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Basal cell carcinoma (BCC) of the prostate is a rare tumor. Compared with the more common acinar
adenocarcinoma (AAC) of the prostate, BCCs show features of basal cell differentiation and are thought
to be biologically distinct from AAC. The spectrum of molecular alterations of BCC has not been
comprehensively described, and genomic studies are lacking. Herein, whole genome sequencing was
performed on archival formalin-fixed, paraffin-embedded specimens of two cases with BCC. Prostatic
BCCs were characterized by an overall low copy number and mutational burden. Recurrent copy number
loss of chromosome 16 was observed. In addition, putative driver gene alterations in KIT, DENND3,
PTPRU, MGA, and CYLD were identified. Mechanistically, depletion of the CYLD protein resulted in
increased proliferation of prostatic basal cells in vitro. Collectively, these studies show that prostatic
BCC displays distinct genomic alterations from AAC and highlight a potential role for loss of chromo-
some 16 in the pathogenesis of this rare tumor type. (Am J Pathol 2023, 193: 4e10; https://doi.org/
10.1016/j.ajpath.2022.09.010)
The prostate is lined by a bilayered epithelium composed of
basal cell and luminal cell layers.1 Most prostate cancers show
features of prostatic luminal cell differentiation and demon-
strate an acinar growth pattern.2 However, a distinct subtype of
prostatic carcinomas shows morphologic and molecular simi-
larities with prostatic basal cells, and is termed prostatic basal
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cell carcinoma (BCC).3e6 Prostatic BCCs are extremely rare
tumors, with only several dozen cases described in the litera-
ture. 3e5,7,8

Although most BCCs are considered indolent, recent
studies showed that more than 40% of patients experience
disease recurrence after initial therapy. In addition,
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Basal Cell Carcinoma of the Prostate
metastatic spread has been documented in approximately
10% of men diagnosed with BCC.4,9 The metastatic pattern
of BCC is distinct, involving liver, lung, and bowel, but not
bone, the most common site of acinar adenocarcinoma
(AAC) of the prostate. These observations demonstrate that
BCC clinically differs from AAC.4

From a molecular perspective, BCCs are characterized by
the expression of prostatic basal cell markers, including p63
and high-molecular-weight keratins, and frequent over-
expression of the antiapoptotic protein B-cell lymphoma 2
(BCL2).10 Luminal prostate epithelial markers, including
androgen receptor or prostate-specific antigen, are usually
absent, or are expressed at low levels. In addition, BCCs do
not harbor TMPRSS2-ERG gene rearrangements, which are
seen in >50% of prostatic AACs.11 Very little is known
about the genomic features of BCC, and based on the small
number of published studies, it appears that BCCs show
limited copy number changes and rare recurrent
translocations.12,13

To better characterize the genomic features of BCC, whole
genome sequencing was performed on two BCC cases.
Although the genomes of BCC are overall quiet, copy
number loss of chromosome 16 was present in both cases. In
addition, a loss of function mutation was observed in CYLD.
In in vitro experiments, CYLD protein loss increased cell
proliferation in prostatic basal cells, confirming its putative
driver role. Furthermore, the loss of CYLD was associated
with morphologic changes that resembled cylindromas, a
skin tumor that arises in the context of familial cylin-
dromatosis, which is characterized by CYLD inactivating
mutations. Collectively this study provides further insights
into the biology of BCCs and highlights the striking
genotype-phenotype associations in tumors with CYLD
alterations.

