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Abstract

Cloud and edge-computing based platforms have enabled rapid development of distributed 

business process (BP) applications in a plug and play manner. However, these platforms do not 

provide the needed capabilities for identifying or repairing faults in BPs. Faults in BP may occur 

due to errors made by BP designers because of their lack of understanding of the underlying 

component services, misconfiguration of these services, or incorrect/incomplete BP workflow 

specifications. Such faults may not be discovered at design or development stage and may occur 

at runtime. In this paper, we present a unified framework for automated fault resolution in BPs. 

The proposed framework employs a novel and efficient fault resolution approach that extends the 

generate-and-validate program repair approach. In addition, we propose a hybrid approach that 

performs fault resolution by analyzing a faulty BP in isolation as well as by comparing with 

other BPs using similar services. This hybrid approach results in improved accuracy and broader 

coverage of fault types. We also perform an extensive experimental evaluation to compare the 

effectiveness of the proposed approach using a dataset of 208 faulty BPs.

Index Terms—

Fault resolution; business processes; web service compositions

I. Introduction

Cloud and edge computing infrastructure facilitates rapid development of Internet-centered 

distributed applications, including distributed workflows, web mashups, and business 

processes. These applications are developed using data, storage, and computation web 
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services available in enterprise networks and cloud data centers, as well as large number 

of IoTs and edge devices. Several new plug-and-play-based tools and platforms are now 

available [1]–[4] that support distributed application development in an automated or 

semi-automated manner by composing relevant service components. While these tools and 

platforms support efficient development of distributed applications, they lack support for 

identifying or repairing faults in distributed applications, specifically business process (BP) 

applications [5]. Faults in BP may occur due to errors made by BP designers because of 

their lack of semantic understanding of the underlying web services, misconfiguration of 

these services, or incorrect/incomplete BP workflow specifications. Such faults may not be 

discovered at design or development stage and may occur at runtime.

In this paper, we focus on detecting and resolving faults in BP applications that may 

cause unexpected or incorrect output. In [5], BP faults have been categorized in four main 

categories given in Table I. This categorization is derived from the fault categories and 

mutation operators defined by Estero-Botaro et al. [6] for fault injection in BPEL processes. 

The different design-time faults in a BP can be represented as combination of mutation 

operators given in Table I. For fault detection and resolution in BPs, we consider each web 

service as a black box and focus on those faults that may occur during service composition. 

Although faults in a BP may also occur due to service failures, service implementation 

errors, service deployment, or network/communication issues, we do not consider these 

faults in this paper. There is a significant body of work in the literature addressing service 

implementation errors [7], [8], service failure and unavailability, service deployment issues 

[9], and network failure [10]–[12].

For fault detection and resolution, we propose an integrated approach that builds on the 

generate-and-validate (G&V) methodology and improves its efficiency by generating a small 

set of candidate fixes for BP repair. G&V is an automated program repair technique that 

uses a faulty program and a set of passing and failing test cases as input to generate 

candidate fixes by heuristically searching the program space. The generated fix candidates 

are validated by running all available test cases [13], [14]. G&V requires a fault localization 

mechanism for identifying suspected code blocks in a faulty program. Candidate fixes are 

created by applying mutations to the elements contained in these suspected code blocks. The 

basic G&V approach has high computation overhead because it generates candidate fixes in 

a brute-force manner by considering all possible mutations of elements in suspected regions. 

We improve the efficiency of G&V by applying only a small selective set of candidate fixes 

instead of brute force application of all fixes. The proposed approach called efficient G&V 
(EGV) leverages mutation-based fault localization in combination with program slicing to 

improve localization accuracy and considers a minimal set of suspicious code blocks for 

generating candidate fixes. In addition, we propose a hybrid approach that combines the 

EGV with a collaborative fault resolution (CFR) approach presented in [5]. CFR performs 

fault resolution by comparing a faulty BP with existing fault-free BPs that use similar 

services. This results in improved accuracy and broader coverage of fault types.

