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Abstract
Recent studies have found that oxygen saturation (SpO2) variability analysis has 
potential for noninvasive assessment of the functional connectivity of cardiores-
piratory control systems during hypoxia. Patients with sepsis have suboptimal 
tissue oxygenation and impaired organ system connectivity. Our objective with 
this report was to highlight the potential use for SpO2 variability analysis in pre-
dicting intensive care survival in patients with sepsis. MIMIC- III clinical data 
of 164 adults meeting Sepsis- 3 criteria and with 30 min of SpO2 and respiratory 
rate data were analyzed. The complexity of SpO2 signals was measured through 
various entropy calculations such as sample entropy and multiscale entropy anal-
ysis. The sequential organ failure assessment (SOFA) score was calculated to as-
sess the severity of sepsis and multiorgan failure. While the standard deviation 
of SpO2 signals was comparable in the non- survivor and survivor groups, non- 
survivors had significantly lower SpO2 entropy than those who survived their 
ICU stay (0.107 ± 0.084 vs. 0.070 ± 0.083, p < 0.05). According to Cox regression 
analysis, higher SpO2 entropy was a predictor of survival in patients with sepsis. 
Multivariate analysis also showed that the prognostic value of SpO2 entropy was 
independent of other covariates such as age, SOFA score, mean SpO2, and venti-
lation status. When SpO2 entropy was combined with mean SpO2, the composite 
had a significantly higher performance in prediction of survival. Analysis of SpO2 
entropy can predict patient outcome, and when combined with SpO2 mean, can 
provide improved prognostic information. The prognostic power is on par with 
the SOFA score. This analysis can easily be incorporated into current ICU prac-
tice and has potential for noninvasive assessment of critically ill patients.
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1  |  INTRODUCTION

Pulse oximetry is extensively used in the ICU to monitor 
cardiorespiratory status and predict hypoxemia. However, 
as a continuous reading, oxygen saturation (SpO2) vari-
ability analysis has scarcely been studied for clinical ap-
plications. SpO2 signals exhibit a complex, fractal- like 
pattern in hypoxic individuals (Costello et al., 2020), and 
information embedded in SpO2 fluctuations can be quan-
tified using entropy measures (Bhogal & Mani,  2017). 
There is mounting evidence that this form of measure-
ment carries information on physiological engagement 
of the cardiorespiratory system as well as dynamic in-
teraction between oxygen and hemoglobin (Bhogal & 
Mani, 2017; Jiang et al., 2021; Roe & Jones, 1993). SpO2 
entropy has been found to have a negative relationship 
with SpO2 mean; however, merely analyzing the mean 
does not yield sufficient information about the dynam-
ics of the cardiorespiratory system (Bhogal & Mani, 2017; 
Costello et al.,  2020). In graded normobaric hypoxia, as 
the concentration of inspired oxygen decreases, SpO2 en-
tropy increases in healthy individuals. Furthermore, SpO2 
entropy, but not absolute or mean SpO2, is correlated with 
perception of breathlessness during experimental hypoxia 
(Costello et al., 2020). These observations suggest that as 
oxygen becomes scarcer, the physiological system is more 
engaged and there is a higher transfer of information 
between SpO2 and other respiratory variables (i.e., tidal 
volume, minute ventilation, respiratory rate, PETO2, and 
PETCO2) (Jiang et al., 2021). Within the context of disease, 
assessing the SpO2 entropy in patients with COPD can 
distinguish and predict stable and exacerbation phases of 
disease (Al Rajeh et al., 2021).