Materials and Methods

Patient Samples and Whole Genome Sequencing

Tissues consisted of archival transurethral resection speci-
mens from the consultation files of one of the authors (J.I.E.).
Tumor areas were identified by two pathologists (J.I.E. and
M.C.H.) on adjacent hematoxylin and eosinestained slides.
These areas were macrodissected, and DNA was extracted
from 5 formalin-fixed, paraffin-embedded tissue sections
using a DNA formalin-fixed, paraffin-embedded tissue kit
(QIAamp, Qiagen, Hilden, Germany) following manufac-
turer’s protocols. Because of the fragmented nature of the
transurethral resection specimens and the diffuse infiltrative
growth pattern of the tumors, we aimed to achieve a tumor
cellularity of >50%. In addition, adjacent, matched, non-
neoplastic tissue was collected and used as germline control.
DNA concentrations were determined using the a double-
stranded DNA broad-range assay kit (Qubit, Invitrogen,
Carlsbad, CA). Genomic DNA from tumor and adjacent
benign samples was sonicated and further processed (TruSeq
The American Journal of Pathology - ajp.amjpathol.org
Nano DNA library construction kit, Illumina, San Diego,
CA). Barcoded libraries were subjected to 151 � 151 paired
end sequencing on a HiSeq 2500 Genome Analyzer (Illu-
mina), resulting in a mean coverage of 28.9 (range, 29.5 to
27.22). Reads were aligned against the hg38 genome using
the Burrows-Wheeler Alignment Tool version 0.7.7 with
default setting.14 Picard tools version 1.119 (Broad Institute,
Cambridge, MA; https://github.com/broadinstitute/picard)
were used to add read groups as well as remove duplicate
reads. The Genome Analysis Toolkit version 3.6.0 (Broad
Institute; https://gatk.broadinstitute.org/hc/en-us) base call
recalibration steps were used to create the final alignment
files.
Somatic Variant Detection

Somatic variants between the tumor-normal pairs were called
using Mutect2 (Broad Institute) and Strelka2 (Illumina) and
annotated with ANNOVAR.15,16 Variants were further
filtered for functional prediction evidence using the dbNSFP,
and only deleterious variants supported by one of the pre-
diction databases (SIFT, LRT, MutationTaster, and
FATHMM) were considered. Variants were classified based
on disease or phenotypes information using ClinVar, Inter-
Var, and COSMIC. Synonymous and nonframeshift indels
were excluded. Only variants supported by both callers
(Mutect2 and Strelka2) were considered as final call sets.
Copy Number Analysis

Copy number analyses were performed using
TitanCNA.17,18 TitanCNA solutions were generated for one
to three clonal clusters and ploidy initializations from two to
four. Optimal solutions were selected automatically within
the pipeline and reselected with manual inspection to
confirm tumor ploidy and clonal cluster.
SV Analysis

SvABA and Gridss2 were used to detect structural variants
(SVs). The SvABA analysis was performed using tumor-
normal paired mode with default parameters.19 SV events
were classified into deletions, inversions, tandem duplica-
tions, interchromosomal translocations, and intra-
chromosomal translocations, whereas intrachromosomal
translocations were further divided into balanced and unbal-
anced events based on copy number information as previously
described.20 Gene alteration status by genome rearrangements
was defined based on the breakpoints of involved SV events.
A gene in one whole genome sequencing sample (gene-
sample pair) was considered to have gene-transecting events if
any breakpoints of SV events were located within the gene
body region. Gene coordinates were based on ENSEMBL
version 33 (European Bioinformatics Institute, Hinxton,
UK).21 Circos plots were generated with shinyCircos
5
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(YaoLab-Bioinfo, Guangzhou, China; https://venyao.
shinyapps.io/shinyCircos).
In Vitro Experiments

