
An Integrated Framework for Fault Resolution in Business
Processes

Muhammad Adeel Zahid,

Ahmed Akhtar,

Basit Shafiq,

Shafay Shamail

Computer Science Department, Lahore University of Management Sciences, Lahore, Pakistan

Ayesha Afzal,
Computer Science Department, Air University, Multan, Pakistan

Jaideep Vaidya
MSIS Department, Rutgers University, Newark, USA

Abstract

Cloud and edge-computing based platforms have enabled rapid development of distributed

business process (BP) applications in a plug and play manner. However, these platforms do not

provide the needed capabilities for identifying or repairing faults in BPs. Faults in BP may occur

due to errors made by BP designers because of their lack of understanding of the underlying

component services, misconfiguration of these services, or incorrect/incomplete BP workflow

specifications. Such faults may not be discovered at design or development stage and may occur

at runtime. In this paper, we present a unified framework for automated fault resolution in BPs.

The proposed framework employs a novel and efficient fault resolution approach that extends the

generate-and-validate program repair approach. In addition, we propose a hybrid approach that

performs fault resolution by analyzing a faulty BP in isolation as well as by comparing with

other BPs using similar services. This hybrid approach results in improved accuracy and broader

coverage of fault types. We also perform an extensive experimental evaluation to compare the

effectiveness of the proposed approach using a dataset of 208 faulty BPs.

Index Terms—

Fault resolution; business processes; web service compositions

I. Introduction

Cloud and edge computing infrastructure facilitates rapid development of Internet-centered

distributed applications, including distributed workflows, web mashups, and business

processes. These applications are developed using data, storage, and computation web

muhammad.zahid@lums.edu.pk .

HHS Public Access
Author manuscript
IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

Published in final edited form as:
IEEE Int Conf Web Serv. 2022 July ; 2022: 266–275. doi:10.1109/icws55610.2022.00048.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

services available in enterprise networks and cloud data centers, as well as large number

of IoTs and edge devices. Several new plug-and-play-based tools and platforms are now

available [1]–[4] that support distributed application development in an automated or

semi-automated manner by composing relevant service components. While these tools and

platforms support efficient development of distributed applications, they lack support for

identifying or repairing faults in distributed applications, specifically business process (BP)

applications [5]. Faults in BP may occur due to errors made by BP designers because of

their lack of semantic understanding of the underlying web services, misconfiguration of

these services, or incorrect/incomplete BP workflow specifications. Such faults may not be

discovered at design or development stage and may occur at runtime.

In this paper, we focus on detecting and resolving faults in BP applications that may

cause unexpected or incorrect output. In [5], BP faults have been categorized in four main

categories given in Table I. This categorization is derived from the fault categories and

mutation operators defined by Estero-Botaro et al. [6] for fault injection in BPEL processes.

The different design-time faults in a BP can be represented as combination of mutation

operators given in Table I. For fault detection and resolution in BPs, we consider each web

service as a black box and focus on those faults that may occur during service composition.

Although faults in a BP may also occur due to service failures, service implementation

errors, service deployment, or network/communication issues, we do not consider these

faults in this paper. There is a significant body of work in the literature addressing service

implementation errors [7], [8], service failure and unavailability, service deployment issues

[9], and network failure [10]–[12].

For fault detection and resolution, we propose an integrated approach that builds on the

generate-and-validate (G&V) methodology and improves its efficiency by generating a small

set of candidate fixes for BP repair. G&V is an automated program repair technique that

uses a faulty program and a set of passing and failing test cases as input to generate

candidate fixes by heuristically searching the program space. The generated fix candidates

are validated by running all available test cases [13], [14]. G&V requires a fault localization

mechanism for identifying suspected code blocks in a faulty program. Candidate fixes are

created by applying mutations to the elements contained in these suspected code blocks. The

basic G&V approach has high computation overhead because it generates candidate fixes in

a brute-force manner by considering all possible mutations of elements in suspected regions.

We improve the efficiency of G&V by applying only a small selective set of candidate fixes

instead of brute force application of all fixes. The proposed approach called efficient G&V
(EGV) leverages mutation-based fault localization in combination with program slicing to

improve localization accuracy and considers a minimal set of suspicious code blocks for

generating candidate fixes. In addition, we propose a hybrid approach that combines the

EGV with a collaborative fault resolution (CFR) approach presented in [5]. CFR performs

fault resolution by comparing a faulty BP with existing fault-free BPs that use similar

services. This results in improved accuracy and broader coverage of fault types.

The key contributions of this work include:

Zahid et al. Page 2

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1. Efficient G&V (EGV) approach. We propose an efficient fault resolution

approach for BPs by extending the traditional G&V automated program repair

methodology. While the proposed approach leverages mutation-based fault

localization to achieve high localization accuracy, it significantly improves its

efficiency by considering a relatively smaller subgraph of the BP that is obtained

through statistical fault localization and predicate-based switching and slicing.

Moreover, we boost the efficiency of fault resolution through static analysis

and conditional generation of mutants. Note that G&V is widely used for

automatic repair of Java and C programs [13]–[16] but it has not been adapted

for automatic resolution of faults in BPs encoded in BPMN or BPEL.

2. Hybrid Approach. We also propose a hybrid approach combining the proposed

EGV approach that performs fault resolution by analyzing a faulty BP in

isolation with a collaborative fault resolution (CFR) approach [5] for improved

accuracy. Rather than examining the faulty BP in isolation, the hybrid approach

enables broader coverage of fault types by utilizing the knowledge of existing

BPs that are composed of similar services and are assumed to be correct.

3. We extend an existing framework for automated BP composition and

management in a services cloud environment [1] by integrating automated

fault resolution capabilities. In addition, we demonstrate the viability of this

integrated framework by developing a prototype implementation that supports

BP composition as well as automatic resolution of faults.