The key contributions of this work include:
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1. Efficient G&V (EGV) approach. We propose an efficient fault resolution 

approach for BPs by extending the traditional G&V automated program repair 

methodology. While the proposed approach leverages mutation-based fault 

localization to achieve high localization accuracy, it significantly improves its 

efficiency by considering a relatively smaller subgraph of the BP that is obtained 

through statistical fault localization and predicate-based switching and slicing. 

Moreover, we boost the efficiency of fault resolution through static analysis 

and conditional generation of mutants. Note that G&V is widely used for 

automatic repair of Java and C programs [13]–[16] but it has not been adapted 

for automatic resolution of faults in BPs encoded in BPMN or BPEL.

2. Hybrid Approach. We also propose a hybrid approach combining the proposed 

EGV approach that performs fault resolution by analyzing a faulty BP in 

isolation with a collaborative fault resolution (CFR) approach [5] for improved 

accuracy. Rather than examining the faulty BP in isolation, the hybrid approach 

enables broader coverage of fault types by utilizing the knowledge of existing 

BPs that are composed of similar services and are assumed to be correct.

3. We extend an existing framework for automated BP composition and 

management in a services cloud environment [1] by integrating automated 

fault resolution capabilities. In addition, we demonstrate the viability of this 

integrated framework by developing a prototype implementation that supports 

BP composition as well as automatic resolution of faults.

The rest of the paper is organized as follows: Section II provides some basic definitions 

and problem statement; Section III discusses the proposed G&V based fault resolution 

approach and its extension to a hybrid approach; Section IV discusses the experimental 

evaluation results; Section V discusses the implementation details of the proposed integrated 

framework for fault resolution; Section VI presents related work in the problem domain and 

Section VII concludes the paper.

II. Preliminaries and Problem Statement

This section outlines the basic notation to represent a BP and an illustrative example that 

will be used in the following sections to explain the proposed approach.

Definition 1: (Business Process) A business process (BP) is defined as a graph, G = (V, E, 

ℰ, υstart, υend, υuser) where:

• V is the vertex set which is partitioned into the following vertex types; (i) service 

operations; (ii) input/output attributes of service operations; and (iii) XOR splits 

and joins;

• E ⊆ V × V is the edge set in G denoting the data flow and control flow.

• ℰ = {true, false, Boolean Expression}, for each edge.

• υstart denotes the start activity in BP.

• υend denotes the terminating activity in BP.
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• υuser denotes a user vertex which is linked to all the input attributes whose values 

must be supplied by the BP user during execution.

Illustrative Example:

Fig. 1 shows a small BP graph representing an elementary BP from the e-commerce domain. 

Shaded gray boxes represent activities corresponding to invocation of web service operations 

e.g., searchProduct, verifyEmail, etc. White rectangular boxes represent the input and output 

attributes of the service operations e.g., productId, taxClassId, etc. Control flow edges in the 

BP are denoted by solid arrows. Arrows with dotted lines denote dataflow edges that link 

each service operation with its input/output attributes. Arrows with dashed lines model the 

variable assignment which is essentially a dataflow from the output of one service operation 

to the input of another service operation (e.g., the edge from productId to product_code 
where productId is produced by searchProduct and it is assigned to product_code, which 

represents an input attribute of the createOrder service operation).

Faulty BP: Given a set of test cases specified for a BP, we consider the BP as a faulty BP, if 

it fails one or more of the test cases. The BP graph Gf, shown in Fig. 1, is a faulty BP where 

the edge from ship_charges to sales_tax and the edge from tax_amount to shipping (marked 

with ×) correspond to the incorrect attribute assignments.

For fault resolution, we need to discover fixes (mutations) that can remove the faults and 

allow for correct execution of the faulty BP. The BP fault resolution problem addressed in 

this work is formally stated below.

BP Fault Resolution Problem:

Given a faulty BP, Gf, and a set of test cases, T = {t1, …, tm}, compute a minimal set 
of candidate fixes,  = {Gc1, Gc2, …, Gck}, that when applied to Gf produces a BP that 
successfully passes all the test cases in T.

Note that we do not address the test case generation problem for BPs in this paper. We 

assume that the test cases are either provided by the user or existing test case generation 

techniques [17]–[21] can be applied for this purpose as discussed in Section VI.

