Skip to main content
. 2022 Nov 29;3(12):100642. doi: 10.1016/j.patter.2022.100642

Table 2.

Performances of different methods in prostate gland segmentation in terms of pixel-based metrics

Method Accuracy Precision Recall Dice
Farjam et al.25,a 0.6378 ± 0.1586 0.7183 ± 0.3034 0.4372 ± 0.1736 0.5070 ± 0.2059
Naik et al.26,a 0.7402 ± 0.1151 0.7958 ± 0.2021 0.5819 ± 0.2275 0.6357 ± 0.2105
Peng et al.27,a 0.7957 ± 0.1535 0.6508 ± 0.2568 0.9305 ± 0.1124 0.7334 ± 0.2198
Nguyen et al.28,a 0.7703 ± 0.1632 0.8260 ± 0.1588 0.7041 ± 0.2998 0.7145 ± 0.2556
Singh et al.29,a 0.6734 ± 0.1247 0.9001 ± 0.1743 0.3869 ± 0.2493 0.4931 ± 0.2557
Ren et al.30,b 0.8576 ± 0.1139 0.8199 ± 0.1638 0.8861 ± 0.1673 0.8308 ± 0.1495
Xu et al.31,b 0.8250 ± 0.1106 0.7407 ± 0.1597 0.9273 ± 0.1079 0.8079 ± 0.1264
Salvi et al.24,b 0.9325 ± 0.0684 0.8897 ± 0.1359 0.9356 ± 0.0964 0.9016 ± 0.1087
Mask R-CNN19,b,c 0.9410 ± 0.0010 0.9002 ± 0.0026 0.9468 ± 0.0011 0.9229 ± 0.0015

The performances were on the hold-out test set of Salvi et al.24 Note that accuracy values were the balanced accuracy values as in Salvi et al.,24 and all performance values except the one for the Mask R-CNN model were collected from Salvi et al.24

a

Traditional image processing or machine-learning-based methods.

b

Deep-learning-based methods.

c

Standard deviations were calculated using bootstrapping.22