Sepsis, an inappropriate host response to infection, 
places an extremely heavy burden on hospitals across the 
globe, accounting for a staggering ~20% of global deaths 
in 2017 (Rudd et al.,  2020). Currently, the status of pa-
tients with sepsis is assessed using the Sequential Organ 
Failure Assessment (SOFA) score which reflects devel-
opment of multiorgan dysfunction in this critical illness. 
Patients with sepsis and septic shock have suboptimal 
oxygen delivery (Tuchschmidt et al., 1991) and impaired 
organ system network connectivity (Asada et al.,  2016). 
SpO2 variability analysis has potential to assess the en-
gagement of respiratory regulatory network in critically 
ill patients with sepsis. To assess the complexity of phys-
iological time- series, a variety of entropy measures have 
been developed. Sample entropy depicts the irregular-
ity of a signal by estimating the likelihood of repetition 
of a pattern in physiological time- series (Richman & 
Moorman, 2000). A lower value of sample entropy reflects 
a higher degree of regularity of the physiological signal. 
However, the higher value of sample entropy cannot 

distinguish a totally random process from a complex time- 
series. To address this ambiguity, Costa et al., extended 
sample entropy analysis by measuring the changes in en-
tropy at different scales (resolutions) of the original sig-
nal. This method, known as multiscale entropy, enables 
researchers to distinguish between complex signals (e.g., 
healthy physiological process) and a random process (e.g., 
white noise) (Costa et al., 2002). Complexity in this con-
text refers to structurally rich and fractal- like fluctuations 
reflecting information processing in the physiological sys-
tem (Goldberger, 1996). When physiological systems be-
come less complex, their information content is reduced 
which makes them more rigid, less controllable, and less 
adaptable to the everchanging internal and external envi-
ronment (Goldberger, 1996; Mazloom et al., 2014; Shirazi 
et al., 2013). This de- complexification hypothesis is appli-
cable to many disease states such as sepsis. In fact, sepsis 
is marked by less complexity of physiological signals (e.g., 
heart rate and body temperature) than those seen under 
healthy condition (Gholami et al., 2012; Goldberger, 1996; 
Lake et al., 2002; Papaioannou et al., 2012, 2013).

SpO2 time- series are complex and fractal- like spe-
cially during hypoxia in healthy individuals (Al Rajeh 
et al.,  2021; Bhogal & Mani,  2017; Costello et al.,  2020). 
Entropy measures have been used in analysis of SpO2 
time- series (Al Rajeh et al.,  2021; Bhogal & Mani, 2017; 
Costello et al., 2020; Jiang et al., 2021) and have potential 
to assess de- complexification of oxygen saturation signals 
in critically ill patients. Our objective was to investigate if 
SpO2 entropy analysis can predict survival in sepsis while 
remaining independent of other measures such as SOFA 
score, ventilation status, or age. This report aims to high-
light the potential for use of oxygen saturation variability 
in predicting survival in intensive care.

2  |  MATERIALS AND METHODS

2.1 | Participants

This study is a retrospective cohort study using the 
Waveform Database Matched Subset of the MIMIC- III 
Clinical Database (Johnson et al., 2016). Inclusion criteria: 
Patients over 18 years of age, with a single ICU stay and 
waveform records in the Waveform Database, who met 
the Sepsis- 3 criteria on admission (an increase in SOFA 
score of ≥2 points and suspicion of infection) (Singer 
et al.,  2016). To extract clinical data, a SQL script was 
adopted from Johnson et al., (Johnson et al., 2018) to rep-
licate the Sepsis- 3 task force criteria. Suspected infection 
was defined as the acquisition of a body fluid culture tem-
porally contiguous to administration of antibiotics as de-
scribed before (Johnson et al., 2018). To ensure noise- free 
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data for this study, patients were only included if their 
waveform record contained at least 30 min continuous 
and simultaneous time- series data for SpO2 and respira-
tory rate. Noise- free data were defined as having a valid 
time- stamped value for each second in the waveform da-
tabase (sampling rate = 1 Hz). Thus, included time- series 
had no missingness and no imputation was needed. The 
first 30- min segment of noise- free waveform was used for 
calculation of SpO2 variability. A total of 179 records had 
adequate data when including just the three waveforms 
and these formed the basis of the final cohort. Matched 
information was retrieved from the Clinical Database 
on patient age, sex, SOFA scores, mechanical ventila-
tion, lengths of critical care and hospital stay, and date of 
death. A 30- day survival data was missing in 15 patients; 
therefore, 164 patients were included in the final survival 
analysis (see Data S1 for enrolment data).