The rest of the paper is organized as follows: Section II provides some basic definitions

and problem statement; Section III discusses the proposed G&V based fault resolution

approach and its extension to a hybrid approach; Section IV discusses the experimental

evaluation results; Section V discusses the implementation details of the proposed integrated

framework for fault resolution; Section VI presents related work in the problem domain and

Section VII concludes the paper.

II. Preliminaries and Problem Statement

This section outlines the basic notation to represent a BP and an illustrative example that

will be used in the following sections to explain the proposed approach.

Definition 1: (Business Process) A business process (BP) is defined as a graph, G = (V, E,

ℰ, υstart, υend, υuser) where:

• V is the vertex set which is partitioned into the following vertex types; (i) service

operations; (ii) input/output attributes of service operations; and (iii) XOR splits

and joins;

• E ⊆ V × V is the edge set in G denoting the data flow and control flow.

• ℰ = {true, false, Boolean Expression}, for each edge.

• υstart denotes the start activity in BP.

• υend denotes the terminating activity in BP.

Zahid et al. Page 3

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• υuser denotes a user vertex which is linked to all the input attributes whose values

must be supplied by the BP user during execution.

Illustrative Example:

Fig. 1 shows a small BP graph representing an elementary BP from the e-commerce domain.

Shaded gray boxes represent activities corresponding to invocation of web service operations

e.g., searchProduct, verifyEmail, etc. White rectangular boxes represent the input and output

attributes of the service operations e.g., productId, taxClassId, etc. Control flow edges in the

BP are denoted by solid arrows. Arrows with dotted lines denote dataflow edges that link

each service operation with its input/output attributes. Arrows with dashed lines model the

variable assignment which is essentially a dataflow from the output of one service operation

to the input of another service operation (e.g., the edge from productId to product_code
where productId is produced by searchProduct and it is assigned to product_code, which

represents an input attribute of the createOrder service operation).

Faulty BP: Given a set of test cases specified for a BP, we consider the BP as a faulty BP, if

it fails one or more of the test cases. The BP graph Gf, shown in Fig. 1, is a faulty BP where

the edge from ship_charges to sales_tax and the edge from tax_amount to shipping (marked

with ×) correspond to the incorrect attribute assignments.

For fault resolution, we need to discover fixes (mutations) that can remove the faults and

allow for correct execution of the faulty BP. The BP fault resolution problem addressed in

this work is formally stated below.

BP Fault Resolution Problem:

Given a faulty BP, Gf, and a set of test cases, T = {t1, …, tm}, compute a minimal set
of candidate fixes, = {Gc1, Gc2, …, Gck}, that when applied to Gf produces a BP that
successfully passes all the test cases in T.

Note that we do not address the test case generation problem for BPs in this paper. We

assume that the test cases are either provided by the user or existing test case generation

techniques [17]–[21] can be applied for this purpose as discussed in Section VI.

III. Proposed Fault Resolution Approach

In this section, we first present an efficient G&V (EGV) approach for fault resolution in

BPs. EGV extends the traditional G&V approach which is widely used for repairing C

and Java programs. For BP fault resolution the proposed EGV approach leverages mutation-

based fault localization in combination with program slicing to improve localization

accuracy and consider a minimal set of suspicious code blocks for generating candidate

fixes. In addition, we propose a hybrid approach that combines the EGV with a collaborative

fault resolution (CFR) approach presented in [5]. CFR performs fault resolution by

comparing a faulty BP with existing fault-free BPs that use similar services. This results

in improved accuracy and broader coverage of fault types.

Zahid et al. Page 4

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A. Efficient G&V approach (EGV) for fault resolution

Fig. 2 shows the main steps of the proposed EGV approach. EGV takes as input a faulty

BP graph (Gf) and a set of test cases and attempts to resolve faults in Gf. There are four

key steps which are executed repeatedly until all faults are resolved (as per the execution on

the test suite). First, the test cases are executed to check the correctness of the given BP, Gf.

If it results in an unexpected/incorrect output, fault localization is performed (discussed in

Section III-A1) to identify location(s) where faults are observed in the BP. These locations

are referred to as fault observation points (fop), which may not necessarily correspond to

the actual source of the fault in the BP. The source of the actual fault might b present at a

location prior to fop.

Specifically, we perform statistical fault localization [22] to identify fop. For a given fop, we

perform program slicing [23] to obtain suspicious code blocks. These suspicious code blocks

are referred to as BP slices. We use the BP slices that lie between the starting vertex (vf
start)

of Gf and the given fop for generating candidate fixes. Fault localization and BP slicing help

us to keep the generated number of candidate fixes to a minimum but still relevant. Once the

BP slices are identified, we apply the different mutation operators and their combinations to

obtain mutants of Gf which are called candidate fixes. Then, for the given fop, we run the

test cases against each candidate fix to check if the faults are resolved without introducing

any new faults. For executing test cases, first, the BP code is generated and deployed. If a

candidate fix removes all the faults then our approach terminates and returns the candidate

fix that passes all the test cases. In case the faults up to the given fop are fixed, but execution

of test cases results in faults at a later point in the BP, we repeat the entire process to identify

subsequent fop and candidate fixes. This process is repeated in an iterative manner until all

the faults are resolved or all the candidate fixes are exhausted.