III. Proposed Fault Resolution Approach

In this section, we first present an efficient G&V (EGV) approach for fault resolution in 

BPs. EGV extends the traditional G&V approach which is widely used for repairing C 

and Java programs. For BP fault resolution the proposed EGV approach leverages mutation-

based fault localization in combination with program slicing to improve localization 

accuracy and consider a minimal set of suspicious code blocks for generating candidate 

fixes. In addition, we propose a hybrid approach that combines the EGV with a collaborative 

fault resolution (CFR) approach presented in [5]. CFR performs fault resolution by 

comparing a faulty BP with existing fault-free BPs that use similar services. This results 

in improved accuracy and broader coverage of fault types.
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A. Efficient G&V approach (EGV) for fault resolution

Fig. 2 shows the main steps of the proposed EGV approach. EGV takes as input a faulty 

BP graph (Gf) and a set of test cases and attempts to resolve faults in Gf. There are four 

key steps which are executed repeatedly until all faults are resolved (as per the execution on 

the test suite). First, the test cases are executed to check the correctness of the given BP, Gf. 

If it results in an unexpected/incorrect output, fault localization is performed (discussed in 

Section III-A1) to identify location(s) where faults are observed in the BP. These locations 

are referred to as fault observation points (fop), which may not necessarily correspond to 

the actual source of the fault in the BP. The source of the actual fault might b present at a 

location prior to fop.

Specifically, we perform statistical fault localization [22] to identify fop. For a given fop, we 

perform program slicing [23] to obtain suspicious code blocks. These suspicious code blocks 

are referred to as BP slices. We use the BP slices that lie between the starting vertex (vf
start) 

of Gf and the given fop for generating candidate fixes. Fault localization and BP slicing help 

us to keep the generated number of candidate fixes to a minimum but still relevant. Once the 

BP slices are identified, we apply the different mutation operators and their combinations to 

obtain mutants of Gf which are called candidate fixes. Then, for the given fop, we run the 

test cases against each candidate fix to check if the faults are resolved without introducing 

any new faults. For executing test cases, first, the BP code is generated and deployed. If a 

candidate fix removes all the faults then our approach terminates and returns the candidate 

fix that passes all the test cases. In case the faults up to the given fop are fixed, but execution 

of test cases results in faults at a later point in the BP, we repeat the entire process to identify 

subsequent fop and candidate fixes. This process is repeated in an iterative manner until all 

the faults are resolved or all the candidate fixes are exhausted.

Algorithm 1 outlines the steps required to fix a faulty BP. Lines 1 and 2 find the fop and BP 

slice respectively using statistical fault localization and BP slicing as discussed in Sections 

III-A1 and III-A2. Next the relevant BP slices between the starting vertex (vf
start) of Gf 

and the fop is extracted for generating candidate fixes (Lines 3 – 13). Candidate fixes are 

generated by successively applying mutation operators and their combinations on the input 

BP Gf. Each candidate fix, Gc is validated to check if it passes the failed test cases up to 

the computed fop (Line 17). If any such Gc is found, it is tested against all the test cases 

for the entire BP (Line 18). If it passes all these test cases, then all the faults with respect 

to the given test cases have been removed. The resulting BP is returned to the user (Line 

19). Otherwise, we recursively call the EGV fault resolution procedure (Line 21) until all the 

faults are fixed or the entire space of mutants is exhausted.

We provide detailed description of each component of Fig. 2 below.

1) Fault Localization: Fault localization aims to locate and isolate faulty software 

components or bugs to determine the likely causes errors or software failures [24], [25]. For 

fault localization in a BP, we employ a statistical analysis-based debugging approach [22]. 

This approach considers predicate evaluation against program elements in correct as well 

as incorrect program executions. A predicate is assumed to be fault-relevant if the pattern 
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of evaluation in an incorrect run significantly deviates from the correct ones. Predicates are 

ranked in order of their computed fault-relevance scores.

