Table 2.
Method | Accuracy | Precision | Recall | Dice |
---|---|---|---|---|
Farjam et al.25,a | 0.6378 ± 0.1586 | 0.7183 ± 0.3034 | 0.4372 ± 0.1736 | 0.5070 ± 0.2059 |
Naik et al.26,a | 0.7402 ± 0.1151 | 0.7958 ± 0.2021 | 0.5819 ± 0.2275 | 0.6357 ± 0.2105 |
Peng et al.27,a | 0.7957 ± 0.1535 | 0.6508 ± 0.2568 | 0.9305 ± 0.1124 | 0.7334 ± 0.2198 |
Nguyen et al.28,a | 0.7703 ± 0.1632 | 0.8260 ± 0.1588 | 0.7041 ± 0.2998 | 0.7145 ± 0.2556 |
Singh et al.29,a | 0.6734 ± 0.1247 | 0.9001 ± 0.1743 | 0.3869 ± 0.2493 | 0.4931 ± 0.2557 |
Ren et al.30,b | 0.8576 ± 0.1139 | 0.8199 ± 0.1638 | 0.8861 ± 0.1673 | 0.8308 ± 0.1495 |
Xu et al.31,b | 0.8250 ± 0.1106 | 0.7407 ± 0.1597 | 0.9273 ± 0.1079 | 0.8079 ± 0.1264 |
Salvi et al.24,b | 0.9325 ± 0.0684 | 0.8897 ± 0.1359 | 0.9356 ± 0.0964 | 0.9016 ± 0.1087 |
Mask R-CNN19,b,c | 0.9410 ± 0.0010 | 0.9002 ± 0.0026 | 0.9468 ± 0.0011 | 0.9229 ± 0.0015 |
The performances were on the hold-out test set of Salvi et al.24 Note that accuracy values were the balanced accuracy values as in Salvi et al.,24 and all performance values except the one for the Mask R-CNN model were collected from Salvi et al.24
Traditional image processing or machine-learning-based methods.
Deep-learning-based methods.
Standard deviations were calculated using bootstrapping.22