Algorithm 1 outlines the steps required to fix a faulty BP. Lines 1 and 2 find the fop and BP

slice respectively using statistical fault localization and BP slicing as discussed in Sections

III-A1 and III-A2. Next the relevant BP slices between the starting vertex (vf
start) of Gf

and the fop is extracted for generating candidate fixes (Lines 3 – 13). Candidate fixes are

generated by successively applying mutation operators and their combinations on the input

BP Gf. Each candidate fix, Gc is validated to check if it passes the failed test cases up to

the computed fop (Line 17). If any such Gc is found, it is tested against all the test cases

for the entire BP (Line 18). If it passes all these test cases, then all the faults with respect

to the given test cases have been removed. The resulting BP is returned to the user (Line

19). Otherwise, we recursively call the EGV fault resolution procedure (Line 21) until all the

faults are fixed or the entire space of mutants is exhausted.

We provide detailed description of each component of Fig. 2 below.

1) Fault Localization: Fault localization aims to locate and isolate faulty software

components or bugs to determine the likely causes errors or software failures [24], [25]. For

fault localization in a BP, we employ a statistical analysis-based debugging approach [22].

This approach considers predicate evaluation against program elements in correct as well

as incorrect program executions. A predicate is assumed to be fault-relevant if the pattern

Zahid et al. Page 5

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of evaluation in an incorrect run significantly deviates from the correct ones. Predicates are

ranked in order of their computed fault-relevance scores.

In the context of BPs, we establish predicates for each of the branching conditions as well

as for each service invocation, their execution status, and their impact on the test case

result. Each predicate is assigned a fault-relevance score depending upon its execution status

in passing and failing runs of a BP for given test suite. The location having the highest

fault-relevance predicate score is chosen as a fault observation point (fop) for the subsequent

steps in our approach. For instance, in Fig. 1, createOrder service fails with an exception due

to incorrect mapping of sales_tax and shipping input attributes. This failure results in a high

predicate score for createOrder than any other BP element and it is selected as an fop for BP

slicing and candidate fix generation.

2) BP Slicing: Once the fop is identified, we employ program slicing to identify

suspicious code blocks (BP slices). For this, we employ the BPELSwice approach by Sun

et. al [23]. BPELSwice uses predicate switching and program slicing to obtain BP slices

from BPEL programs. Specifically, it switches the conditional statements and verifies the

modified BP against the test cases. If all test cases are passed then it takes the backward slice

from the conditional statement and takes the elements of the BP that write to the variables

used in the conditional statement. If the predicate switching does not result in the passing of

all the test cases, BPELSwice takes the backward slice from the incorrect/ unexpected BP

outputs.

For instance, in Fig. 1 the BP fails on invocation of createOrder service operation due to

incorrect inputs and produces unexpected output. Hence, the BP slice will contain the edges

and vertices of the BP graph that are connected to createOrder in control flow and the

service operations and their attributes that provide input to createOrder. Fig. 3 depicts the

slice of BP shown in the illustrative example in Fig. 1. Fig. 3 does not include verifyEmail
and verifyAddress service operations because they do not provide any input to createOrder
service directly or indirectly nor are they adjacent to it in the control flow. Furthermore, the

slice also does not contain the input attributes of searchProduct service operation because

all of its inputs are provided by the user and hence by the test cases that are assumed to be

valid. After the slice has been identified, we select the part of the slice that lies before fop. In

this example, the whole slice will be selected because all elements of the slice occur before

createOrder which is the fop in this case.

3) Candidate Fix Generation: After identifying the filtered slice before fop, we

generate candidate fixes by applying different mutation operators shown in Table I. We

only apply semantically meaningful mutation operators for generating candidate fixes. This

also reduces the number of candidate fixes. Specifically, we do not change the order of data

independent services in the control flow for generating candidate fixes. Moreover, we do not

use ECN operator because it generates a large number of candidate fixes. Furthermore, we

do not consider path or activity removal operators (AIE, AEL) because they may change BP

scope.

Zahid et al. Page 6

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In the slice shown in Fig. 3 there are no conditional statements and expressions.

Additionally, the order of service operations will not be changed because no service

operation depends upon data produced by a service operation that appears later in the

control flow. Therefore, the only applicable mutation operator is ISV, which is equivalent to

replacing the data flow edges between pairs of attribute type vertices having the same data

type. The generated candidate fixes are shown in Table II. In m1, pid = productId mapping

is replaced with pid = taxClassId and tax_class = taxClassId mapping is replaced with

tax_class = productId. Note that m6 is the candidate fix that actually resolves the fault by

removing incorrect mapping with the correct mapping of shipping and sales_tax attributes.

Similarly, sales_tax or shipping is not mapped to any of productId, taxClassId or ship_cat
because they belong to a different data type.

Zahid et al. Page 7

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4) Validation of Candidate Fixes: Finally, we translate each candidate fix into

executable BP code and deploy it for testing. The entire test suite is executed against each

candidate fix to check that the resulting BP is fault-free w.r.t. the given test suite. If such a

fix is found, the fault-free BP after application of the candidate fix is returned to the user. If

a candidate fix passes some, but not all, of the test cases that were originally failed, we use

that candidate fix for further discovery and repair of faults (Algorithm 1, Line 21).

B. Hybrid Approach

The EGV approach for fault localization examines a BP in isolation therefore it lacks the

capability to identify any control flow and branching faults that occur due to any activity/

element removal in the BP e.g., a missing service operation or a branch path in an XOR

block. CFR is a collaborative fault resolution (CFR) approach [5] that is capable of resolving

such faults.

CFR relies on a set of existing BPs that are composed of similar services and are assumed

to be correct. The knowledge of these BPs is utilized to discover and fix fault in a faulty BP.

However CFR requires a certain minimum overlapping services between the faulty BP and

existing BPs for providing accurate results. Rather than examining the faulty BP in isolation

Zahid et al. Page 8

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(as EGV does), we propose a hybrid of EGV and CFR approaches that allows for broader

coverage of fault types by leveraging knowledge from existing BPs.