In the context of BPs, we establish predicates for each of the branching conditions as well 

as for each service invocation, their execution status, and their impact on the test case 

result. Each predicate is assigned a fault-relevance score depending upon its execution status 

in passing and failing runs of a BP for given test suite. The location having the highest 

fault-relevance predicate score is chosen as a fault observation point (fop) for the subsequent 

steps in our approach. For instance, in Fig. 1, createOrder service fails with an exception due 

to incorrect mapping of sales_tax and shipping input attributes. This failure results in a high 

predicate score for createOrder than any other BP element and it is selected as an fop for BP 

slicing and candidate fix generation.

2) BP Slicing: Once the fop is identified, we employ program slicing to identify 

suspicious code blocks (BP slices). For this, we employ the BPELSwice approach by Sun 

et. al [23]. BPELSwice uses predicate switching and program slicing to obtain BP slices 

from BPEL programs. Specifically, it switches the conditional statements and verifies the 

modified BP against the test cases. If all test cases are passed then it takes the backward slice 

from the conditional statement and takes the elements of the BP that write to the variables 

used in the conditional statement. If the predicate switching does not result in the passing of 

all the test cases, BPELSwice takes the backward slice from the incorrect/ unexpected BP 

outputs.

For instance, in Fig. 1 the BP fails on invocation of createOrder service operation due to 

incorrect inputs and produces unexpected output. Hence, the BP slice will contain the edges 

and vertices of the BP graph that are connected to createOrder in control flow and the 

service operations and their attributes that provide input to createOrder. Fig. 3 depicts the 

slice of BP shown in the illustrative example in Fig. 1. Fig. 3 does not include verifyEmail 
and verifyAddress service operations because they do not provide any input to createOrder 
service directly or indirectly nor are they adjacent to it in the control flow. Furthermore, the 

slice also does not contain the input attributes of searchProduct service operation because 

all of its inputs are provided by the user and hence by the test cases that are assumed to be 

valid. After the slice has been identified, we select the part of the slice that lies before fop. In 

this example, the whole slice will be selected because all elements of the slice occur before 

createOrder which is the fop in this case.

3) Candidate Fix Generation: After identifying the filtered slice before fop, we 

generate candidate fixes by applying different mutation operators shown in Table I. We 

only apply semantically meaningful mutation operators for generating candidate fixes. This 

also reduces the number of candidate fixes. Specifically, we do not change the order of data 

independent services in the control flow for generating candidate fixes. Moreover, we do not 

use ECN operator because it generates a large number of candidate fixes. Furthermore, we 

do not consider path or activity removal operators (AIE, AEL) because they may change BP 

scope.
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In the slice shown in Fig. 3 there are no conditional statements and expressions. 

Additionally, the order of service operations will not be changed because no service 

operation depends upon data produced by a service operation that appears later in the 

control flow. Therefore, the only applicable mutation operator is ISV, which is equivalent to 

replacing the data flow edges between pairs of attribute type vertices having the same data 

type. The generated candidate fixes are shown in Table II. In m1, pid = productId mapping 

is replaced with pid = taxClassId and tax_class = taxClassId mapping is replaced with 

tax_class = productId. Note that m6 is the candidate fix that actually resolves the fault by 

removing incorrect mapping with the correct mapping of shipping and sales_tax attributes. 

Similarly, sales_tax or shipping is not mapped to any of productId, taxClassId or ship_cat 
because they belong to a different data type.
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4) Validation of Candidate Fixes: Finally, we translate each candidate fix into 

executable BP code and deploy it for testing. The entire test suite is executed against each 

candidate fix to check that the resulting BP is fault-free w.r.t. the given test suite. If such a 

fix is found, the fault-free BP after application of the candidate fix is returned to the user. If 

a candidate fix passes some, but not all, of the test cases that were originally failed, we use 

that candidate fix for further discovery and repair of faults (Algorithm 1, Line 21).

B. Hybrid Approach

The EGV approach for fault localization examines a BP in isolation therefore it lacks the 

capability to identify any control flow and branching faults that occur due to any activity/

element removal in the BP e.g., a missing service operation or a branch path in an XOR 

block. CFR is a collaborative fault resolution (CFR) approach [5] that is capable of resolving 

such faults.