2.2 | Sample entropy and multiscale  
entropy

Sample entropy calculates the probability that epochs 
of window length m that are similar within a toler-
ance r remain similar at the next point (Richman & 
Moorman,  2000). Sample entropy was calculated using 
MATLAB code with a window length, m, of 2 and degree 
of tolerance, r, of 0.2 (Bhogal & Mani, 2017; Richman & 
Moorman, 2000). Multiscale entropy, indicating complex-
ity, was calculated by lowering the resolution of the data 
by 5- time scales (1– 0.2 Hz) and averaging the sample en-
tropy of survivors versus non- survivors at each time scale 
as shown in Figure 1.

2.3 | Statistical analysis

Data are shown as mean ±  SD unless stated otherwise. 
A multivariate Cox regression was run between the co-
variates age, SOFA, SpO2 mean, SpO2 sample entropy, 

and ventilation status. The ROC curve is employed here 
to assess the sensitivity and specificity of SpO2 mean and 
sample entropy in classifying the likelihood of patients 
surviving the ICU stay. Upon analyzing these curves, we 
decided that combing the SpO2 mean and sample entropy 
in a composite index yielded improved prognostic ability. 
The composite was calculated by taking the sum of both 
Cox regression coefficients multiplied by the individual 
value of the variables. A positive predictive value for the 
composite score was calculated using cross- tabulation be-
tween those predicted to survive and those who actually 
survived.

Validation of the composite index was performed by 
the split- sample method. A randomly selected sample 
of 82 patients (training sample) was derived, and the re-
mainder was used as the validation sample (n = 82). Cox 
regression coefficients were recalculated in the training 
sample, and the regression coefficients were used to cal-
culate the composite in the training sample based on their 
mean SpO2 and SpO2 entropy. These calculated compos-
ite values in the training sample were used to plot a ROC 
curve for prediction of survival. This procedure allows for 
evaluation that the obtained coefficients are substantially 
independent of the population studied.

3  |  RESULTS

One hundred and thirty patients survived after 30 days 
follow- up. Non- survivors (n  =  34) had higher age and 
SOFA scores (Table 1). SpO2 mean was slightly higher in 
survivors than non- survivors (97.40 ± 2.22 vs. 95.96 ± 6.34, 
respectively, p  =  0.033). SpO2 entropy was significantly 
higher in the survivors compared to the non- survivors 
(0.107 ± 0.084 and 0.070 ± 0.083, respectively, p  < 0.05, 
Cohen's d effect size = 0.441) (see Data S2). This was con-
sistent across different time scales as shown in Figure 1 
and Table  1. Two- way ANOVA showed that there is a 
statistically significant difference both between scales of 
measurement as well as outcome groups (Fscale  = 22.48, 

F I G U R E  1  Multiscale entropy of 
SpO2 across 5- time scales. Error bars 
represent the standard error mean (SEM).
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p < 0.0001, and Foutcome = 11.87, p = 0.0006, respectively). 
Additionally, there is no interaction between scale and 
group of the multiscale entropy results (Finteraction = 0.498, 
p = 0.737). Unlike a random time- series, SpO2 fluctuation 
at larger scales is associated with higher entropy, reflecting 
nonrandom, complex behavior (Figure 1). Total variabil-
ity of SpO2 time series was assessed using standard devia-
tion, and the values did not differ significantly between 
survivors and non- survivors (1.110 ± 0.81 vs. 1.066 ± 1.22, 
p = 0.801). The effect sizes of differences in SpO2 mean 
and variability measures are shown in Data S2.