Hybrid approach combines both EGV and CFR in an interleaved fashion. We consider two

versions of the hybrid approach:

H1: EGV is executed first to resolve faults for a given fop. If EGV fails, only then

CFR is invoked for that fop. This interleaved execution continues until either the

BP is fixed or there are no more candidate fixes to apply.

H2: CFR is executed first to resolve faults for a given fop. If CFR fails, only then

EGV is executed for that fop. Similar to H1, H2 is executed in an interleaved

manner.

Algorithm 2 outlines the hybrid fault resolution approach, H1. The inputs to this algorithm

are faulty BP graph, Gf, a set of test cases, T, and the set of existing BPs, B. H1 first

calls fault localization to find the fop (Line 1). Next, a subgraph of Gf from vf
start to fop

is extracted for generating candidate fixes (Line 2). EGV is called on this subgraph for

resolution of faults up to the fop (Line 3). If a candidate fix (Gc) is found for the subgraph

S, it is combined with the remaining part of Gf after the fop (Line 5). If Gc not only fixes

the fault up to the given fop but also of the entire BP then the resulting BP is returned to

the user as a fault-free BP Lines (6 – 8). Otherwise, if the candidate fix partially fixes the

fault (i.e., it passes some, but not all, of the test cases that were originally failed), we use

that candidate fix for further discovery and repair of faults by recursively calling H1 (Line

10). In case no partial fix is found, we call CFR for collaborative fault resolution (Line 13).

Similar to the steps given in lines 4 – 11, we repeat these steps for CFR in lines 12 – 23.

We recursively call H1 fault resolution procedure until all the faults are fixed or the entire

space of candidate fixes is exhausted. The algorithm of hybrid fault resolution approach H2

is similar to Algorithm 2 except that it invokes CFR first followed by EGV.

IV. Experimental Evaluation

We have performed extensive experiments to evaluate the performance of the proposed EGV

and hybrid fault resolution approaches.

Dataset:

For experimental evaluation, we consider the same dataset that was used for validation

of CFR approach in [5]. This dataset consists of 48 fault-free BPs from three domains

including, insurance, E-commerce, and flight reservation. For generation of faulty BPs, we

used random fault injection to a correct BP from insurance domain which is not considered

in above mentioned 48 BPs. Specifically, we applied random combinations of the mutation

operators given in Table I to generate 208 faulty BPs which are considered for validation of

the proposed approach. For generating a faulty BP, the number of mutation operators applied

were between 1 and 4. The mean of the number of mutation operators applied was 2.24

and standard deviation was 0.81. The resulting faulty BPs covered all the fault categories

(depicted in Table I) and their random combinations.

Zahid et al. Page 9

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For comparison with CFR as well as evaluation of hybrid approach, we built a repository of

existing BPs including all 48 fault-free BPs.

EGV:

For comparison of EGV with basic G&V, we performed experiments on 40 BPs as shown in

Table III. Basic G&V outperforms EGV with 0.9 accuracy as opposed to 0.65 of EGV. But

the higher accuracy is achieved at the cost of generating a lot more candidate fixes. Basic

G&V, on average, validates 4139 candidate fixes for each BP whereas EGV only uses 10

candidate fixes. The accuracy of EGV is quite low (0.42) for variable assignment fault types

as compared to G&V with an accuracy of 0.84. The accuracy of both EGV and G&V is

almost the same for other fault types, though EGV uses a much smaller number of candidate

fixes.

For comparison of EGV with CFR, we performed experiments on 112 BPs out of 208 that

do not contain faults related to branch removal (AIE), activity removal (AEL), or constant

modification (ECN). As discussed in Section III-B EGV is not designed for resolving fault

types in which one or more BP elements are removed. Table IV shows the accuracy results

of EGV in comparison to CFR approach. The results show that EGV has a higher accuracy

than CFR on BPs with 1 and 2 fops and lower accuracy with 3 and 4 fops. Overall, EGV

has an accuracy of 0.83 while CFR has an accuracy of 0.76. Apart from the gain in accuracy,

EGV has the advantage of being able to resolve the faults without relying on existing BPs

that have overlapping services with respect to the faulty BP. In terms of execution time EGV

takes less time than CFR for resolving faults in BPs with 3 or less fops while CFR performs

slightly better with 4 fops. This is because the number of mutants increase significantly with

the increase in fops.

Hybrid Approach:

Hybrid approach combines both EGV and CFR in an interleaved fashion. As discussed in

Section III-B, we consider two versions of hybrid approach, H1 and H2.

Table V shows the accuracy results of both H1 and H2 in comparison with CFR. As

expected, both H1 and H2 have similar accuracy because both of them use the same

underlying approaches but in a different order. Fig. 5 compares the execution time taken by

CFR, H1 and H2. Overall, CFR performs slightly better than H1 and much better than H2

which takes almost twice as much time as CFR. However, H1 is more time-efficient for BPs

with 1 or 2 fops, whereas, both H2 and CFR perform better than H1 for BPs with 3 and 4

fops. This is due to the fact the BPs with a higher number of fops have complex faults that

cannot be resolved in isolation as done by EGV. In the presence of such complex faults, CFR

and H2 (executing CFR first) perform better with respect to execution time because of the

higher fault coverage of CFR.

A. Discussion

As depicted in Table III, EGV significantly improves the performance in terms of number of

candidate fixes by reducing the search space. However, the overall accuracy of EGV is lower

than the basic G&V approach.

Zahid et al. Page 10

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

EGV also outperforms CFR in terms of computation time with comparable accuracy but

CFR provides a broader fault coverage as discussed in Section III-B. For example, CFR can

resolve faults belonging to branch and activity removal. These faults cannot be resolved by

the basic G&V and EGV. However, CFR requires a repository of existing BPs.