CFR relies on a set of existing BPs that are composed of similar services and are assumed 

to be correct. The knowledge of these BPs is utilized to discover and fix fault in a faulty BP. 

However CFR requires a certain minimum overlapping services between the faulty BP and 

existing BPs for providing accurate results. Rather than examining the faulty BP in isolation 
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(as EGV does), we propose a hybrid of EGV and CFR approaches that allows for broader 

coverage of fault types by leveraging knowledge from existing BPs.

Hybrid approach combines both EGV and CFR in an interleaved fashion. We consider two 

versions of the hybrid approach:

H1: EGV is executed first to resolve faults for a given fop. If EGV fails, only then 

CFR is invoked for that fop. This interleaved execution continues until either the 

BP is fixed or there are no more candidate fixes to apply.

H2: CFR is executed first to resolve faults for a given fop. If CFR fails, only then 

EGV is executed for that fop. Similar to H1, H2 is executed in an interleaved 

manner.

Algorithm 2 outlines the hybrid fault resolution approach, H1. The inputs to this algorithm 

are faulty BP graph, Gf, a set of test cases, T, and the set of existing BPs, B. H1 first 

calls fault localization to find the fop (Line 1). Next, a subgraph of Gf from vf
start to fop 

is extracted for generating candidate fixes (Line 2). EGV is called on this subgraph for 

resolution of faults up to the fop (Line 3). If a candidate fix (Gc) is found for the subgraph 

S, it is combined with the remaining part of Gf after the fop (Line 5). If Gc not only fixes 

the fault up to the given fop but also of the entire BP then the resulting BP is returned to 

the user as a fault-free BP Lines (6 – 8). Otherwise, if the candidate fix partially fixes the 

fault (i.e., it passes some, but not all, of the test cases that were originally failed), we use 

that candidate fix for further discovery and repair of faults by recursively calling H1 (Line 

10). In case no partial fix is found, we call CFR for collaborative fault resolution (Line 13). 

Similar to the steps given in lines 4 – 11, we repeat these steps for CFR in lines 12 – 23. 

We recursively call H1 fault resolution procedure until all the faults are fixed or the entire 

space of candidate fixes is exhausted. The algorithm of hybrid fault resolution approach H2 

is similar to Algorithm 2 except that it invokes CFR first followed by EGV.

IV. Experimental Evaluation

We have performed extensive experiments to evaluate the performance of the proposed EGV 

and hybrid fault resolution approaches.

Dataset:

For experimental evaluation, we consider the same dataset that was used for validation 

of CFR approach in [5]. This dataset consists of 48 fault-free BPs from three domains 

including, insurance, E-commerce, and flight reservation. For generation of faulty BPs, we 

used random fault injection to a correct BP from insurance domain which is not considered 

in above mentioned 48 BPs. Specifically, we applied random combinations of the mutation 

operators given in Table I to generate 208 faulty BPs which are considered for validation of 

the proposed approach. For generating a faulty BP, the number of mutation operators applied 

were between 1 and 4. The mean of the number of mutation operators applied was 2.24 

and standard deviation was 0.81. The resulting faulty BPs covered all the fault categories 

(depicted in Table I) and their random combinations.
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For comparison with CFR as well as evaluation of hybrid approach, we built a repository of 

existing BPs including all 48 fault-free BPs.

EGV:

For comparison of EGV with basic G&V, we performed experiments on 40 BPs as shown in 

Table III. Basic G&V outperforms EGV with 0.9 accuracy as opposed to 0.65 of EGV. But 

the higher accuracy is achieved at the cost of generating a lot more candidate fixes. Basic 

G&V, on average, validates 4139 candidate fixes for each BP whereas EGV only uses 10 

candidate fixes. The accuracy of EGV is quite low (0.42) for variable assignment fault types 

as compared to G&V with an accuracy of 0.84. The accuracy of both EGV and G&V is 

almost the same for other fault types, though EGV uses a much smaller number of candidate 

fixes.