Table 2 displays the multivariate Cox regression analysis 
between age, SOFA, SpO2 mean and sample entropy, and 
ventilation status. All covariates have a statistically signifi-
cant (p < 0.01), independent impact on the outcome of mor-
tality. A negative slope (β) indicates a protective measure. In 
this case, increases in SpO2 mean and sample entropy are 
protective. As expected, age, SOFA, and ventilation status 
were strong predictors of mortality (p < 0.001).

ROC curve analysis (Figure 2a) shows SpO2 sample en-
tropy as a decent indicator of survival, with an area under 
the curve (AUC) of 0.654 (p = 0.007). However, when com-
bined with SpO2 mean, the classifying power is increased 
(AUC  =  0.705, p  < 0.001) (Table  3). Taking the Youden 
Index, a Kaplan– Meier graph was plotted to visualize the 
value of SpO2 entropy and mean in predicting survival 
(Figure 2b). As shown in the figure, patients above the com-
posite index exhibited an 84.043% survival rate versus those 
below the composite score who showed only a 64.815% sur-
vival rate (Log- rank test p = 0.0027). A positive predictive 
value for the composite was calculated for survival analysis, 
and 87.5% of those assessed to survive, did survive. This is 
approximately 8% higher than the probability of survival 
in this cohort without consideration of any physiological 
signal (79.2%). We were also wondering about ROC perfor-
mance for the other scales of SpO2 entropy. As shown in 
Data S3, the AUC of SpO2 entropy were significantly higher 
than 0.5 at all scales. However, scale 1 showed the highest 
AUC, and therefore, the rest of survival analyses were car-
ried out using SpO2 entropy at scale 1.

The validity of the composite model in prediction of 
survival was assessed using a split- sample technique. The 
composite index (SpO2 mean and entropy combined) was 
recalculated in a training sample of 82 randomly selected 
patients. The individual composite was calculated for the 
validation sample comprising the remainder 82 patients. 
The ROC curves for the training sample and validation 
sample are depicted in Figure  3. AUC was similar for 
both training and validation samples (0.691 ± 0.089 vs. 
0.681 ± 0.067, respectively). Both samples exhibited an 
AUC which is significantly higher than a random classi-
fier AUC (p < 0.05).

The effect of ventilation status: Although Cox regres-
sion reports ventilation status as an independent predictor 
of mortality in this set of patients, additional calcula-
tions were conducted investigating the characteristics of 
ventilated and non- ventilated patients. The comparison 
of group statistics shows significant differences in SpO2 
sample entropy at all scales, with those non- ventilated 
exhibiting significantly higher levels (Data S4). Further, a 
multivariate Cox regression was run on non- ventilated pa-
tients alone, and SpO2 entropy was again an independent 
predictor of mortality (Data S5).

4  |  DISCUSSION

Oxygen saturation variability has rarely been applied in as-
sessment of patients' prognosis or disease severity (Garde 
et al., 2016). This is surprising, as SpO2 signal can be meas-
ured easily in both inpatient and outpatient settings, and 
there are well- established algorithms to estimate entropy 
of physiological time- series. Our results demonstrated 
for the first time that SpO2 entropy can be a predictor of 
mortality in critically ill patients with sepsis. The sample 
entropy of SpO2 over multiple time scales is significantly 
lower in those who did not survive in the ICU. This find-
ing is consistent with previous studies indicating that SpO2 
fluctuations can give insight into the autonomic control 
of the cardiorespiratory system, and moreover, increased 