If such a repository exists, EGV can be combined with CFR to get the best of both worlds.

This is exactly what the hybrid approach is designed to achieve. Both hybrid approaches H1

and H2 have similar accuracy across all fops as depicted in Table V. The accuracy of CFR

is slightly higher than the hybrid approach (both H1 and H2) for one fop but is taken over

by the hybrid approach as the number of fops increase. Consequently, the hybrid approach is

preferred over CFR for better accuracy especially when higher number of fops are expected.

In terms of performance, H1 is a better candidate for BPs with 1 or 2 fops. However, for BPs

with higher number of fops H2 performs better than H1.

V. Implementation

We have developed a prototype implementation of the proposed framework for the fault

resolution. For prototype implementation we have used Java (J2EE), BPEL and Apache

ODE. The user (BP designer/developer) interacts with our system using a command line

interface to provide inputs, including faulty BP and a set of test cases. In addition, we have

also developed a repository of different BPs in various domains that can be used for fault

resolution using CFR and hybrid approach.

After receiving the required inputs, the prototype invokes the selected fault resolution

algorithm and checks the resulting BP for correctness by applying all test cases provided by

the user. During this fault resolution process, the user is kept in the loop for reviewing the

relevant candidate fixes and the resulting BP to ensure that the domain and the scope of the

BP are not changed. Once the user is satisfied with the fixed BP, it is deployed to Apache

ODE server and its associated user interface (UI) is deployed on Apache Tomcat web server

for further user testing.

VI. Related Work

We discuss the related work in the context of test case generation, fault localization, and

fault resolution.

Test case generation.

Test case generation is an essential step towards automated testing of programs. Significant

work has been done on automated testing and test case generation in the context of BPs

[17]–[21]. Bartolini et al. [17] presented an approach that uses test services for white-box

testing of third-party services and a tool, WS-TAXI, for automated generation of test cases

from the WSDL definition of web services. Tarhini et al. [26] addressed the problem of

test case generation for service compositions and validation of service compositions using

WSDL definitions. Sun et al. [27] proposed a scenario-oriented framework for test case

generation for web service compositions in BPEL. BP graph model is considered to derive

Zahid et al. Page 11

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

test scenarios based on which test cases are generated. A constraint-based technique is

employed for test data generation for execution of generated test cases.

Fault localization.

The purpose of fault localization is to identify locations (branches, statements, or blocks) in

a faulty program that are suspicious i.e., likely to be erroneous and associated with the fault.

The objective is to support programmers fix the faults by focusing only on the suspicious

locations and to support automated repair and recovery of the given program [13], [25].

Existing works on fault localization techniques can be categorized into static and dynamic

analysis-based techniques [25]. The static techniques mostly rely on model checking and

static program analysis. Dynamic techniques compare and contrast the runtime behavior of

correct and incorrect executions to isolate the fault-relevant locations.

Program slicing is one of the most frequently used techniques [25] that analyzes the

runtime profile of a program to isolate the statements and blocks that are fault-relevant.

Fault-relevant slice is obtained by filtering out the program slice that does not correspond

to incorrect output(s) [23], [28], [29]. The most common fault localization techniques

are spectra-based and employ dynamic analysis and coverage information of test cases to

assign suspicious score to program elements. The program elements are then ranked by

this score and programmers are expected to examine these elements in the ranked order

[23], [30], [31]. Tarantula [32] is one representative technique in this category that has

also been adapted in the context of business processes [23]. BPELSwice [23] targets the

fault localization problem for business processes developed using BPEL. It uses predicate

switching and program slicing to isolate the suspicious statements with greater precision.

BPELSwice significantly reduces the size of the slice by acting at the statement level

and identifying only suspicious statements from within BPEL blocks rather than marking

the whole block as fault-relevant. Our proposed EGV approach employs the BPELswice

approach for identifying suspicious code blocks in the faulty BP.

Delta debugging [9] works by applying small changes (deltas) to the programs and monitors

their effect on the output. It can be used to discover development, deployment, and

configuration faults. Delta debugging has also been adapted in the context of microservices

[9] to unveil deployment and configuration faults as well as the faults that occur in execution

orders of microservices. Delta debugging has also been used in combination with mutation

testing [33] for accurate fault localization.

In our proposed EGV fault resolution approach, we use a combination of statistical fault

localization and program slicing. However, our approach is independent of the underlying

technique used for fault localization.

Fault resolution.

Considerable work has been done on automated program repair for software programs

developed in C/C++ and Java but the existing approaches do not address automated repair

in the context of BPs. Generate-and-validate (G&V) is a widely used technique [13]–[16]

for automated repair and recovery that uses a faulty program and a set of passing and

failing test cases as input to generate candidate fixes by heuristically searching the program

Zahid et al. Page 12

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

space. The generated fix candidates are validated by running all available test cases that

explores the search space of a program and finds candidate fixes by applying variety

of changes heuristically. G&V requires a fault localization mechanism for identifying

suspected code blocks in a faulty program. Candidate fixes are computed by applying

mutations to the elements contained in these suspected code blocks. These candidates are

then validated against the available test suite. Xu et al. have proposed RESTORE which

is an efficient G&V-based framework focusing repair of Java programs [13]. RESTORE

first performs fault localization to compute suspicious program snapshots. Candidate fixes

are then generated for every suspicious snapshot by taking into account different mutations

of the given program. To address the efficiency issue, only selected candidate fixes are

validated by executing test cases in order of their suspicion scores. In case no candidate

fix passes the entire test suite, partially successful fixes passing a subset of test cases are

considered for generating variants of the given faulty program. All steps are then repeated

for the generated variant until valid program fixes are identified. This retrospective strategy

improves the efficiency of G&V by avoiding exhaustive validation of all candidate fixes.

