
Calibration slope 1.01 1.06 0.96 1.20
AUC (95% CI) 0.819 (0.791–0.847) 0.829 (0.802–0.856) 0.797 (0.767–0.826) 0.828 (0.801–0.855)
Discrimination slope 0.240 0.258 0.216 0.223
Specificity 0.766 0.823 0.764 0.775
Sensitivity (recall) 0.745 0.704 0.707 0.752
NPV 0.931 0.926 0.921 0.933
PPV (precision) 0.416 0.472 0.402 0.427
Youden 1.511 1.527 1.471 1.526
Accuracy 0.762 0.801 0.754 0.770
Threshold 0.191 0.203 0.191 0.193

AUC, area under the curve; CI, confident interval; NPV, negative predictive value; PPV, positive predictive value.