Variables Survivors Non- survivors p- value

Age (year) 65.265 ± 18.02 75.331 ± 12.44 0.003

SpO2 mean (%) 97.40 ± 2.22 95.96 ± 6.34 0.033

Spo2 standard deviation 1.110 ± 0.81 1.066 ± 1.22 0.801

SpO2 entropy (Scale 1) 0.107 ± 0.08 0.070 ± 0.08 0.030

SpO2 entropy (Scale 2) 0.210 ± 0.16 0.138 ± 0.16 0.028

SpO2 entropy (Scale 3) 0.298 ± 0.22 0.189 ± 0.19 0.008

SpO2 entropy (Scale 4) 0.378 ± 0.28 0.245 ± 0.25 0.012

SpO2 entropy (Scale 5) 0.453 ± 0.33 0.301 ± 0.32 0.021

SOFA 4.100 ± 2.26 6.820 ± 4.15 <0.001

T A B L E  1  Comparison of group means 
for age, SpO2- derived indices, and SOFA. 
Data are shown as mean ± standard 
deviation (SD). See Data S2 for Cohen's d 
effect sizes.
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SpO2 variability is resultant of physiological systems en-
gaging in a transfer of information (Jiang et al.,  2021). 
Further, the variability of other cardiorespiratory indices 
such as respiratory rate does not offer any predictive value 
to ICU survival in this cohort (see Data S6 and S7). This 
further demonstrates the importance of SpO2 variability 
as an indicator of system engagement. Pulse oximetry 
is already measured for intensive care patients, and this 

time- series analysis can easily be implemented with a sim-
ple computer program or smart device. While SpO2 mean 
has an inadequate sensitivity and specificity for prediction 
of survival on its own, when combined with SpO2 sam-
ple entropy, the two have quite a substantial predictive 
power. Multivariate analysis confirmed that SpO2 sam-
ple entropy is an independent predictor of mortality, and 
further, when combined with mean SpO2, the composite 

Covariates β SE Hazard ratio

95.0% CI for 
Hazard ratio

p- valueLower Upper

Age 0.047 0.014 1.048 1.020 1.077 0.001

SOFA 0.191 0.051 1.211 1.096 1.338 <0.001

SpO2 mean −0.589 0.168 0.555 0.399 0.771 <0.001

SpO2 entropy −0.798 0.292 0.450 0.254 0.798 0.006

Ventilation 
status

1.452 0.406 4.272 1.929 9.458 <0.001

Note: The interaction of SpO2 mean and entropy was assessed during multivariate regression analysis, 
which showed no significant interaction. To make interpretation of hazard ratios of SpO2 mean and 
entropy comparable, the scales of SpO2 mean and entropy were standardized in the Cox model using Z 
transformation.

T A B L E  2  Independence of SpO2 
measures from SOFA, age, and ventilation 
status in predicting mortality with Cox 
multivariate regression analysis.

F I G U R E  2  (a) ROC curve for classifying survival in critically ill patients with sepsis based on SpO2 mean (AUC = 0.498), SpO2 entropy 
(AUC = 0.654), and composite SpO2 mean and entropy (AUC = 0.705). (b) Survival analysis of patients above and below optimum composite 
cut off obtained from ROC curve.

Variables AUC (95% CI) p- value

SpO2 mean 0.498 (0.373– 0.625) 0.970

SpO2 entropy 0.654 (0.548– 0.760) 0.007

Composite SpO2 mean and entropy 0.705 (0.604– 0.806) <0.001

SOFA 0.707 (0.603– 0.810) <0.001

Composite SpO2 entropy and SOFA 0.793 (0.705– 0.881) <0.001

Note: p- values were calculated to test the null hypothesis of AUC = 0.5.

T A B L E  3  The AUC of ROC analysis 
for clinical and physiological indices 
assessed in this study.
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has an AUC of 0.70. This is comparable to the SOFA score 
with an AUC of 0.71 in our study group. Furthermore, ad-
dition of SpO2 entropy has potential to increase the prog-
nostic value of SOFA, as the AUC of SOFA- SpO2 entropy 
is higher (0.79) than SOFA alone (Table 3).