Human telomerase reverse transcriptase (hTERT) immor-
talized prostate epithelial cells were a gift from John T.
Isaacs (Johns Hopkins University, Baltimore, MD) and were
grown in keratinocyte serum-free media (Thermo Fisher
Scientific, Waltham, MA) supplemented with insulin,
epidermal growth factor, and bovine pituitary extract
(Thermo Fisher) as described previously.22 CYLD shRNA
sequences were obtained from The RNAi Consortium
shRNA library (Broad Institute) and cloned into pLKO.1
backbones. Viral particles containing shRNA constructs
were generated in HEK293T cells (ATCC, Manassas, VA)
and transduced into cells. Seventy-two hours after trans-
duction, cells were harvested for subsequent analyses.
Western blot analysis was performed as described previ-
ously23 with anti-CYLD (sc-74435, Santa Cruz Biotech-
nology, Dallas, TX) and antieglyceraldehyde-3-phosphate
dehydrogenase (ab8245, Abcam, Cambridge, UK) anti-
bodies at 1:1000 and 1:10,000 dilutions, respectively. Cell
growth assays were performed by seeding CYLD knock
down and control cells on poly-L-lysine (Bio-Techne,
Minneapolis, MN)ecoated 96 well plates. Cell growth was
monitored using a Biotek Cytation 5 live cell imager
(Winooski, VT), and images were captured every 12 hours
for a total of 4 days. Resulting images were analyzed using
the Gen5 software version 3.10 (Biotek), and growth curves
were plotted with GraphPad Prism software version 8
(GraphPad Inc., San Diego, CA).
Results

Histomorphologic assessment of case 1 showed nests of
basaloid cells with a two-cell pattern and inner tubule for-
mation characteristic of BCC. Cancer cells showed cyto-
logic atypia and eosinophilic cytoplasm with an associated
dense desmoplastic stromal reaction and an infiltrative
growth pattern that involved 40% of the submitted specimen
(Figure 1A). Whole genome sequencing revealed eight
consensus protein-coding mutations; two variants in
DENND3 and PTPRU were previously described and
included in the cosmic database (Figure 1B and
Supplemental Table S1). In addition, this case showed a
splice site mutation in exon 10 of KIT (Figure 1C and
Supplemental Table S2). Shallow subclonal copy number
loss of chromosomes 5, 13, and 14 and clonal hemizygous
loss of the q-arm of chromosome 16 were noted
(Figure 1C). There were 28 intrachromosomal SVs,
including a complex rearrangement that involved the ITGA2
gene on chromosome 5 (Supplemental Figure S1, Figure 2,
and Supplemental Table S2).
6

Case 2 showed expansile tumor nests of variable size
and shape with hyperchromatic nuclei at the periphery and
larger pale cells in the center. The nests were aligned in a
jigsaw pattern and were lined by a dense eosinophilic
hyaline rim (Figure 2A). The tumor showed an invasive
growth pattern that involved 10% of the submitted spec-
imen with an elevated Ki-67 proliferation index (approx-
imately 10%). A total of 10 protein-coding mutations were
detected, which included stop gain mutations in CYLD and
GPR158 and a cosmic, annotated, nonsynonymous single-
nucleotide variant in MGA (Figure 2B and Supplemental
Table S1). Importantly, the CYLD alteration (Y710X)
occurred in a region of hemizygous loss on chromosome
16 (Figure 2C and Supplemental Table S1). CYLD is a
ubiquitously expressed putative tumor suppressor gene.
Although the mutation seen in case 2 has not been pre-
viously described, it was predicted to result in a truncation
of the ubiquitin carboxyl-terminal hydrolase domain,
which is the core catalytic domain responsible for the
deubiquitinase function of CYLD, therefore generating a
catalytically dead enzyme (Supplemental Table S1). Copy
number analyses showed an isolated copy number loss of
chromosome 16 (Figure 2C). Three interchromosomal
rearrangements were present, of which one directly
involved the coding region of ZNF407 (Supplemental
Figure S2 and Supplemental Table S2).
hTERT immortalized prostate epithelial cells, which

show basal cell features, were used to model the conse-
quences of loss of CYLD function in prostatic basal
cells.22 Expression of a lentiviral shRNA construct tar-
geting CYLD resulted in a robust depletion of CYLD
protein levels (Figure 3A). To determine the changes in
cell proliferation on CYLD knock down, live cell imaging
of short hairpin CYLD and short hairpin control expressing
cells was performed. Compared with short hairpin control-
transduced cells, CYLD-depleted cells showed a significant
increase in cell proliferation (Figure 3B). These data
suggest that loss of CYLD can promote basal cell prolif-
eration and validate the functional significance of CYLD
loss as seen in case 2.
Discussion