In our recent work, we proposed the Collaborative Fault Resolution (CFR) approach [5]

for BPs. CFR relies on a set of existing BPs that are composed of similar services and

are assumed to be correct. Rather than examining the faulty BP in isolation, CFR makes

use of the knowledge of these BPs to discover and fix faults in a faulty BP. However CFR

requires a certain minimum overlapping services between the faulty BP and existing BPs for

providing accurate results. It uses statistical fault localization to identify the fops in the given

BP and then performs a pairwise analysis of the given faulty BP in comparison with related

BPs of other users to identify their structural and semantic differences. Association rule

mining is applied to these differences to identify the minimal overlapping set of differences

that can be used to fix the faults. In this work, we have extended our proposed EGV

approach with CFR for higher coverage of fault types as discussed in Subsection III-B.

VII. Conclusion

In this paper, we addressed the problem of fault resolution in distributed BPs developed

by composing web services. We have proposed an efficient fault resolution approach for

BPs by extending the traditional generate-and-validate (G&V) automated program repair

methodology. We have also proposed a hybrid approach that combines the proposed efficient

G&V-based approach with a collaborative fault resolution approach for improved accuracy

and broader coverage of fault types. Our extensive experimental evaluation results validate

the effectiveness of the proposed approach. In addition, we have presented the prototype

implementation of an integrated framework for fault diagnosis and resolution in BPs to

demonstrate the viability of the proposed approach.

Acknowledgment

The work of Basit Shafiq is supported by the HEC and Planning Commission of Pakistan and LUMS FIF grants.
The work of Jaideep Vaidya is supported by the NIH grants (R35GM134927, R01GM118574). The content is
solely the responsibility of the authors and does not necessarily represent the official views of the agencies funding
the research.

Zahid et al. Page 13

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

References

[1]. Afzal A, Zahid MA, Akhtar A, Shafiq B, Shamail S, Elahraf A, Vaidya J, and Adam N, “BP-Com:
A service mapping tool for rapid development of business processes,” in 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS). IEEE, 2020, pp. 1235–
1238.

[2]. Yao L, Wang X, Sheng QZ, Benatallah B, and Huang C, “Mashup recommendation by
regularizing matrix factorization with API co-invocations,” IEEE Transactions on Services
Computing, 2018.

[3]. Microsoft, “Microsoft Flow - Power Automate,” https://flow.microsoft.com/, 2022 (Accessed
2022-06-11).

[4]. Outsystems, “Outsystems- Low Code Platform,” https://outsystems.com/, 2022 (Accessed
2022-06-11).

[5]. Zahid MA, Shafiq B, Vaidya J, Afzal A, and Shamail S, “Collaborative business process fault
resolution in the services cloud,” IEEE Transactions on Services Computing, pp. 1–1, 2021.

[6]. Estero-Botaro A, Palomo-Lozano F, Medina-Bulo I, Domínguez-Jiménez JJ, and García-
Domínguez A, “Quality metrics for mutation testing with applications to ws-bpel compositions,”
Software Testing, Verification and Reliability, vol. 25, no. 5–7, pp. 536–571, 2015.

[7]. Chaturvedi A and Binkley D, “Web service slicing: Intra and inter-operational analysis to test
changes,” IEEE Transactions on Services Computing, 2018.

[8]. Qiu D, Li B, Ji S, and Leung H, “Regression testing of web service: a systematic mapping study,”
ACM Computing Surveys (CSUR), vol. 47, no. 2, pp. 1–46, 2014.

[9]. Zhou X, Peng X, Xie T, Sun J, Ji C, Liu D, Xiang Q, and He C, “Latent error prediction and fault
localization for microservice applications by learning from system trace logs,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 683–694.

[10]. Yu J, Sheng QZ, Swee JK, Han J, Liu C, and Noor TH, “Model-driven development of adaptive
web service processes with aspects and rules,” Journal of Computer and System Sciences, vol.
81, no. 3, pp. 533–552, 2015.

[11]. Marrella A, Mecella M, and Sardina S, “Intelligent process adaptation in the SmartPM system,”
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 8, no. 2, pp. 1–43, 2016.

[12]. Hassan S, Bahsoon R, Minku L, and Ali N, “Dynamic evaluation of microservice granularity
adaptation,” ACM Transactions on Autonomous and Adaptive Systems (TAAS), vol. 16, no. 2,
pp. 1–35, 2022.

[13]. Xu T, Chen L, Pei Y, Zhang T, Pan M, and Furia CA, “RESTORE: Retrospective fault
localization enhancing automated program repair,” IEEE Transactions on Software Engineering,
2020.

[14]. Chen L, Pei Y, Pan M, Zhang T, Wang Q, and Furia CA, “Program repair with repeated learning,”
IEEE Transactions on Software Engineering, pp. 1–1, 2022.

[15]. Chen Z, Kommrusch S, Tufano M, Pouchet L-N, Poshyvanyk D, and Monperrus M, “Sequencer:
Sequence-to-sequence learning for end-to-end program repair,” IEEE Transactions on Software
Engineering, vol. 47, no. 9, pp. 1943–1959, 2019.

[16]. Wen M, Chen J, Wu R, Hao D, and Cheung S-C, “Context-aware patch generation for better
automated program repair,” in 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE, 2018, pp. 1–11.

[17]. Bartolini C, Bertolino A, Elbaum S, and Marchetti E, “Whitening SOA testing,” in Proceedings
of the the 7th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering. ACM, 2009, pp. 161–170.