We were wary that a patient's ventilation status during 
SpO2 recording could cause a significant effect on SpO2 
pattern of fluctuation and hence, its entropy. However, as 
a supplemental investigation, we analyzed the same trends 
on patients who were non- ventilated and found similar 
results (Data S4 and S5). Despite having a significantly 
greater average SpO2 mean, those who were ventilated 
had significantly lower SpO2 sample entropy and were 
less likely to survive their ICU stay (non- ventilated 89% vs 
ventilated 63%, Log- rank test p < 0.0001). This goes along 
with the initial multivariate Cox regression, showing that 
the prognostic effect of SpO2 entropy is independent of 
the ventilation status (Table 2). Moreover, higher average 
SpO2 mean in ventilated patients might indicate that the 
target oxygen saturation in ventilated patients may have 
been higher than the optimum physiological level. There 
are recent concerns on the impact that supraphysiological 
oxygen supplementation could have on patient outcome. 
A meta- analysis by Chu et al.  (2018) report that in over 
16,000 critically ill patients, those receiving more conser-
vative oxygenation had a higher survival rate compared to 

the more liberally oxygenated patients. Further, the liber-
ally ventilated group showed higher mortality and did not 
show improvement in other patient- important outcomes. 
Given that there is not a conclusive benchmark for the 
target oxygen saturation in critically ill patients, further 
research into the relationship between SpO2 entropy and 
mean in ventilated critically ill patients may have poten-
tial to provide information for optimum oxygen supple-
mentation in future.

Interestingly, in mechanically ventilated patients, SpO2 
time- series shows subtle fluctuations which might be linked 
to other feedback loops within the patient control system. 
Details of ventilator setup was not available in the MIMIC 
III dataset, and we could not include them in our analysis. 
However, to shed light on the effect of respiratory pattern on 
SpO2 fluctuations, we calculated the reciprocal interaction 
between respiratory rate (RR) and SpO2 time- series in me-
chanically ventilated and spontaneously breading patients. 
For this analysis, we used the concept of transfer entropy 
(TE) to measure the exchange of information from a physio-
logical signal (e.g., RR) to another (e.g., SpO2) and vice versa 
(Jiang et al., 2021; Schreiber, 2000). Our results showed that 
both TE (RR ➔ SpO2) and TE (SpO2 ➔ RR) is significantly 
lower in mechanically ventilated patients compared with 
nonmechanically ventilated participants (Data S8). This is 
an expected finding as mechanical ventilation minimizes 
the spontaneous physiological feedback loops in control of 
respiratory pattern. In addition, this type of analysis shows 
that the concept of entropy (e.g., sample entropy or transfer 
entropy) can be used to assess the engagement of respiratory 
control system. TE (RR ➔ SpO2) was small but measurable 
for many mechanically ventilated patients. This also reflects 
the presence of other feedback loops which requires more 
comprehensive network analysis as reported by Jiang et al. 
(Jiang et al., 2021).

There are multiple analytical methods for assessment 
of variability of physiological time- series. Entropy is at-
tractive, as it is linked with the concept of information 
theory (Bhogal & Mani, 2017; Costello et al., 2020; Jiang 
et al., 2021). Simpler methods such as standard deviation 
can be applied to measure total SpO2 variability (Garde 
et al., 2016; Moss et al., 2016); thus, we wondered if the 
standard deviation of SpO2 had any predictive value in 
our cohort. Our results showed that standard deviation of 
SpO2 time- series is not significantly different in survivors 
and non- survivors (Table 1). Furthermore, Cox regression 
analysis did not show any prognostic value for this mea-
sure of total variability (hazard ratio = 0.985, p = 0.943). 
This goes along with a previous report that SpO2 entropy 
and not its standard deviation correlates with the intensity 
of dyspnea in experimental hypoxia (Costello et al., 2020). 
In general, standard deviation of time- series is not an ac-
curate measure of fluctuations in complex systems, and 

F I G U R E  3  ROC curves for classifying survival in training and 
validation samples. Composite SpO2 mean and entropy index for 
each patient in the validation sample was calculated based on Cox 
regression coefficients of the training sample. AUC of both samples 
are significantly different from a random classifier (AUC = 0.5), 
p = .036 and p = .016 for the training and validation samples, 
respectively.
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our findings confirm that the measures of complexity 
(e.g., sample entropy or multiscale entropy) rather than 
total variability of oxygen saturation time- series exhibits a 
prognostic value in critically ill patients with sepsis.