Prostatic BCCs are rare tumors of the prostate that, as
opposed to the much more common AAC, demonstate
features of basal cell differentiation. Prior studies suggested
that BCCs have a different genomic makeup compared with
AACs. However, to date, comprehensive whole genome
sequencing studies have not been performed on BCCs. The
genomic features of AAC of the prostate have been exten-
sively characterized during the past decade, and key driver
gene alterations that involve mutations in TP53, SPOP,
FOXA1, and PTEN as well as recurrent rearrangements that
involve Ets transcription factors and frequent copy number
changes have been described.24e27
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 A: Hematoxylin and eosinestained micrograph showing histomorphologic features of case 1. Note the nuclear atypia and dense desmoplastic
response in this case. B: Table listing consensus single-nucleotide variants as well as insertions and deletions. C: Copy number profile highlights copy number
losses (green) that affect chromosomes 5, 13, 14, and 16. Dots represent normalized log ratios for 10-kb windows. Blue indicates copy neutral; green, copy
number loss. Scale bar Z 50 mm (A).

Basal Cell Carcinoma of the Prostate
Herein, the first whole genome sequencing study of this
rare tumor type was performed to gain insights into the
spectrum of genomic changes in BCCs. An overall low rate
of single-nucleotide variants, SVs, and copy number changes
was observed in the two tumors analyzed. Notably, none of
Figure 2 A: Hematoxylin and eosinestained micrograph showing histomorp
abundant eosinophilic basement membrane material that resembles cylindromas o
insertions and deletions. C: Copy number profile highlights copy number loss (gree
windows. Blue indicates copy neutral; green, copy number loss. Scale bar Z 50

The American Journal of Pathology - ajp.amjpathol.org
the genomic alterations commonly found in AACs were
identified, demonstrating that BCCs are indeed genomically
distinct from AACs (Supplemental Figure S3).28,29

Case 1 showed a splice site mutation in KIT with pre-
dicted high functional impact as well as mutations in
hologic features of case 2. Note the cribriform-like growth pattern with
f the skin. B: Table listing consensus single-nucleotide variants (SNVs) and
n) affecting chromosome 16. Dots represent normalized log ratios for 10-kb
mm (A).
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Figure 3 A: Western blot analysis of benign basal-like prostate
epithelial cells stably transduced with nontargeting control vectors [short
hairpin control (sh-Ctrl)] and CYLD targeting shRNAs [short hairpin CYLD
(sh-CYLD)] demonstrate effective depletion of CYLD protein levels. B: Cell
proliferation assessment based on cellular confluency determined by live
cell imaging of sh-CYLD and sh-Ctrl cells. *P < 0.01. GAPDH, glyceralde-
hyde-3-phosphate dehydrogenase.
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DENND3 and PTPRU. Genomic alterations of KIT are
commonly found in gastrointestinal stroma tumors, semi-
noma, and acute myeloid leukemia.30e32 Activating
missense mutations in the kinase domain are the most
common somatic alteration in cancer, but recurrent splice
site changes have also been described.33,34 Although the
significance of this mutation in this case is unclear, its
enrichment in gastrointestinal stroma tumors, which are
known to be driven by genomic alterations in KIT, suggests
a potential driver function. However, the fact that the KIT
mutation seen here is upstream of the kinase domain and
that most gastrointestinal stroma tumors harboring this
alteration also showed other KIT mutations complicates the
assessment of the potential functional consequence.34

PTPRU is part of the R2B receptors and was reported to
play a role in gastric cancer and glioma.35,36 DENND3 be-
longs to the DENN domainecontaining protein family of
Rab guanine nucleotide exchange factors, which have been
shown to be involved in the pathogenesis of familial fron-
totemporal dementia and amyotrophic lateral sclerosis.37e39

In addition, case 1 showed several large-scale copy number
losses, including a hemizygous loss of chromosome 16q that
involved the CYLD locus, but no single-nucleotide alter-
ations in the CYLD gene were observed.