[18]. Sun C.-a., Wang G, Mu B, Liu H, Wang Z, and Chen TY, “A metamorphic relation-based
approach to testing web services without oracles,” International Journal of Web Services
Research (IJWSR), vol. 9, no. 1, pp. 51–73, 2012.

[19]. Sun C.-a., Li M, Jia J, and Han J, “Constraint-based model-driven testing of web services for
behavior conformance,” in International Conference on Service-Oriented Computing. Springer,
2018, pp. 543–559.

Zahid et al. Page 14

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://flow.microsoft.com/
https://outsystems.com/

[20]. Arcuri A, “RESTful API automated test case generation with Evo-Master,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 28, no. 1, pp. 1–37, 2019.

[21]. Gupta N, Yadav V, and Singh M, “Automated regression test case generation for web application:
A survey,” ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–25, 2018.

[22]. Liu C, Fei L, Yan X, Han J, and Midkiff SP, “Statistical debugging: A hypothesis testing-based
approach,” IEEE Transactions on software engineering, vol. 32, no. 10, pp. 831–848, 2006.

[23]. Sun C.-a., Ran Y, Zheng C, Liu H, Towey D, and Zhang X, “Fault localisation for WS-BPEL
programs based on predicate switching and program slicing,” Journal of Systems and Software,
vol. 135, pp. 191–204, 2018.

[24]. Zou D, Liang J, Xiong Y, Ernst MD, and Zhang L, “An empirical study of fault localization
families and their combinations,” IEEE Transactions on Software Engineering, 2019.

[25]. Wong WE, Gao R, Li Y, Abreu R, and Wotawa F, “A survey on software fault localization,” IEEE
Transactions on Software Engineering, vol. 42, no. 8, pp. 707–740, 2016.

[26]. Tarhini A, Fouchal H, and Mansour N, “A simple approach for testing web service based
applications,” in International Workshop on Innovative Internet Community Systems. Springer,
2005, pp. 134–146.

[27]. Sun C.-a., Shang Y, Zhao Y, and Chen TY, “Scenario-oriented testing for web service
compositions using bpel,” in 2012 12th International Conference on Quality Software. IEEE,
2012, pp. 171–174.

[28]. Lei Y, Mao X, and Chen TY, “Backward-slice-based statistical fault localization without test
oracles,” in 2013 13th International Conference on Quality Software, 2013, pp. 212–221.

[29]. Mastroeni I and Zanardini D, “Abstract program slicing: An abstract interpretation-based
approach to program slicing,” ACM Transactions on Computational Logic (TOCL), vol. 18,
no. 1, pp. 1–58, 2017.

[30]. ai Sun C, Zhai YM, Shang Y, and Zhang Z, “BPELDebugger: An effective BPEL-specific fault
localization framework,” Information and Software Technology, vol. 55, no. 12, pp. 2140–2153,
2013.

[31]. Li P, Jiang M, and Ding Z, “Fault localization with weighted test model in model
transformations,” IEEE Access, vol. 8, pp. 14 054–14 064, 2020.

[32]. Jones J, Harrold M, and Stasko J, “Visualization of test information to assist fault localization,” in
Proceedings of the 24th International Conference on Software Engineering. ICSE 2002, 2002, pp.
467–477.

[33]. Li X and Orso A, “More accurate dynamic slicing for better supporting software debugging,”
in 2020 IEEE 13th International Conference on Software Testing, Validation and Verification
(ICST). IEEE, 2020, pp. 28–38.

Zahid et al. Page 15

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
An example BP graph (Gf) from e-commerce sale order processing domain.

Zahid et al. Page 16

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Efficient G&V fault resolution approach for BPs.

Zahid et al. Page 17

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Slice of faulty BP Gf.

Zahid et al. Page 18

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Execution time comparison of EGV and CFR.

Zahid et al. Page 19

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Execution time comparison of H1, H2, and CFR.

Zahid et al. Page 20

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zahid et al. Page 21

TA
B

L
E

 I

Fa
ul

t c
at

eg
or

ie
s,

 ty
pe

s
an

d
m

ut
at

io
n

op
er

at
or

s
sp

ec
if

ic
 to

 B
Ps

 [
5]

.