According to this report, reduced entropy of SpO2 time- 
series is associated with poor prognosis in patients with 
sepsis independently from potential confounders such as 
age, SOFA, and ventilation status. These findings go along 
with the concept of de- complexification in disease states 
outlined by Goldberger and colleagues (Goldberger, 1996, 
2006). Reduced structural richness of a physiological 
time- series may indicate less information content which 
makes the system less adaptable/controllable to internal 
and external challenges. Reduced complexity of cardiac 
time- series as well as body temperature have already 
been reported in non- survivors with sepsis (de Castilho 
et al., 2018; Papaioannou et al., 2012, 2013). Future studies 
can extend this type of computational analysis by includ-
ing network analysis of parallel physiological variables for 
providing pathophysiologic insight as well as personalized 
physio- markers for prognostication in critically ill patients 
(Moorman et al., 2016; Zhang et al., 2022).

A noteworthy limitation of this study is the sample size. 
However, for this initial investigation, we were more con-
cerned with obtaining noise- free data before expanding 
the analysis to a larger group. Further, the majority of ICU 
signals are not always so clean, and this could be an ob-
stacle for further investigations. This point also brings up 
the question of recording length. We used 30- min length 
signals, as previous reports have shown that SpO2 entropy 
calculated from 30- min time- series provide information 
about the integrity of cardiorespiratory control during hy-
poxia (Jiang et al., 2021). A next step could be calculating 
the optimal length of recording which would still have 
sufficient prognostic value. While this is a promising prog-
nostic tool, more work needs to be done before translation 
into a clinical setting. This analysis was conducted only 
within the context of sepsis, but the results are promising 
enough to warrant investigation in all patients in critical 
care settings as well as in diseases associated with respi-
ratory distress. The source of ICU data in our study is the 
MIMIC III dataset and was collected between 2001 and 
2012 at the critical care units of the Beth Israel Deaconess 
Medical Center in North America. Therefore, our results 
may not be generalizable to other ICU settings. In our 
sample, ethnicity was not a predictor of 30- day mortality 
(data not shown), however, multiple factors may influence 
the cause of sepsis and intensive care mortality which 
are not investigated in this report. There are potentially 
other limitations in this study. Detailed hemodynamics 
data (e.g., blood pressure time- series) and ventilation pa-
rameters were not available for inclusion in this analysis. 
We are also wary that there is a limit in accuracy of pulse 

oximeters in estimation of oxygen saturation during hy-
poxia (Thrush & Hodges,  1994). Pulse oximeters might 
show inaccuracy in measurement of true oxygen satura-
tion (SaO2) when it is below 90%. Within our dataset, all 
patients (expect one) had a mean SpO2 higher than 90% 
(mean SpO2 was 97.40 ± 2.22 in survivors and 95.96 ± 6.34 
in non- survivors). Thus, the range of fluctuations of SpO2 
is below the level that raises concern within the context 
of pulse oximeters accuracy according to previous reports 
(Thrush & Hodges, 1994). This will reduce the likelihood 
of measurement bias in this report. However, there is a 
possibility that inaccuracy of pulse oximeters can affect 
the pattern pf SpO2 time- series and hence cofound our 
results. This limitation needs to be addressed in future 
investigations.

5  |  CONCLUSION

This study demonstrated an increase in survival for criti-
cally ill patients with sepsis who exhibit a higher sample 
entropy of the SpO2 signal. Multivariate analysis con-
firmed that SpO2 sample entropy is an independent pre-
dictor of mortality, and further, when combined with SpO2 
mean, the composite measure has an AUC of 0.705. This is 
comparable to the current SOFA score and requires fewer 
tests. Taking SpO2 measurements already occurs in the 
ICU, thus making entropy analysis a simple practice to in-
corporate. However, application of this method in health-
care warrants further investigations in larger studies.
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