For comparison of EGV with CFR, we performed experiments on 112 BPs out of 208 that 

do not contain faults related to branch removal (AIE), activity removal (AEL), or constant 

modification (ECN). As discussed in Section III-B EGV is not designed for resolving fault 

types in which one or more BP elements are removed. Table IV shows the accuracy results 

of EGV in comparison to CFR approach. The results show that EGV has a higher accuracy 

than CFR on BPs with 1 and 2 fops and lower accuracy with 3 and 4 fops. Overall, EGV 

has an accuracy of 0.83 while CFR has an accuracy of 0.76. Apart from the gain in accuracy, 

EGV has the advantage of being able to resolve the faults without relying on existing BPs 

that have overlapping services with respect to the faulty BP. In terms of execution time EGV 

takes less time than CFR for resolving faults in BPs with 3 or less fops while CFR performs 

slightly better with 4 fops. This is because the number of mutants increase significantly with 

the increase in fops.

Hybrid Approach:

Hybrid approach combines both EGV and CFR in an interleaved fashion. As discussed in 

Section III-B, we consider two versions of hybrid approach, H1 and H2.

Table V shows the accuracy results of both H1 and H2 in comparison with CFR. As 

expected, both H1 and H2 have similar accuracy because both of them use the same 

underlying approaches but in a different order. Fig. 5 compares the execution time taken by 

CFR, H1 and H2. Overall, CFR performs slightly better than H1 and much better than H2 

which takes almost twice as much time as CFR. However, H1 is more time-efficient for BPs 

with 1 or 2 fops, whereas, both H2 and CFR perform better than H1 for BPs with 3 and 4 

fops. This is due to the fact the BPs with a higher number of fops have complex faults that 

cannot be resolved in isolation as done by EGV. In the presence of such complex faults, CFR 

and H2 (executing CFR first) perform better with respect to execution time because of the 

higher fault coverage of CFR.

A. Discussion

As depicted in Table III, EGV significantly improves the performance in terms of number of 

candidate fixes by reducing the search space. However, the overall accuracy of EGV is lower 

than the basic G&V approach.
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EGV also outperforms CFR in terms of computation time with comparable accuracy but 

CFR provides a broader fault coverage as discussed in Section III-B. For example, CFR can 

resolve faults belonging to branch and activity removal. These faults cannot be resolved by 

the basic G&V and EGV. However, CFR requires a repository of existing BPs.

If such a repository exists, EGV can be combined with CFR to get the best of both worlds. 

This is exactly what the hybrid approach is designed to achieve. Both hybrid approaches H1 

and H2 have similar accuracy across all fops as depicted in Table V. The accuracy of CFR 

is slightly higher than the hybrid approach (both H1 and H2) for one fop but is taken over 

by the hybrid approach as the number of fops increase. Consequently, the hybrid approach is 

preferred over CFR for better accuracy especially when higher number of fops are expected. 

In terms of performance, H1 is a better candidate for BPs with 1 or 2 fops. However, for BPs 

with higher number of fops H2 performs better than H1.

V. Implementation

We have developed a prototype implementation of the proposed framework for the fault 

resolution. For prototype implementation we have used Java (J2EE), BPEL and Apache 

ODE. The user (BP designer/developer) interacts with our system using a command line 

interface to provide inputs, including faulty BP and a set of test cases. In addition, we have 

also developed a repository of different BPs in various domains that can be used for fault 

resolution using CFR and hybrid approach.

After receiving the required inputs, the prototype invokes the selected fault resolution 

algorithm and checks the resulting BP for correctness by applying all test cases provided by 

the user. During this fault resolution process, the user is kept in the loop for reviewing the 

relevant candidate fixes and the resulting BP to ensure that the domain and the scope of the 

BP are not changed. Once the user is satisfied with the fixed BP, it is deployed to Apache 

ODE server and its associated user interface (UI) is deployed on Apache Tomcat web server 

for further user testing.

VI. Related Work

We discuss the related work in the context of test case generation, fault localization, and 

fault resolution.

Test case generation.