Case 2 had mutations in MGA and GPR158. MAX gene-
associated (MGA) protein was shown to bind MYC asso-
ciated factor X (MAX), which is a critical molecule that
dimerizes with MYC oncogenic transcription factors.40,41

Ectopic expression of MGA suppresses growth of lung
adenocarcinoma cell lines.42 Conversely, MGA loss pro-
motes lung tumorigenesis in vivo and human colon cancer
growth in organoids models.43 The orphan receptor
GPR158 is up-regulated in metastatic castration resistant
8

prostate cancer and is thought to promote growth and
invasion.44

Although recent studies have demonstrated recurrent
translocations encompassing the MYB oncogene in prostatic
BCC, these translocations were not present in the two cases
studied here.45,46 The t(6;9)(q22-23;p23-24) translocation
resulting in the MYB-NFIB fusion protein are commonly
found in adenoid cystic carcinoma of the salivary gland, and
similar MYB gene rearrangements were detectable in 2/12
adenoid cystic carcinomaelike BCCs but in none of the
BCCs with a solid growth pattern.45,47 The tight association
between MYB gene alterations and adenoid cystic
morphology suggests that certain driver gene alterations can
result in histomorphologic features common across different
tumor types.
It is worth noting that a somatic stop gain mutation in

CYLD with associated copy number loss was observed in
case 2. Germline CYLD mutations are associated with fa-
milial cylindromatosis, a rare inherited skin tumor syn-
drome, in which patients have multiple cylindromas.48e50

Although cylindromas share histologic similarities with
adenoid cystic carcinoma, they are characterized by islands
of basaloid cells often arranged in a jigsaw pattern separated
from the stroma by a thickened basement membrane.48,51

The morphologic features characteristic of cylindromas are
remarkably similar to the histomorphologic appearance of
case 2. The truncating stop gain mutation in CYLD observed
in case 2 is located upstream of the ubiquitin carboxyl-
terminal hydrolase domain. Therefore, the resulting pro-
tein lacks catalytic activity. CYLD negatively regulates NF-
kB, WNT, and JNK signaling, and inactivating mutations
can result in aberrant pathway activation, ultimately leading
to enhanced cell proliferation, inhibition of apoptosis, and
increased cell migration in epidermal cell systems.52e56 To
study the biological consequences of the loss of function
alteration in CYLD, shRNA was used to knock down CYLD
expression. CYLD depletion resulted in significantly
increased cell proliferation. Collectively, these observations
suggest that herein, the observed CYLD mutation is likely a
driver gene alteration.
In both human and murine prostates, the basal cell

compartment harbors stem cells that can contribute to the
regeneration of benign prostate epithelia.57 Transformation
of isolated prostatic basal cells with oncogenic drivers
commonly found in acinar prostate cancer results in tumors
with a luminal cell phenotype.58,59 However, different basal
cell populations have different propensities to form tumors
with a luminal cell phenotype.59 It is therefore possible that
subsets of prostatic basal cells with distinct molecular
characteristics are capable of giving rise to a prostatic BCC.
Alternatively, given the differences in genomic driver al-
terations observed between AACs and BCCs, the compo-
sition of oncogenic drivers, rather than the cell of origin,
could determine the lineage phenotype of the tumor.
In summary, this study provides novel insights into the

biology of prostatic BCC, highlights potential driver gene
ajp.amjpathol.org - The American Journal of Pathology
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alterations, and emphasizes the genotype-morphologic
phenotype correlation associated with certain driver gene
alterations across different cell lineages.
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