F
au

lt
 C

at
eg

or
y

T
yp

e
E

qu
iv

al
en

t
M

ut
at

io
n

O
pe

ra
to

r
D

es
cr

ip
ti

on

V
ar

ia
bl

e
as

si
gn

m
en

t
R

ep
la

ce
m

en
t o

f
V

ar
ia

bl
e

Id
en

tif
ie

r
IS

V
R

ep
la

ce
s

va
ri

ab
le

 id
en

tif
ie

rs
 o

f
sa

m
e

ty
pe

, i
.e

, s
er

vi
ce

B
.v

ar
1

=
 s

er
vi

ce
A

.v
ar

1
to

 s
er

vi
ce

B
.v

ar
1

=

se
rv

ic
e A

.v
ar

3
or

 s
er

vi
ce

B
.v

ar
1

=
 c

C
on

tr
ol

 f
lo

w
A

ct
iv

ity
 r

em
ov

al
A

E
L

R
em

ov
es

 a
n

ac
tiv

ity

C
ha

ng
e

of
 A

ct
iv

ity
 O

rd
er

A
SI

C
ha

ng
es

 th
e

or
de

r
of

 tw
o

ch
ild

 a
ct

iv
iti

es
 in

 a
 s

eq
ue

nc
e

R
ep

la
ce

m
en

t o
f

Se
qu

en
tia

l t
o

Pa
ra

lle
l l

oo
p

A
FP

R
ep

la
ce

s
ac

tiv
iti

es
 in

 a
 s

eq
ue

nt
ia

l l
oo

p
w

ith
 a

 p
ar

al
le

l s
tr

uc
tu

re

R
ep

la
ce

m
en

t o
f

Se
qu

en
ce

 to
 F

lo
w

 S
tr

uc
tu

re
A

SF
R

ep
la

ce
 a

 s
eq

ue
nc

e
ac

tiv
ity

 b
y

a
fl

ow
 a

ct
iv

ity

B
ra

nc
hi

ng
R

em
ov

al
 o

f
B

ra
nc

h
Pa

th
A

IE
R

em
ov

es
 a

n
E

ls
ei

f e
le

m
en

t f
ro

m
 a

n
If

 s
tr

uc
tu

re

R
em

ov
al

 o
f

Jo
in

 C
on

di
tio

n
A

JC
R

em
ov

es
 jo

in
C

on
di

tio
n

of
 a

n
ac

tiv
ity

E
xp

re
ss

io
n

R
ep

la
ce

m
en

t o
f

A
ri

th
m

et
ic

 o
pe

ra
to

r
E

A
A

R
ep

la
ce

s
ar

ith
m

et
ic

 o
pe

ra
to

rs
 (

+
, −

, ×
, /

, m
od

)
w

ith
 a

no
th

er
 o

ne

R
em

ov
al

 o
f

U
na

ry
 O

pe
ra

to
r

E
E

U
R

em
ov

es
 u

na
ry

 o
pe

ra
to

r
(−

 o
r

+
)

in
 a

n
ex

pr
es

si
on

R
ep

la
ce

m
en

t o
f

R
el

at
io

na
l O

pe
ra

to
r

E
R

R
R

ep
la

ce
s

a
re

la
tio

na
l o

pe
ra

to
r

(<
, ≤

, >
, ≥

, ≠
, =

)
by

 a
no

th
er

 r
el

at
io

na
l o

pe
ra

to
r

R
ep

la
ce

m
en

t o
f

L
og

ic
al

 O
pe

ra
to

r
E

L
L

R
ep

la
ce

s
a

lo
gi

ca
l o

pe
ra

to
r

(∧
, ∨

)
by

 a
no

th
er

 lo
gi

ca
l o

pe
ra

to
r

R
ep

la
ce

m
en

t o
f

Pa
th

 O
pe

ra
to

r
E

C
C

R
ep

la
ce

s
a

pa
th

 o
pe

ra
to

r
(/

, /
/)

 b
y

an
ot

he
r

pa
th

 o
pe

ra
to

r

M
od

if
ic

at
io

n
of

 N
um

er
ic

 C
on

st
an

t
E

C
N

In
cr

em
en

tin
g/

de
cr

em
en

tin
g

th
e

va
lu

e
of

 a
 n

um
er

ic
 c

on
st

an
t b

y
1

or
 c

ha
ng

in
g

on
e

di
gi

t

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zahid et al. Page 22

TABLE II

Candidate fixes for BP graph in Fig. 1.

Candidate Fix Mutations

m1
(productId, pid)−, (taxClassId, tax_class)−

(productId, tax_class)+, (taxClassId, pid)+

m2 (productId, product_code)−, (taxClassId, tax_class)−

(productId, tax_class)+, (taxClassId, product_code)+

m3
(taxClassId, tax_class)−, (ship_class, ship_cat)−

(taxClassId, ship_cat)+, (ship_class, tax_class)+

m4
(productId, product_code)−, (ship_class, ship_cat)−

(productId, ship_cat)+, (ship_class, product_code)+

m5
(productId, pid)−, (ship_class, ship_cat)−

(productId, ship_cat)+, (ship_class, pid)+

m6
(ship_charges, sales_tax)−, (tax_amount, shipping)−

(ship_charges, shipping)+, (tax_amount, sales_tax)+

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zahid et al. Page 23

TABLE III

Accuracy of EGV, CFR, and Basic G&V.

Category No. of BPs
Accuracy Candidate Fixes

G&V EGV G&V EGV

Variable assignment faults 24 0.83 0.42 2192 6

Expression 5 1 1 464 29.6

Control Flow excluding Element removal 11 1 1 9351 6

Overall 40 0.9 0.65 4139.47 10

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zahid et al. Page 24

TABLE IV

Accuracy of EGV and CFR.

fops No. of BPs
Accuracy Candidate Fixes

EGV CFR EGV CFR

1 30 0.93 0.90 7.39 13.32

2 63 0.85 0.71 11.59 35.46

3 10 0.7 0.8 24.85 32.57

4 9 0.44 0.67 19.25 29.5

Overall 112 0.83 0.76 11.65 28.32

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zahid et al. Page 25

TABLE V

Accuracy of H1, H2 and CFR.

fops No. of Bps
Accuracy Fix Candidates

H1 H2 CFR H1 H2 CFR

1 46 0.83 0.83 0.85 9 31 9

2 119 0.79 0.79 0.73 22 51 21

3 24 0.71 0.71 0.71 33 50 35

4 19 0.74 0.74 0.53 78 90 66

Overall 208 0.78 0.78 0.74 25 50 22

IEEE Int Conf Web Serv. Author manuscript; available in PMC 2023 September 16.

	Abstract
	Introduction
	Preliminaries and Problem Statement
	Illustrative Example:
	Faulty BP:

	BP Fault Resolution Problem:

	Proposed Fault Resolution Approach
	Efficient G&V approach (EGV) for fault resolution
	Fault Localization:
	BP Slicing:
	Candidate Fix Generation:
	Validation of Candidate Fixes:

	Hybrid Approach

	Experimental Evaluation
	Dataset:
	EGV:
	Hybrid Approach:
	Discussion

	Implementation
	Related Work
	Test case generation.
	Fault localization.
	Fault resolution.

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V