Test case generation is an essential step towards automated testing of programs. Significant 

work has been done on automated testing and test case generation in the context of BPs 

[17]–[21]. Bartolini et al. [17] presented an approach that uses test services for white-box 

testing of third-party services and a tool, WS-TAXI, for automated generation of test cases 

from the WSDL definition of web services. Tarhini et al. [26] addressed the problem of 

test case generation for service compositions and validation of service compositions using 

WSDL definitions. Sun et al. [27] proposed a scenario-oriented framework for test case 

generation for web service compositions in BPEL. BP graph model is considered to derive 
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test scenarios based on which test cases are generated. A constraint-based technique is 

employed for test data generation for execution of generated test cases.

Fault localization.

The purpose of fault localization is to identify locations (branches, statements, or blocks) in 

a faulty program that are suspicious i.e., likely to be erroneous and associated with the fault. 

The objective is to support programmers fix the faults by focusing only on the suspicious 

locations and to support automated repair and recovery of the given program [13], [25]. 

Existing works on fault localization techniques can be categorized into static and dynamic 

analysis-based techniques [25]. The static techniques mostly rely on model checking and 

static program analysis. Dynamic techniques compare and contrast the runtime behavior of 

correct and incorrect executions to isolate the fault-relevant locations.

Program slicing is one of the most frequently used techniques [25] that analyzes the 

runtime profile of a program to isolate the statements and blocks that are fault-relevant. 

Fault-relevant slice is obtained by filtering out the program slice that does not correspond 

to incorrect output(s) [23], [28], [29]. The most common fault localization techniques 

are spectra-based and employ dynamic analysis and coverage information of test cases to 

assign suspicious score to program elements. The program elements are then ranked by 

this score and programmers are expected to examine these elements in the ranked order 

[23], [30], [31]. Tarantula [32] is one representative technique in this category that has 

also been adapted in the context of business processes [23]. BPELSwice [23] targets the 

fault localization problem for business processes developed using BPEL. It uses predicate 

switching and program slicing to isolate the suspicious statements with greater precision. 

BPELSwice significantly reduces the size of the slice by acting at the statement level 

and identifying only suspicious statements from within BPEL blocks rather than marking 

the whole block as fault-relevant. Our proposed EGV approach employs the BPELswice 

approach for identifying suspicious code blocks in the faulty BP.

Delta debugging [9] works by applying small changes (deltas) to the programs and monitors 

their effect on the output. It can be used to discover development, deployment, and 

configuration faults. Delta debugging has also been adapted in the context of microservices 

[9] to unveil deployment and configuration faults as well as the faults that occur in execution 

orders of microservices. Delta debugging has also been used in combination with mutation 

testing [33] for accurate fault localization.

In our proposed EGV fault resolution approach, we use a combination of statistical fault 

localization and program slicing. However, our approach is independent of the underlying 

technique used for fault localization.

Fault resolution.

Considerable work has been done on automated program repair for software programs 

developed in C/C++ and Java but the existing approaches do not address automated repair 

in the context of BPs. Generate-and-validate (G&V) is a widely used technique [13]–[16] 

for automated repair and recovery that uses a faulty program and a set of passing and 

failing test cases as input to generate candidate fixes by heuristically searching the program 
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space. The generated fix candidates are validated by running all available test cases that 

explores the search space of a program and finds candidate fixes by applying variety 

of changes heuristically. G&V requires a fault localization mechanism for identifying 

suspected code blocks in a faulty program. Candidate fixes are computed by applying 

mutations to the elements contained in these suspected code blocks. These candidates are 

then validated against the available test suite. Xu et al. have proposed RESTORE which 

is an efficient G&V-based framework focusing repair of Java programs [13]. RESTORE 

first performs fault localization to compute suspicious program snapshots. Candidate fixes 

are then generated for every suspicious snapshot by taking into account different mutations 

of the given program. To address the efficiency issue, only selected candidate fixes are 

validated by executing test cases in order of their suspicion scores. In case no candidate 

fix passes the entire test suite, partially successful fixes passing a subset of test cases are 

considered for generating variants of the given faulty program. All steps are then repeated 

for the generated variant until valid program fixes are identified. This retrospective strategy 

improves the efficiency of G&V by avoiding exhaustive validation of all candidate fixes.

In our recent work, we proposed the Collaborative Fault Resolution (CFR) approach [5] 

for BPs. CFR relies on a set of existing BPs that are composed of similar services and 

are assumed to be correct. Rather than examining the faulty BP in isolation, CFR makes 

use of the knowledge of these BPs to discover and fix faults in a faulty BP. However CFR 

requires a certain minimum overlapping services between the faulty BP and existing BPs for 

providing accurate results. It uses statistical fault localization to identify the fops in the given 

BP and then performs a pairwise analysis of the given faulty BP in comparison with related 

BPs of other users to identify their structural and semantic differences. Association rule 

mining is applied to these differences to identify the minimal overlapping set of differences 

that can be used to fix the faults. In this work, we have extended our proposed EGV 

approach with CFR for higher coverage of fault types as discussed in Subsection III-B.

VII. Conclusion

In this paper, we addressed the problem of fault resolution in distributed BPs developed 

by composing web services. We have proposed an efficient fault resolution approach for 

BPs by extending the traditional generate-and-validate (G&V) automated program repair 

methodology. We have also proposed a hybrid approach that combines the proposed efficient 

G&V-based approach with a collaborative fault resolution approach for improved accuracy 

and broader coverage of fault types. Our extensive experimental evaluation results validate 

the effectiveness of the proposed approach. In addition, we have presented the prototype 

implementation of an integrated framework for fault diagnosis and resolution in BPs to 

demonstrate the viability of the proposed approach.
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Fig. 1. 
An example BP graph (Gf) from e-commerce sale order processing domain.
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Fig. 2. 
Efficient G&V fault resolution approach for BPs.
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Fig. 3. 
Slice of faulty BP Gf.
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Fig. 4. 
Execution time comparison of EGV and CFR.
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Fig. 5. 
Execution time comparison of H1, H2, and CFR.
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TABLE II

Candidate fixes for BP graph in Fig. 1.

Candidate Fix Mutations

m1
(productId, pid)−, (taxClassId, tax_class)−

(productId, tax_class)+, (taxClassId, pid)+

m2 (productId, product_code)−, (taxClassId, tax_class)−

(productId, tax_class)+, (taxClassId, product_code)+

m3
(taxClassId, tax_class)−, (ship_class, ship_cat)−

(taxClassId, ship_cat)+, (ship_class, tax_class)+

m4
(productId, product_code)−, (ship_class, ship_cat)−

(productId, ship_cat)+, (ship_class, product_code)+

m5
(productId, pid)−, (ship_class, ship_cat)−

(productId, ship_cat)+, (ship_class, pid)+

m6
(ship_charges, sales_tax)−, (tax_amount, shipping)−

(ship_charges, shipping)+, (tax_amount, sales_tax)+
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TABLE III

Accuracy of EGV, CFR, and Basic G&V.

Category No. of BPs
Accuracy Candidate Fixes

G&V EGV G&V EGV

Variable assignment faults 24 0.83 0.42 2192 6

Expression 5 1 1 464 29.6

Control Flow excluding Element removal 11 1 1 9351 6

Overall 40 0.9 0.65 4139.47 10
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TABLE IV

Accuracy of EGV and CFR.

fops No. of BPs
Accuracy Candidate Fixes

EGV CFR EGV CFR

1 30 0.93 0.90 7.39 13.32

2 63 0.85 0.71 11.59 35.46

3 10 0.7 0.8 24.85 32.57

4 9 0.44 0.67 19.25 29.5

Overall 112 0.83 0.76 11.65 28.32
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TABLE V

Accuracy of H1, H2 and CFR.

fops No. of Bps
Accuracy Fix Candidates

H1 H2 CFR H1 H2 CFR

1 46 0.83 0.83 0.85 9 31 9

2 119 0.79 0.79 0.73 22 51 21

3 24 0.71 0.71 0.71 33 50 35

4 19 0.74 0.74 0.53 78 90 66

Overall 208 0.78 0.78 0.74 25 50 22
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